Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = 510(k)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2765 KB  
Article
Techno-Economic Environmental Risk Analysis (TERA) in Hydrogen Farms
by Esmaeil Alssalehin, Paul Holborn and Pericles Pilidis
Energies 2025, 18(18), 4959; https://doi.org/10.3390/en18184959 - 18 Sep 2025
Viewed by 252
Abstract
This study presents a techno-economic environmental risk analysis (TERA) of large-scale green hydrogen production using Alkaline Water Electrolysis (AWE) and Proton Exchange Membrane (PEM) systems. The analysis integrates commercial data, market insights, and academic forecasts to capture variability in capital expenditure (CAPEX), efficiency, [...] Read more.
This study presents a techno-economic environmental risk analysis (TERA) of large-scale green hydrogen production using Alkaline Water Electrolysis (AWE) and Proton Exchange Membrane (PEM) systems. The analysis integrates commercial data, market insights, and academic forecasts to capture variability in capital expenditure (CAPEX), efficiency, electricity cost, and capacity factor. Using Libya as a case study, 81 scenarios were modelled for each technology to assess financial and operational trade-offs. For AWE, CAPEX is projected between $311 billion and $905.6 billion for 519 GW (gigawatts) of installed capacity, equivalent to 600–1745 $/kW. PEM systems show a wider range of $612 billion to $1020 billion for 510 GW, translating to 1200–2000 $/kW. Results indicate that AWE, while requiring greater land use, provides significant cost advantages due to lower capital intensity and scalability. In contrast, PEM systems offer compact design and operational flexibility but at substantially higher costs. The five most economical scenarios for both technologies consistently feature low CAPEX and high efficiency, while sensitivity analyses confirm these two parameters as the dominant cost drivers. The findings emphasise that technology choice should reflect context-specific priorities such as land availability, budget, and performance needs. This study provides actionable guidance for policymakers and investors developing cost-effective hydrogen infrastructure in emerging green energy markets. Full article
Show Figures

Figure 1

14 pages, 3943 KB  
Article
Solid-Solution Evolution Behavior of Al-Cu3-Si-Mg During the MMDF Process
by Tong Wu, Shuming Xing and Guangyuan Yan
Appl. Sci. 2025, 15(17), 9478; https://doi.org/10.3390/app15179478 - 29 Aug 2025
Viewed by 376
Abstract
Al-Cu3-Si-Mg alloy prepared by molten metal die forging (MMDF) under a pressure of 118 MPa was solution-treated at different temperatures and times, and the evolution behavior of the non-equilibrium eutectic in the microstructure was observed using an optical microscope and scanning electron microscope. [...] Read more.
Al-Cu3-Si-Mg alloy prepared by molten metal die forging (MMDF) under a pressure of 118 MPa was solution-treated at different temperatures and times, and the evolution behavior of the non-equilibrium eutectic in the microstructure was observed using an optical microscope and scanning electron microscope. The results show that the initial solidification structure of Al-Cu3-Si-Mg before solution treatment consists of irregular eutectic (α+Al2Cu), strip compound Q (Al5Cu2Mg8Si6), polygonal phase φ(AlxTi9La2Ce6Cu), spherical particle θ(Al2Cu) and cross-shaped β(Mg2Si) near the grain boundary. After solution treatments, the irregular eutectic at grain boundaries is dissolved. In the solution temperature range of 480 °C~510 °C, the irregular eutectic fraction decreased with the increase in solution temperature, and the grain size of other compounds such as Q (Al5Cu2Mg8Si6) and the spherical particle phase θ(Al2Cu) also showed a decreasing trend. However, all phases do not change significantly with the increase in solution temperature when the solution temperature is between 510 °C and 540 °C. It was determined experimentally that the holding time of 30 min at each temperature is the solution limit. Based on the experimental results, a dissolution model of intergranular irregular eutectic was established as dEdt=4PπtD+2rkkPD. Full article
Show Figures

Figure 1

20 pages, 4358 KB  
Article
The Conversion Polymorphism of Perovskite Phases in the BiCrO3–BiFeO3 System
by Alexei A. Belik
Inorganics 2025, 13(3), 91; https://doi.org/10.3390/inorganics13030091 - 18 Mar 2025
Viewed by 955
Abstract
Perovskite-type materials containing Bi3+ cations at A sites are interesting from the viewpoints of applications and fundamental science as the lone pair of Bi3+ cations often stabilizes polar, ferroelectric structures. This can be illustrated by a lot of discoveries of different [...] Read more.
Perovskite-type materials containing Bi3+ cations at A sites are interesting from the viewpoints of applications and fundamental science as the lone pair of Bi3+ cations often stabilizes polar, ferroelectric structures. This can be illustrated by a lot of discoveries of different new functionalities in bulk and thin films of BiFeO3 and its derivatives. In this work, we investigated solid solutions of BiCr1−xFexO3 with 0.1 ≤ x ≤ 0.4 prepared by a high-pressure (HP) method and post-synthesis annealing at ambient pressure (AP). HP-BiCr1−xFexO3 modifications with 0.1 ≤ x ≤ 0.3 were mixtures of two phases with space groups C2/c and Pbam, and the amount of the C2/c phase decreased with increasing x. The amount of the C2/c phase was also significantly decreased in AP-BiCr1−xFexO3 modifications, and the C2/c phase almost disappeared in AP-BiCr1−xFexO3 with 0.2 ≤ x ≤ 0.3. Fundamental, strong reflections of HP-BiCr1−xFexO3 and AP-BiCr1−xFexO3 were almost unchanged; on the other hand, weak superstructure reflections were different and showed clear signs of strong anisotropic broadening and incommensurate positions. These structural features prevented us from determining their room-temperature structures. On the other hand, HP-BiCr1−xFexO3 and AP-BiCr1−xFexO3 showed high-temperature structural phase transitions to the GdFeO3-type Pnma modification at Tsrt = 450 K (x = 0.1), Tsrt = 480 K (x = 0.2), Tsrt = 510 K (x = 0.3), and Tsrt = 546 K (x = 0.4). Crystal structures of the GdFeO3-type Pnma modifications of all the samples were investigated by synchrotron powder X-ray diffraction. Magnetic properties of HP-BiCr1−xFexO3 and AP-BiCr1−xFexO3 were quite close to each other (HP vs. AP), and the x = 0.2 samples demonstrated negative magnetization phenomena without signs of the exchange bias effect. Full article
(This article belongs to the Special Issue Photoelectric Research in Advanced Energy Materials)
Show Figures

Graphical abstract

14 pages, 7939 KB  
Article
The Use of Recycled Cement-Bonded Particle Board Waste in the Development of Lightweight Biocomposites
by Girts Bumanis, Pauls P. Argalis, Maris Sinka, Aleksandrs Korjakins and Diana Bajare
Materials 2024, 17(23), 5890; https://doi.org/10.3390/ma17235890 - 1 Dec 2024
Cited by 2 | Viewed by 1532
Abstract
Cement-bonded particle boards are gaining popularity globally due to their durability, strength, and, more importantly, environmental sustainability. The increasing demand for these materials has also created the necessity for the sustainable recycling of these materials. In this study, the potential to recycle wood-wool [...] Read more.
Cement-bonded particle boards are gaining popularity globally due to their durability, strength, and, more importantly, environmental sustainability. The increasing demand for these materials has also created the necessity for the sustainable recycling of these materials. In this study, the potential to recycle wood-wool cement board (WWCB) waste into new lightweight insulation biocomposite material was examined. The waste WWCBs were crushed and separated into a fine aggregate fraction, and WWCB production line residues were also collected and compared. The crushed WWCBs were used to produce biocomposites with various compaction ratios and different binder-to-aggregate ratios. To improve their thermal properties and reduce their density, hemp shives were used to partially replace the recycled WWCB aggregate. Their physical, mechanical (compressive and flexural strength), and thermal properties were evaluated, and the drying process of the biocomposites was characterized. The results showed that the density of the produced biocomposites ranged from 390 to 510 kg/m3. The reduction in density was limited due to the presence of cement particles in the aggregate. The incorporation of hemp shives allowed us to reduce the density below 200 kg/m3. The thermal conductivity of the biocomposites ranged from 0.054 to 0.084 W/(mK), placing the material within the effective range of natural biocomposites. This research has demonstrated that industrially produced WWCBs can be successfully recycled to produce sustainable lightweight cement-bonded insulation materials. Full article
(This article belongs to the Special Issue Recycling and Sustainability of Industrial Solid Waste)
Show Figures

Figure 1

17 pages, 6332 KB  
Article
Five-Surface Phosphor-in-Glass for Enhanced Illumination and Superior Color Uniformity in Large-View Scale LEDs
by Hong-Wei Huang, Chien-Wei Huang, Yi-Chian Chen, Hsing-Kun Shih, Wei-Chih Cheng, Chun-Nien Liu and Chia-Chin Chiang
Micromachines 2024, 15(8), 946; https://doi.org/10.3390/mi15080946 - 24 Jul 2024
Viewed by 1353
Abstract
A novel five-surface phosphor-in-glass (FS-PiG) structure for high illumination and excellent color uniformity in large-view scale LEDs for sensor light source application is demonstrated. YAG phosphor (Y3Al5O12:Ce3+) was uniformly mixed with ceramic and sintered at [...] Read more.
A novel five-surface phosphor-in-glass (FS-PiG) structure for high illumination and excellent color uniformity in large-view scale LEDs for sensor light source application is demonstrated. YAG phosphor (Y3Al5O12:Ce3+) was uniformly mixed with ceramic and sintered at 680 °C to form a phosphor wafer. Sophisticated laser engraving was employed on the phosphor wafer to form saddle-shaped large-view scale FS-PiG LEDs. The performance of the FS-PiG LEDs exhibited an illumination of 401 lm, average color temperature (CCT) of 5488 K ± 110 K, and color coordinates (CIE) of (0.3179 ± 0.003, 0.3352 ± 0.003). In contrast to convention single-surface phosphor-in-glass (SS-PiG) LEDs, the performance exhibited an illumination of 380 lm, average CCT of 5830 K ± 758 K, and CIE of (0.3083 ± 0.07, 0.3172 ± 0.07). These indicated that the performance of the FS-PiG LEDs was higher than the SS-PiG LEDs for illumination, CCT, and CIE by 1.7, 7, and 23 times, respectively. Furthermore, the FS-PiG LEDs demonstrate a lower lumen loss of 2% and a reduced chromaticity shift of 5.4 × 10−3 under accelerated aging at 350 °C for 1008 h, owing to the high ceramic melting temperature of up to 510 °C. In this study, the proposed FS-PiG large-view scale LEDs with excellent optical performance and high reliability may be promising candidates to replace the conventional phosphor-in-organic silicone material used in high-power LEDs for the next generation of sensor light sources, display, and headlight applications. Full article
Show Figures

Figure 1

12 pages, 3001 KB  
Article
The Target Therapy Hyperbole: “KRAS (p.G12C)”—The Simplification of a Complex Biological Problem
by Massimiliano Chetta, Anna Basile, Marina Tarsitano, Maria Rivieccio, Maria Oro, Nazzareno Capitanio, Nenad Bukvic, Manuela Priolo and Alessandra Rosati
Cancers 2024, 16(13), 2389; https://doi.org/10.3390/cancers16132389 - 28 Jun 2024
Cited by 1 | Viewed by 2094
Abstract
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene variations are linked to the development of numerous cancers, including non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). The lack of typical drug-binding sites has long hampered the discovery of [...] Read more.
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene variations are linked to the development of numerous cancers, including non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). The lack of typical drug-binding sites has long hampered the discovery of therapeutic drugs targeting KRAS. Since “CodeBreaK 100” demonstrated Sotorasib’s early safety and efficacy and led to its approval, especially in the treatment of non-small cell lung cancer (NSCLC), the subsequent identification of specific inhibitors for the p.G12C mutation has offered hope. However, the CodeBreaK 200 study found no significant difference in overall survival (OS) between patients treated with Docetaxel and Sotorasib (AMG 510), adding another degree of complexity to this ongoing challenge. The current study compares the three-dimensional structures of the two major KRAS isoforms, KRAS4A and KRAS4B. It also investigates the probable structural changes caused by the three major mutations (p.G12C, p.G12D, and p.G12V) within Sotorasib’s pocket domain. The computational analysis demonstrates that the wild-type and mutant isoforms have distinct aggregation propensities, resulting in the creation of alternate oligomeric configurations. This study highlights the increased complexity of the biological issue of using KRAS as a therapeutic target. The present study stresses the need for a better understanding of the structural dynamics of KRAS and its mutations to design more effective therapeutic approaches. It also emphasizes the potential of computational approaches to shed light on the complicated molecular pathways that drive KRAS-mediated oncogenesis. This study adds to the ongoing efforts to address the therapeutic hurdles presented by KRAS in cancer treatment. Full article
(This article belongs to the Special Issue Cancer Drug Discovery and Development)
Show Figures

Figure 1

10 pages, 10743 KB  
Communication
Narrow Linewidth 510 nm Laser via Single-Pass Frequency-Tripling by Waveguide PPLNs
by Yanlin Chen, Jing Zhang, Xiaolang Qiu, Suo Wang, Chuanchuan Li, Haiyang Yu and Xin Wei
Photonics 2024, 11(3), 269; https://doi.org/10.3390/photonics11030269 - 18 Mar 2024
Cited by 2 | Viewed by 2182
Abstract
A single-frequency narrow linewidth green laser at 510 nm is a vital component for the study of Cesium Rydberg atoms. Here, we demonstrate a 510 nm laser based on single-pass second-harmonic generation (SHG) and sum-frequency generation (SFG) via waveguide Periodically Poled Lithium Niobate [...] Read more.
A single-frequency narrow linewidth green laser at 510 nm is a vital component for the study of Cesium Rydberg atoms. Here, we demonstrate a 510 nm laser based on single-pass second-harmonic generation (SHG) and sum-frequency generation (SFG) via waveguide Periodically Poled Lithium Niobate (PPLN) seeded with a common C-band laser (1530 nm). The final linewidth measured using the delayed self-heterodyne method reaches a narrow linewidth of 4.8 kHz. And, the optical-to-optical conversion efficiency is up to 13.1% and reaches an output power up to 200 mW. Full article
(This article belongs to the Special Issue Narrow Linewidth Laser Sources and Their Applications)
Show Figures

Figure 1

13 pages, 13711 KB  
Article
High-Strength Copper/Silver Alloys Processed by Cold Spraying for DC and Pulsed High Magnetic Fields
by Simon Tardieu, Hanane Idrir, Christophe Verdy, Olivier Jay, Nelson Ferreira, François Debray, Anne Joulain, Christophe Tromas, Ludovic Thilly and Florence Lecouturier-Dupouy
Magnetochemistry 2024, 10(3), 15; https://doi.org/10.3390/magnetochemistry10030015 - 21 Feb 2024
Cited by 1 | Viewed by 2833
Abstract
High-strength, high-conductivity copper/silver-alloyed materials were prepared by cold-spray (CS) manufacturing. For DC high-field application at room temperature, bulk Cu/Ag (5% vol. Ag) alloys with high mechanical properties and high electrical conductivity can be obtained by CS and post-heat treatments. For pulsed-field application at [...] Read more.
High-strength, high-conductivity copper/silver-alloyed materials were prepared by cold-spray (CS) manufacturing. For DC high-field application at room temperature, bulk Cu/Ag (5% vol. Ag) alloys with high mechanical properties and high electrical conductivity can be obtained by CS and post-heat treatments. For pulsed-field application at liquid nitrogen temperature, bulk Cu/Ag (5% vol. Ag) alloys serve as precursors for room-temperature wire drawing. The Cu/Ag-alloyed bulk CS deposit presents a high yield strength of about 510 MPa with a corresponding electrical resistivity of 1.92 µΩ·cm (at 293 K). The Cu/Ag-alloyed wires show a very high ultimate tensile strength (1660 MPa at 77 K or 1370 MPa at 293 K) and low electrical resistivity (1.05 µΩ·cm at 77 K or 2.56 µΩ·cm at 293 K). Microstructural studies via STEM allow us to understand this very high level of mechanical strength. The results evidence that materials developed by CS exhibit very high mechanical properties compared to materials prepared by other routes, due to the high velocity of the deposited particles, which leads to high initial deformation rates and specific microstructural features. Full article
(This article belongs to the Special Issue Feature Papers in Materials for High Field Resistive Magnets)
Show Figures

Figure 1

13 pages, 2189 KB  
Article
Research on the Operational Performance of Organic Rankine Cycle System for Waste Heat Recovery from Large Ship Main Engine
by Wu Chen, Binchun Fu, Jingbin Zeng and Wenhua Luo
Appl. Sci. 2023, 13(14), 8543; https://doi.org/10.3390/app13148543 - 24 Jul 2023
Cited by 11 | Viewed by 2033
Abstract
Based on the analysis of the waste heat distribution characteristics of a typical ship two-stroke low-speed main engine (model: MAN 8S65ME-C8.6HL, the specified maximum continuous rating SMCR: 21,840 kW) under different loads, two different types of organic Rankine cycle (ORC) systems, namely the [...] Read more.
Based on the analysis of the waste heat distribution characteristics of a typical ship two-stroke low-speed main engine (model: MAN 8S65ME-C8.6HL, the specified maximum continuous rating SMCR: 21,840 kW) under different loads, two different types of organic Rankine cycle (ORC) systems, namely the basic system (BORC) and the preheated system(PORC), were constructed to recover the ship main engine’s exhaust gas waste heat and jacket cooling water waste heat. Using the thermodynamic simulation model of the system, the main performance indexes, including net output power of the two ORC systems were studied with the variation of seawater temperature and main engine load, and the annual ship fuel saving and annual carbon emission reduction generated by the two systems were compared and analyzed. It was found that the maximum net output power of the BORC system and PORC system were 445.3 kW and 491.3 kW, respectively, when the ship’s main engine load was 100%, and the outboard seawater temperature was 20 °C; the maximum thermal efficiency was 12.84% and 12.71%, respectively; under the annual operation, the fuel saving of BORC system and PORC system can be 456 tons and 510 tons, respectively, and the carbon emission reduction was 1416 tons and 1581 tons, respectively. The analysis found that the net output power of the PORC system is always greater than that of the BORC system. When the outboard seawater is lower, and the main engine load is more than 80%, the net output power difference between the PORC system and BORC system gradually expands, and the improvement of ORC system performance is more evident by adding a preheater. It can be concluded that when the ship was mainly operated in the sea area with low seawater temperature and the main engine was running under high load most of the time, selecting the PORC system to recover the waste heat of the main engine was more advantageous. Full article
(This article belongs to the Special Issue Scientific Advances and Challenges in Ship Waste Heat Utilization)
Show Figures

Figure 1

16 pages, 5198 KB  
Article
Change in the Properties of Rail Steels during Operation and Reutilization of Rails
by Kassym Yelemessov, Dinara Baskanbayeva, Nikita V. Martyushev, Vadim Y. Skeeba, Valeriy E. Gozbenko and Antonina I. Karlina
Metals 2023, 13(6), 1043; https://doi.org/10.3390/met13061043 - 30 May 2023
Cited by 29 | Viewed by 2279
Abstract
The paper considers the possibility of reusing previously used railway rails. The analysis is conducted using the standards and operating conditions of the rails of one of the Central Asian states, Kazakhstan, as an example. The operation of these rails causes significant stresses, [...] Read more.
The paper considers the possibility of reusing previously used railway rails. The analysis is conducted using the standards and operating conditions of the rails of one of the Central Asian states, Kazakhstan, as an example. The operation of these rails causes significant stresses, while the surface layers are strengthened as a result of cold hammering. These phenomena significantly change the physical and mechanical characteristics of rails. As a result, they may not be suitable in terms of parameters for basic use but can be suitable for installation on other tracks. The conducted studies have shown that when the standard service life of the RP65 rail expires, the surface layer is deformed to a depth of up to 300 microns, hardness increases, and internal residual stresses are formed. These changes lead to an increase in the strength properties of the rails. However, at the same time, cracks originate in the surface layer of the rail, thus worsening operational characteristics. The RP65 rails are used under a cyclic load of 700 kN (which is determined by the national standard), withstanding 790,000 cycles. When the load is reduced to 510 kN, these rails can withstand the 2,000,000 cycles required by the standard without failure. Thus, these rails can be reutilized only on non-loaded and non-critical sections. Full article
Show Figures

Figure 1

12 pages, 3895 KB  
Brief Report
Thermoelectric Field Analysis of Trapezoidal Thermoelectric Generator Based on the Explicit Analytical Solution of Annular Thermoelectric Generator
by Wei Niu and Xiaoshan Cao
Energies 2023, 16(8), 3463; https://doi.org/10.3390/en16083463 - 14 Apr 2023
Cited by 3 | Viewed by 1643
Abstract
The geometrical configuration is one of the main factors that affect the thermoelectric performance of a device. Research on the trapezoidal thermoelectric generator (TTEG) with varied cross section is mainly based on finite element simulation and experiment. In this paper, an explicit analytical [...] Read more.
The geometrical configuration is one of the main factors that affect the thermoelectric performance of a device. Research on the trapezoidal thermoelectric generator (TTEG) with varied cross section is mainly based on finite element simulation and experiment. In this paper, an explicit analytical solution of the maximum output power of annular thermoelectric generators (ATEG) is proposed, which has been proved to have high accuracy. Then, the maximum output power between ATEG and TTEG is compared. Results show that, for the appropriate geometric parameter δ, the relative error of maximum output power between explicit analytical ATEG and the simulated solution of TTEG can reach the order of 10−3. When the hot end is at the a side, the high temperature and θ is 510 K and 10°, respectively. For Bi2Te3 material and PbTe material, the relative error of maximum output power between the explicit analytical and simulated solution is 0.0261% and 0.074%, respectively. Under suitable working conditions, the explicit analytical results of ATEG can provide some reference for the performance optimization of TTEG. Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage and Applications)
Show Figures

Figure 1

11 pages, 2290 KB  
Article
Mechanism and Kinetics of Interaction of FLiNaK–CeF3 Melt with Water Vapors and Oxygen in the Air Atmosphere
by Irina D. Zakiryanova, Petr N. Mushnikov, Elena V. Nikolaeva and Yury P. Zaikov
Processes 2023, 11(4), 988; https://doi.org/10.3390/pr11040988 - 24 Mar 2023
Cited by 6 | Viewed by 2229
Abstract
The mechanism and kinetic parameters of the interaction of the FLiNaK–CeF3 melt with water vapors and oxygen in the air atmosphere were determined using Raman and IR spectroscopy, XRD analysis, and thermodynamic modeling of processes. The presence of the 4CeF3(solution) + [...] Read more.
The mechanism and kinetic parameters of the interaction of the FLiNaK–CeF3 melt with water vapors and oxygen in the air atmosphere were determined using Raman and IR spectroscopy, XRD analysis, and thermodynamic modeling of processes. The presence of the 4CeF3(solution) + 6H2O (gas) + O2(gas) = 4CeO2(solid) + 12HF(gas) reaction, which disturbs the fluoride melt homogeneity, was verified in situ by Raman spectroscopy adopted for high-temperature, chemically aggressive fluoride systems. Based on the obtained spectral data, the type of the kinetic equation, order, and rate constant of the chemical reaction were determined. The concentration of cerium dioxide was found to increase linearly in time and a zero reaction order with respect to CeO2 was detected. The change in the concentration of CeO2 over time at T = 510 °C is described by the equation C = 0.085t; the reaction rate constant is 0.085 mol. %∙min−1. The obtained kinetic parameters may be used to model emergencies related with the depressurization of the coolant circuit or the working area of the molten salt reactor. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

10 pages, 1991 KB  
Article
KRAS, NRAS, BRAF, HER2 and MSI Status in a Large Consecutive Series of Colorectal Carcinomas
by Aleksandr S. Martianov, Natalia V. Mitiushkina, Anastasia N. Ershova, Darya E. Martynenko, Mikhail G. Bubnov, Priscilla Amankwah, Grigory A. Yanus, Svetlana N. Aleksakhina, Vladislav I. Tiurin, Aigul R. Venina, Aleksandra A. Anuskina, Yuliy A. Gorgul, Anna D. Shestakova, Mikhail A. Maidin, Alexey M. Belyaev, Liliya S. Baboshkina, Aglaya G. Iyevleva and Evgeny N. Imyanitov
Int. J. Mol. Sci. 2023, 24(5), 4868; https://doi.org/10.3390/ijms24054868 - 2 Mar 2023
Cited by 23 | Viewed by 4678
Abstract
This study aimed to analyze clinical and regional factors influencing the distribution of actionable genetic alterations in a large consecutive series of colorectal carcinomas (CRCs). KRAS, NRAS and BRAF mutations, HER2 amplification and overexpression, and microsatellite instability (MSI) were tested in 8355 [...] Read more.
This study aimed to analyze clinical and regional factors influencing the distribution of actionable genetic alterations in a large consecutive series of colorectal carcinomas (CRCs). KRAS, NRAS and BRAF mutations, HER2 amplification and overexpression, and microsatellite instability (MSI) were tested in 8355 CRC samples. KRAS mutations were detected in 4137/8355 (49.5%) CRCs, with 3913 belonging to 10 common substitutions affecting codons 12/13/61/146, 174 being represented by 21 rare hot-spot variants, and 35 located outside the “hot” codons. KRAS Q61K substitution, which leads to the aberrant splicing of the gene, was accompanied by the second function-rescuing mutation in all 19 tumors analyzed. NRAS mutations were detected in 389/8355 (4.7%) CRCs (379 hot-spot and 10 non-hot-spot substitutions). BRAF mutations were identified in 556/8355 (6.7%) CRCs (codon 600: 510; codons 594–596: 38; codons 597–602: 8). The frequency of HER2 activation and MSI was 99/8008 (1.2%) and 432/8355 (5.2%), respectively. Some of the above events demonstrated differences in distribution according to patients’ age and gender. In contrast to other genetic alterations, BRAF mutation frequencies were subject to geographic variation, with a relatively low incidence in areas with an apparently warmer climate (83/1726 (4.8%) in Southern Russia and North Caucasus vs. 473/6629 (7.1%) in other regions of Russia, p = 0.0007). The simultaneous presence of two drug targets, BRAF mutation and MSI, was observed in 117/8355 cases (1.4%). Combined alterations of two driver genes were detected in 28/8355 (0.3%) tumors (KRAS/NRAS: 8; KRAS/BRAF: 4; KRAS/HER2: 12; NRAS/HER2: 4). This study demonstrates that a substantial portion of RAS alterations is represented by atypical mutations, KRAS Q61K substitution is always accompanied by the second gene-rescuing mutation, BRAF mutation frequency is a subject to geographical variations, and a small fraction of CRCs has simultaneous alterations in more than one driver gene. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer 2.0)
Show Figures

Figure 1

14 pages, 2308 KB  
Article
Outstanding Separation Performance of Oil-in-Water Emulsions with TiO2/CNT Nanocomposite-Modified PVDF Membranes
by Laura Fekete, Ákos Ferenc Fazekas, Cecilia Hodúr, Zsuzsanna László, Áron Ágoston, László Janovák, Tamás Gyulavári, Zsolt Pap, Klara Hernadi and Gábor Veréb
Membranes 2023, 13(2), 209; https://doi.org/10.3390/membranes13020209 - 8 Feb 2023
Cited by 16 | Viewed by 2615
Abstract
Membrane filtration is an effective technique for separating micro- and nano-sized oil droplets from harmful oil-contaminated waters produced by numerous industrial activities. However, significant flux reduction discourages the extensive application of this technology; therefore, developing antifouling membranes is necessary. For this purpose, various [...] Read more.
Membrane filtration is an effective technique for separating micro- and nano-sized oil droplets from harmful oil-contaminated waters produced by numerous industrial activities. However, significant flux reduction discourages the extensive application of this technology; therefore, developing antifouling membranes is necessary. For this purpose, various titanium dioxide/carbon nanotube (TiO2/CNT) nanocomposites (containing 1, 2, and 5 wt.% multi-walled CNTs) were used for the modification of polyvinylidene fluoride (PVDF) ultrafilter (250 kDa) membrane surfaces. The effects of surface modifications were compared in relation to the flux, the filtration resistance, the flux recovery ratio, and the purification efficiency. TiO2/CNT2% composite modification reduced both irreversible and total filtration resistances the most during the filtration of 100 ppm oil emulsions. The fluxes were approximately 4–7 times higher compared to the unmodified PVDF membrane, depending on the used transmembrane pressure (510, 900, and 1340 L/m2h fluxes were measured at 0.1, 0.2, and 0.3 MPa pressures, respectively). Moreover, the flux recovery ratio (up to 68%) and the purification efficiency (95.1–99.8%) were also significantly higher because of the surface modification, and the beneficial effects were more dominant at higher transmembrane pressures. TiO2/CNT2% nanocomposites are promising to be applied to modify membranes used for oil–water separation and achieve outstanding flux, cleanability, and purification efficiency. Full article
Show Figures

Figure 1

12 pages, 1870 KB  
Article
Oncogenic Roles of Polycomb Repressive Complex 2 in Bladder Cancer and Upper Tract Urothelial Carcinoma
by Eric Yi-Hsiu Huang, Yu-Kuang Chen, Chen-Pu Ou, Yi-Ting Chen, Sung-Fang Chen, William J. Huang and Kung-Hao Liang
Biomedicines 2022, 10(11), 2925; https://doi.org/10.3390/biomedicines10112925 - 14 Nov 2022
Cited by 4 | Viewed by 2813
Abstract
Cancers of the urinary tract are one of the most common malignancies worldwide, causing high morbidity and mortality, and representing a social burden. Upper tract urothelial carcinoma (UTUC) accounts for 5–10% of urinary tract cancers, and its oncogenic mechanisms remain elusive. We postulated [...] Read more.
Cancers of the urinary tract are one of the most common malignancies worldwide, causing high morbidity and mortality, and representing a social burden. Upper tract urothelial carcinoma (UTUC) accounts for 5–10% of urinary tract cancers, and its oncogenic mechanisms remain elusive. We postulated that cancers of the lower and the upper urinary tract may share some important oncogenic mechanisms. Therefore, the oncogenic mechanisms discovered in the lower urinary tract may guide the investigation of molecular mechanisms in the upper urinary tract. Based on this strategy, we revisited a high-quality transcriptome dataset of 510 patients with non-muscle invasive bladder cancer (NMIBC), and performed an innovative gene set enrichment analysis of the transcriptome. We discovered that the epigenetic regulation of polycomb repressive complex 2 (PRC2) is responsible for the recurrence and progression of lower-track urinary cancers. Additionally, a PRC2-related gene signature model was discovered to be effective in classifying bladder cancer patients with distinct susceptibility of subsequent recurrence and progression (log-rank p < 0.001 and = 0.001, respectively). We continued to discover that the same model can differentiate stage T3 UTUC patients from stage Ta/T1 patients (p = 0.026). Immunohistochemical staining revealed the presence of PRC2 components (EZH2, EED, and SUZ12) and methylated PRC2 substrates (H3K27me3) in the archived UTUC tissues. The H3K27me3 exhibited higher intensity and area intensity product in stage T3 UTUC tissues than in stage Ta/T1 tissues (p = 0.006 and 0.015, respectively), implicating stronger PRC2 activity in advanced UTUC. The relationship between H3K27 methylation and gene expression is examined using correlations. The H3K27me3 abundance is positively correlated with the expression levels of CDC26, RP11-2B6, MAPK1IP1L, SFR1, RP11-196B3, CDK5RAP2, ANXA5, STX11, PSMD5, and FGFRL1. It is also negatively correlated with CNPY2, KB-1208A12, RP11-175B9, ZNF692, RANP8, RP11-245C17, TMEM266, FBXW9, SUGT1P2, and PRH1. In conclusion, PRC2 and its epigenetic effects are major oncogenic mechanisms underlying both bladder cancer and UTUC. The epigenetically regulated genes of PRC2 in urothelial carcinoma were also elucidated using correlation statistics. Full article
Show Figures

Figure 1

Back to TopTop