The Conversion Polymorphism of Perovskite Phases in the BiCrO3–BiFeO3 System
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venevtsev, Y.N.; Zhdanov, G.S.; Solov’ev, S.N.; Bezus, E.V.; Ivanova, V.V.; Fedulov, S.A.; Kapyshev, A.G. Crystal chemical studies of substances with perovskite structure and special dielectric properties. Sov. Phys. Crystallogr. 1961, 5, 594–599. [Google Scholar]
- Filip’ev, V.S.; Smolyaninov, N.P.; Fesenko, E.G.; Belyaev, I.N. Synthesis of BiFeO3 and determination of the unit cell. Sov. Phys. Crystallogr. 1961, 5, 913–914. [Google Scholar]
- Zaslavskii, A.I.; Tutov, A.G. The structure of a new antiferromagnetic, BiFeO3. Dokl. Akad. Nauk SSSR 1960, 135, 815–819. [Google Scholar]
- Fedulov, S.A. Determination of Curie temperature for BiFeO3 ferroelectric. Dokl. Akad. Nauk SSSR 1961, 139, 1345. [Google Scholar]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Khomskii, D. Classifying multiferroics: Mechanisms and effects. Physics 2009, 2, 20. [Google Scholar] [CrossRef]
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Tokura, Y.; Seki, S.; Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 2014, 77, 076501. [Google Scholar] [CrossRef]
- Meisenheimer, P.; Moore, G.; Zhou, S.; Zhang, H.; Huang, X.; Husain, S.; Chen, X.; Martin, L.W.; Persson, K.A.; Griffin, S.; et al. Switching the spin cycloid in BiFeO3 with an electric field. Nat. Comm. 2024, 15, 2903. [Google Scholar] [CrossRef]
- Liu, Z.R.; Wang, H.; Li, M.; Tao, L.L.; Paudel, T.R.; Yu, H.Y.; Wang, Y.X.; Hong, S.Y.; Zhang, M.; Ren, Z.H.; et al. In-plane charged domain walls with memristive behaviour in a ferroelectric film. Nature 2023, 613, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Paull, O.; Xu, C.S.; Cheng, X.; Zhang, Y.Y.; Xu, B.; Kelley, K.P.; de Marco, A.; Vasudevan, R.K.; Bellaiche, L.; Nagarajan, V.; et al. Anisotropic epitaxial stabilization of a low-symmetry ferroelectric with enhanced electromechanical response. Nat. Mater. 2022, 21, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.R.; Zhu, Y.L.; Zhu, M.X.; Tang, Y.L.; Zhao, H.J.; Lei, C.H.; Wang, Y.J.; Wang, J.H.; Jiang, R.J.; Liu, S.Z.; et al. Dipolar wavevector interference induces a polar skyrmion lattice in strained BiFeO3 films. Nat. Nanotechnol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, X.; Li, Y.; Mangeri, J.; Zhang, H.; Ramesh, M.; Taghinejad, H.; Meisenheimer, P.; Caretta, L.; Susarla, S.; et al. Manipulating chiral spin transport with ferroelectric polarization. Nat. Mater. 2024, 23, 898–904. [Google Scholar] [CrossRef]
- Arnold, D.C.; Knight, K.S.; Morrison, F.D.; Lightfoot, P. Ferroelectric-paraelectric transition in BiFeO3: Crystal structure of the orthorhombic β phase. Phys. Rev. Lett. 2009, 102, 027602. [Google Scholar] [CrossRef]
- Sugawara, F.; Iida, S.; Syono, Y.; Akimoto, S.-I. New magnetic perovskites BiMnO3 and BiCrO3. J. Phys. Soc. Jpn. 1965, 20, 1529. [Google Scholar] [CrossRef]
- Tomashpol’skii, Y.Y.; Zubova, E.V.; Burdina, K.P.; Venevtsev, Y.N. X-ray diffraction study of the ferroelectric and ferromagnetic materials BiMnO3, BiCrO3, and their solid solutions obtained at high pressures. Inorg. Mater. 1967, 3, 1861–1863. [Google Scholar]
- Sugawara, F.; Iiida, S.; Syono, Y.; Akimoto, S.-I. Magnetic properties and crystal distortions of BiMnO3 and BiCrO3. J. Phys. Soc. Jpn. 1968, 25, 1553–1558. [Google Scholar] [CrossRef]
- Hill, N.A.; Bättig, P.; Daul, C. First principles search for multiferroism in BiCrO3. J. Phys. Chem. B 2002, 106, 3383–3388. [Google Scholar] [CrossRef]
- Niitaka, S.; Azuma, M.; Takano, M.; Nishibori, E.; Takata, M.; Sakata, M. Crystal structure and dielectric and magnetic properties of BiCrO3 as a ferroelectromagnet. Solid State Ion. 2004, 172, 557–559. [Google Scholar] [CrossRef]
- Murakami, M.; Fujino, S.; Lim, S.-H.; Long, C.J.; Salamanca-Riba, L.G.; Wuttig, M.; Takeuchi, I.; Nagarajan, V.; Varatharajan, A. Fabrication of multiferroic epitaxial BiCrO3 thin films. Appl. Phys. Lett. 2006, 88, 152902. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, H.N.; Varela, M.; Christen, H.M. Antiferroelectricity in multiferroic BiCrO3 epitaxial films. Appl. Phys. Lett. 2006, 89, 162904. [Google Scholar] [CrossRef]
- Belik, A.A.; Tsujii, N.; Suzuki, H.; Takayama-Muromachi, E. Magnetic properties of bulk BiCrO3 studied with dc and ac magnetization and specific heat. Inorg. Chem. 2007, 46, 8746–8751. [Google Scholar] [CrossRef] [PubMed]
- Belik, A.A.; Iikubo, S.; Kodama, K.; Igawa, N.; Shamoto, S.; Takayama-Muromachi, E. Neutron powder diffraction study on the crystal and magnetic structures of BiCrO3. Chem. Mater. 2008, 20, 3765–3769. [Google Scholar] [CrossRef]
- Darie, C.; Goujon, C.; Bacia, M.; Klein, H.; Toulemonde, P.; Bordet, P.; Suard, E. Magnetic and crystal structures of BiCrO3. Solid State Sci. 2010, 12, 660–664. [Google Scholar] [CrossRef]
- Colin, C.V.; Pérez, A.G.; Bordet, P.; Goujon, C.; Darie, C. Symmetry adapted analysis of the magnetic and structural phase diagram of Bi1-xYxCrO3. Phys. Rev. B 2012, 85, 224103. [Google Scholar] [CrossRef]
- Singh, A.; Singh, V.N.; Canadell, E.; Íñiguez, J.; Diéguez, O. Polymorphism in Bi-based perovskite oxides: A first-principles study. Phys. Rev. Mater. 2018, 2, 104417. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Bokov, A.V.; Yi, W.; Belik, A.A.; Presniakov, I.A.; Glazkova, I.S. Electric hyperfine interactions of 57Fe impurity atoms in ACrO3 perovskite-type chromites (A = Sc, In, Tl, Bi). J. Exp. Theor. Phys. 2019, 129, 896–902. [Google Scholar] [CrossRef]
- Araújo, B.S.; Arévalo-López, A.M.; Santos, C.C.; Attfield, J.P.; Paschoal, C.W.A.; Ayala, A.P. Spin–phonon coupling in monoclinic BiCrO3. J. Appl. Phys. 2020, 127, 114102. [Google Scholar] [CrossRef]
- Cardoso, J.P.; Delmonte, D.; Gilioli, E.; Fertman, E.L.; Fedorchenko, A.V.; Shvartsman, V.V.; Paukšta, V.; Grigalaitis, R.; Banys, J.; Khalyavin, D.D.; et al. Phase transitions in the metastable perovskite multiferroics BiCrO3 and BiCr0.9Sc0.1O3: A comparative study. Inorg. Chem. 2020, 59, 8727–8735. [Google Scholar] [CrossRef]
- Behr, D.; Delmonte, D.; Gilioli, E.; Khalyavin, D.D.; Johnson, R.D. Weak ferromagnetism and spin reorientation in antiferroelectric BiCrO3. Phys. Rev. B 2022, 106, 024416. [Google Scholar] [CrossRef]
- Belik, A.A. Polar and nonpolar phases of BiMO3: A review. J. Solid State Chem. 2012, 195, 32–40. [Google Scholar] [CrossRef]
- Selbach, S.M.; Tybell, T.; Einarsrud, M.A.; Grande, T. Structure and properties of multiferroic oxygen hyperstoichiometric BiFe1–xMnxO3+δ. Chem. Mater. 2009, 21, 5176–5186. [Google Scholar] [CrossRef]
- Selbach, S.M.; Tybell, T.; Einarsrud, M.A.; Grande, T. High-temperature semiconducting cubic phase of BiFe0.7Mn0.3O3+δ. Phys. Rev. B 2009, 79, 214113. [Google Scholar] [CrossRef]
- Mandal, P.; Sundaresan, A.; Rao, C.N.R.; Iyo, A.; Shirage, P.M.; Tanaka, Y.; Simon, C.; Pralong, V.; Lebedev, O.I.; Caignaert, V.; et al. Temperature-induced magnetization reversal in BiFe0.5Mn0.5O3 synthesized at high pressure. Phys. Rev. B 2010, 82, 100416. [Google Scholar] [CrossRef]
- Karpinsky, D.V.; Silibin, M.V.; Latushka, S.I.; Zhaludkevich, D.V.; Sikolenko, V.V.; Svetogorov, R.; Sayyed, M.I.; Almousa, N.; Trukhanov, A.; Trukhanov, S.; et al. Temperature-driven transformation of the crystal and magnetic structures of BiFe0.7Mn0.3O3 ceramics. Nanomaterials 2022, 12, 2813. [Google Scholar] [CrossRef]
- Manna, P.K.; Yusuf, S.M.; Shukla, R.; Tyagi, A.K. Exchange bias in BiFe0.8Mn0.2O3 nanoparticles with an antiferromagnetic core and a diluted antiferromagnetic shell. Phys. Rev. B 2011, 83, 184412. [Google Scholar] [CrossRef]
- Khalyavin, D.D.; Salak, A.N.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Y.V.; Manuel, P.; Raevski, I.P.; Zheludkevich, M.L.; Ferreira, M.G.S. Polar and antipolar polymorphs of metastable perovskite BiFe0.5Sc0.5O3. Phys. Rev. B 2014, 89, 174414. [Google Scholar] [CrossRef]
- Salak, A.N.; Khalyavin, D.D.; Pushkarev, A.V.; Radyush, Y.V.; Olekhnovich, N.M.; Shilin, A.D.; Rubanik, V.V. Phase formation in the (1-y)BiFeO3-yBiScO3 system under ambient and high pressure. J. Solid State Chem. 2017, 247, 90–96. [Google Scholar] [CrossRef]
- Khalyavin, D.D.; Salak, A.N.; Lopes, A.B.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Y.V.; Fertman, E.L.; Desnenko, V.A.; Fedorchenko, A.V.; Manuel, P.; et al. Magnetic structure of an incommensurate phase of La-doped BiFe0.5Sc0.5O3: Role of antisymmetric exchange interactions. Phys. Rev. B 2015, 92, 224428. [Google Scholar] [CrossRef]
- Khalyavin, D.D.; Salak, A.N.; Fertman, E.L.; Kotlyar, O.V.; Eardley, E.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Y.V.; Fedorchenko, A.V.; Desnenko, V.A.; et al. The phenomenon of conversion polymorphism in Bi-containing metastable perovskites. Chem. Commun. 2019, 55, 4683–4686. [Google Scholar] [CrossRef] [PubMed]
- Fedorchenko, A.; Fertman, E.L.; Salak, A.N.; Desnenko, V.A.; Čižmár, E.; Feher, A.; Vaisburd, A.I.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Y.V.; et al. Unusual magnetic properties of the polar orthorhombic BiFe0.5Sc0.5O3 perovskite. J. Magn. Magn. Mater. 2018, 465, 328–332. [Google Scholar] [CrossRef]
- Fertman, E.L.; Fedorchenko, A.V.; Desnenko, V.A.; Shvartsman, V.V.; Lupascu, D.C.; Salamon, S.; Wende, H.; Vaisburd, A.I.; Stanulis, A.; Ramanauskas, R.; et al. Exchange bias effect in bulk multiferroic BiFe0.5Sc0.5O3. AIP Adv. 2020, 10, 045102. [Google Scholar] [CrossRef]
- Fertman, E.L.; Fedorchenko, A.V.; Čižmár, E.; Vorobiov, S.; Feher, A.; Radyush, Y.V.; Pushkarev, A.V.; Olekhnovich, N.M.; Stanulis, A.; Barron, A.R.; et al. Magnetic diagram of the high-pressure stabilized multiferroic perovskites of the BiFe1-yScyO3 series. Crystals 2020, 10, 950. [Google Scholar] [CrossRef]
- Shvartsman, V.V.; Khalyavin, D.D.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Y.V.; Salak, A.N. Spontaneous and induced ferroelectricity in the BiFe1-xScxO3 perovskite ceramics. Phys. Status Solidi A 2021, 218, 2100173. [Google Scholar] [CrossRef]
- Prosandeev, S.A.; Khalyavin, D.D.; Raevski, I.P.; Salak, A.N.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Y.V. Complex antipolar √2 × 4 × 2√2 structure with Pnma symmetry in BiFeO3 and BiFe1/2Sc1/2O3: First-principles calculations. Phys. Rev. B 2014, 90, 054110. [Google Scholar] [CrossRef]
- Belik, A.A.; Rusakov, D.A.; Furubayashi, T.; Takayama-Muromachi, E. BiGaO3-based perovskites: A large family of polar materials. Chem. Mater. 2012, 24, 3056–3064. [Google Scholar] [CrossRef]
- Belik, A.A.; Abakumov, A.M.; Tsirlin, A.A.; Hadermann, J.; Kim, J.; Van Tandeloo, G.; Takayama-Muromachi, E. Structure and magnetic properties of BiFe0.75Mn0.25O3 perovskite prepared at ambient and high pressure. Chem. Mater. 2011, 42, 4505–4514. [Google Scholar] [CrossRef]
- Belik, A.A. Two perovskite modifications of BiFe0.6Mn0.4O3 prepared by high pressure and post-synthesis annealing at ambient pressure. Inorganics 2024, 12, 226. [Google Scholar] [CrossRef]
- Belik, A.A. Magnetic properties of solid solutions between BiCrO3 and BiGaO3 with perovskite structures. Sci. Technol. Adv. Mater. 2015, 16, 026003. [Google Scholar] [CrossRef]
- Belik, A.A. Solid solutions between BiMnO3 and BiCrO3. Inorg. Chem. 2016, 55, 12348–12356. [Google Scholar] [CrossRef] [PubMed]
- Baettig, P.; Spaldin, N.A. Ab initio prediction of a multiferroic with large polarization and magnetization. Appl. Phys. Lett. 2005, 86, 012505. [Google Scholar] [CrossRef]
- Suchomel, M.R.; Thomas, C.I.; Allix, M.; Rosseinsky, M.J.; Fogg, A.M.; Thomas, M.F. High pressure bulk synthesis and characterization of the predicted multiferroic Bi(Fe1/2Cr1/2)O3. Appl. Phys. Lett. 2007, 90, 112909. [Google Scholar] [CrossRef]
- Palaimiene, E.; Gribauskaite, V.; Banys, J.; Pushkarev, A.V.; Radyush, Y.V.; Olekhnovich, N.M.; Cardoso, J.P.V.; Salak, A.N. Dielectric characterization of the BiFe0.5Cr0.5O3 ceramics. Lith. J. Phys. 2022, 62, 206–211. [Google Scholar] [CrossRef]
- Goffinet, M.; Iniguez, J.; Ghosez, P. First-principles study of a pressure-induced spin transition in multiferroic Bi2FeCrO6. Phys. Rev. B 2012, 86, 024415. [Google Scholar] [CrossRef]
- Himcinschi, C.; Drechsler, F.; Walch, D.S.; Bhatnagar, A.; Belik, A.A.; Kortus, J. Unexpected Phonon Behaviour in BiFexCr1−xO3, a Material System Different from Its BiFeO3 and BiCrO3 Parents. Nanomaterials 2022, 12, 1607. [Google Scholar] [CrossRef]
- Kan, Y.; Liu, J.; Chen, R.; Liu, Y.; Wang, H.; Long, M.; Tian, B.; Chu, J.; Chen, Y.; Sun, L. Enhanced ferroelectric photovoltaic performance of Bi2FeCrO6 thin films for neuromorphic computing applications. Appl. Phys. Lett. 2024, 124, 112906. [Google Scholar] [CrossRef]
- Henning, X.; Schlur, L.; Wendling, L.; Fix, T.; Colis, S.; Dinia, A.; Alexe, M.; Rastei, M.V. Interfacial photovoltaic effects in ferroelectric Bi2FeCrO6 thin films. Phys. Rev. Mater. 2025, 9, 024403. [Google Scholar] [CrossRef]
- Chang, F.; Zhang, N.; Yang, F.; Wang, S.; Song, G. Effect of Cr substitution on the structure and electrical properties of BiFeO3 ceramics. J. Phys. D Appl. Phys. 2007, 40, 7799–7803. [Google Scholar] [CrossRef]
- Luo, B.-C.; Chen, C.-L.; Jin, K.-X. Low temperature properties of multiferroic BiFe0.9Cr0.1O3 compound. Solid State Commun. 2011, 151, 712–715. [Google Scholar] [CrossRef]
- Rusakov, V.S.; Pokatilov, V.S.; Sigov, A.S.; Belik, A.A.; Matsnev, M.E. Changes in the magnetic structure of multiferroic BiFe0.80Cr0.20O3 with temperature. Phys. Solid State 2019, 61, 1030–1036. [Google Scholar] [CrossRef]
- Raevski, I.P.; Kubrin, S.P.; Pushkarev, A.V.; Olekhnovich, N.M.; Radyush, Y.V.; Titov, V.V.; Malitskaya, M.A.; Raevskaya, S.I.; Chen, H. The effect of Cr substitution for Fe on the structure and magnetic properties of BiFeO3 multiferroic. Ferroelectrics 2018, 525, 1–10. [Google Scholar] [CrossRef]
- Kubrin, S.P.; Raevski, I.P.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Y.V.; Titov, V.V.; Malitskaya, M.A.; Li, G.R.; Raevskaya, S.I. Mössbauer study of the effect of cation substitutions on the magnetic phase transitions in BiFe1–xCrxO3 and (1–x)BiFeO3–xPbFe0.5Sb0.5O3 solid solutions. Crystal. Rep. 2020, 65, 338–342. [Google Scholar] [CrossRef]
- Arafat, S.S. Structural transition and magnetic properties of high Cr-doped BiFeO3 ceramic. Cerâmica 2020, 66, 114–118. [Google Scholar] [CrossRef]
- Corker, D.L.; Glazer, A.M.; Dec, J.; Roleder, K.; Whatmore, R.W. A re-investigation of the crystal structure of the perovskite PbZrO3 by X-ray and neutron diffraction. Acta Crystallogr. Sect. B Struct. Sci. 1997, 53, 135–142. [Google Scholar] [CrossRef]
- Teslic, S.; Egami, T. Atomic structure of PbZrO3 determined by pulsed neutron diffraction. Acta Crystallogr. Sect. B Struct. Sci. 1998, 54, 750–765. [Google Scholar] [CrossRef]
- Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Rusakov, D.A.; Abakumov, A.M.; Yamaura, K.; Belik, A.A.; Van Tendeloo, G.; Takayama-Muromachi, E. Structural evolution of the BiFeO3−LaFeO3 system. Chem. Mater. 2011, 23, 285–292. [Google Scholar] [CrossRef]
- Troyanchuk, I.O.; Karpinsky, D.V.; Bushinsky, M.V.; Khomchenko, V.A.; Kakazei, G.N.; Araujo, J.P.; Tovar, M.; Sikolenko, V.; Efimov, V.; Kholkin, A.L. Isothermal structural transitions, magnetization and large piezoelectric response in Bi1−xLaxFeO3 perovskites. Phys. Rev. B 2011, 83, 054109. [Google Scholar] [CrossRef]
- Cheng, C.-J.; Kan, D.; Lim, S.-H.; McKenzie, W.R.; Munroe, P.R.; Salamanca-Riba, L.G.; Withers, R.L.; Takeuchi, I.; Nagarajan, V. Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films. Phys. Rev. B 2009, 80, 014109. [Google Scholar] [CrossRef]
- Kalantari, K.; Sterianou, I.; Karimi, S.; Ferrarelli, M.C.; Miao, S.; Sinclair, D.C.; Reaney, I.M. Ti-doping to reduce conductivity in Bi0.85Nd0.15FeO3 ceramics. Adv. Funct. Mater. 2011, 21, 3737–3743. [Google Scholar] [CrossRef]
- Carvalho, T.T.; Fernandes, J.R.A.; Perez de la Cruz, J.; Vidal, J.V.; Sobolev, N.A.; Figueiras, F.; Das, S.; Amaral, V.S.; Almeida, A.; Agostinho Moreira, J.; et al. Room temperature structure and multiferroic properties in Bi0.7La0.3FeO3 ceramics. J. Alloys Compd. 2013, 554, 97–103. [Google Scholar] [CrossRef]
- Gomes, M.M.; Carvalho, T.T.; Manjunath, B.; Vilarinho, R.; Gibbs, A.S.; Knight, K.S.; Paixao, J.A.; Amaral, V.S.; Almeida, A.; Tavares, P.B.; et al. Disentangling the phase sequence and correlated critical properties in Bi0.7La0.3FeO3 by structural studies. Phys. Rev. B 2021, 104, 174109. [Google Scholar] [CrossRef]
- Kumar, A.; Yusuf, S.M. The phenomenon of negative magnetization and its implications. Phys. Rep. 2015, 556, 1–34. [Google Scholar] [CrossRef]
- Billoni, O.V.; Pomiro, F.; Cannas, S.A.; Martin, C.; Maignan, A.; Carbonio, R.E. Magnetization reversal in mixed ferrite-chromite perovskites with non magnetic cation on the A-site. J. Phys. Condens. Matter 2016, 28, 476003. [Google Scholar] [CrossRef]
- Dasari, N.; Mandal, P.; Sundaresan, A.; Vidhyadhiraja, N.S. Weak ferromagnetism and magnetization reversal in YFe1−xCrxO3. Europhys. Lett. 2012, 99, 17008. [Google Scholar] [CrossRef]
- Kawaguchi, S.; Takemoto, M.; Osaka, K.; Nishibori, E.; Moriyoshi, C.; Kubota, Y.; Kuroiwa, Y.; Sugimoto, K. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev. Sci. Instrum. 2017, 88, 085111. [Google Scholar] [CrossRef]
- Kawaguchi, S.; Takemoto, M.; Tanaka, H.; Hiraide, S.; Sugimoto, K.; Kubota, Y. Fast continuous measurement of synchrotron powder diffraction synchronized with controlling gas and vapour pressures at beamline BL02B2 of SPring-8. J. Synchrotron Rad. 2020, 27, 616–624. [Google Scholar] [CrossRef]
- Izumi, F.; Ikeda, T. A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 2000, 321–324, 198–205. [Google Scholar] [CrossRef]
x | 0.1 | 0.2 | 0.3 | 0.4 |
---|---|---|---|---|
T (K) | 550 | 550 | 600 | 600 |
a (Å) | 5.55595 (3) | 5.56458 (3) | 5.57383 (2) | 5.58329 (2) |
b (Å) | 7.77499 (6) | 7.78492 (6) | 7.80159 (3) | 7.81360 (3) |
c (Å) | 5.44100 (3) | 5.44552 (3) | 5.45751 (2) | 5.46389 (2) |
V (Å3) | 235.037 (3) | 235.899 (3) | 237.318 (2) | 238.366 (2) |
ρcal (g/cm3) | 8.743 | 8.721 | 8.680 | 8.653 |
x (Bi) | 0.04309 (6) | 0.04275 (8) | 0.04304 (7) | 0.04281 (8) |
z (Bi) | 0.99574 (14) | 0.99616 (23) | 0.99618 (18) | 0.99613 (21) |
Biso (Bi) (Å2) | 1.173 (7) | 1.364 (11) | 1.528 (10) | 1.643 (11) |
Biso (Cr/Fe) (Å2) | 0.55 (2) | 0.72 (3) | 0.76 (2) | 0.79 (3) |
x (O1) | 0.4800 (9) | 0.4871 (12) | 0.4852 (11) | 0.4860 (12) |
z (O1) | 0.0823 (10) | 0.0747 (13) | 0.0847 (12) | 0.0824 (13) |
Biso (O1) (Å2) | 0.62 (13) | 0.10 (17) | 0.88 (16) | 0.55 (18) |
x (O2) | 0.2915 (9) | 0.2921 (15) | 0.2945 (11) | 0.2994 (13) |
y (O2) | 0.0385 (6) | 0.0413 (11) | 0.0374 (8) | 0.0381 (10) |
z (O2) | 0.7068 (9) | 0.7071 (15) | 0.7030 (11) | 0.7041 (13) |
Biso (O2) (Å2) | 1.06 (10) | 2.4 (2) | 1.51 (13) | 1.97 (17) |
Rwp (%) | 5.48 | 7.18 | 6.39 | 7.09 |
Rp (%) | 4.07 | 5.28 | 4.81 | 5.18 |
RI (%) | 3.18 | 4.17 | 4.26 | 4.16 |
RF (%) | 2.51 | 3.81 | 4.35 | 4.56 |
Impurities: | ||||
Bi2O2CO3 | 1.1 wt. % | 0.8 wt. % | 1.6 wt. % | 1.6 wt. % |
Cr2O3 | 0.6 wt. % | 0.9 wt. % | – | – |
x | Tstr (K) | TN (K) | μeff (μB/f.u.) | μcalc (μB/f.u.) | θ (K) | MS (μB/f.u.) |
---|---|---|---|---|---|---|
0.1 (HP) | 450 | 100 | 3.995 | 4.123 | −247 | 0.075 |
0.1 (AP) | 450 | 98 | 4.061 | 4.123 | −259 | 0.073 |
0.2 (HP) | 480 | 90 | 4.068 | 4.359 | −240 | 0.086 |
0.2 (AP) | 478 | 90, 74 | 3.934 | 4.359 | −227 | 0.087 |
0.3 (HP) | 511 | 92 | 4.269 | 4.583 | −264 | 0.099 |
0.3 (AP) | 510 | 92 | 4.305 | 4.583 | −273 | 0.099 |
0.4 (HP) | 546 | 122 | 4.293 | 4.796 | −279 | 0.083 |
0.4 (AP) | 546 | 122 | 4.321 | 4.796 | −279 | 0.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belik, A.A. The Conversion Polymorphism of Perovskite Phases in the BiCrO3–BiFeO3 System. Inorganics 2025, 13, 91. https://doi.org/10.3390/inorganics13030091
Belik AA. The Conversion Polymorphism of Perovskite Phases in the BiCrO3–BiFeO3 System. Inorganics. 2025; 13(3):91. https://doi.org/10.3390/inorganics13030091
Chicago/Turabian StyleBelik, Alexei A. 2025. "The Conversion Polymorphism of Perovskite Phases in the BiCrO3–BiFeO3 System" Inorganics 13, no. 3: 91. https://doi.org/10.3390/inorganics13030091
APA StyleBelik, A. A. (2025). The Conversion Polymorphism of Perovskite Phases in the BiCrO3–BiFeO3 System. Inorganics, 13(3), 91. https://doi.org/10.3390/inorganics13030091