Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (301)

Search Parameters:
Keywords = ACE inhibitory peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 531 KB  
Article
Selenium Biotransformation and Fractionation of Selenopeptide from Germinated Perilla (Perilla frutescens) Seeds
by Tanaporn Monkhai, Saroat Rawdkuen, Suphat Phongthai, Pornrawin Pakdeebamrung, Naphatsawan Singhadechachai, Apinya Chaikaew, Pornchai Rachtanapun and Pipat Tangjaidee
Foods 2025, 14(17), 2988; https://doi.org/10.3390/foods14172988 - 27 Aug 2025
Viewed by 549
Abstract
Plant-based bioactive compounds have been recognized as promising alternatives to conventional chemical treatments. Selenium (Se), a trace element, can be incorporated into proteins to enhance the bioactivity of plant-derived peptides. Perilla frutescens seeds are high-protein plants that have shown the ability to absorb [...] Read more.
Plant-based bioactive compounds have been recognized as promising alternatives to conventional chemical treatments. Selenium (Se), a trace element, can be incorporated into proteins to enhance the bioactivity of plant-derived peptides. Perilla frutescens seeds are high-protein plants that have shown the ability to absorb Se and biosynthesize selenopeptides. This study examined Se biotransformation during the germination of perilla seeds to synthesize selenoprotein, investigating enzymatic hydrolysis using Alcalase and Flavourzyme as single enzymes, as well as their combinations. The results showed that Alcalase hydrolysates produced Se-peptides with the highest degree of hydrolysis and antioxidant activity. Hydrolysates were purified via ultrafiltration and size-exclusion chromatography, and Se-peptides were characterized by LC-MS/MS. Nine peptides containing Se-binding residues such as cysteine, methionine, and glutamic acid confirmed successful Se incorporation. The Se-peptides demonstrated strong antioxidant activity (ABTS: 66.30%, FRAP: 54.93%), ACE inhibition (83.87%), and cytotoxicity against A549 lung cancer cells (85.88% viability). Compared to non-Se-peptides, Se-enriched peptides showed superior bioactivity, highlighting their potential as functional ingredients in food and pharmaceutical applications. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

19 pages, 2173 KB  
Article
Active Peptides from Crayfish Shell: Isolation, Purification, Identification and Cytoprotective Function on Cells Damaged by H2O2
by Chan Bai, Wenqing Wang, Guowei Huang, Ya Wang, Xiaoyan Zu, Liang Qiu, Ziyi Tu, Wei Yu and Tao Liao
Biomolecules 2025, 15(9), 1225; https://doi.org/10.3390/biom15091225 - 26 Aug 2025
Viewed by 702
Abstract
This study presents a strategy to develop crayfish shell peptides with enhanced antioxidant and angiotensin-I-converting enzyme (ACE) inhibitory properties. Crayfish shell protein hydrolysates (CSPH1–3) with different molecular weights were analyzed. CSPH2 (3–5 kDa) exhibited the strongest antioxidant activities, which could scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) [...] Read more.
This study presents a strategy to develop crayfish shell peptides with enhanced antioxidant and angiotensin-I-converting enzyme (ACE) inhibitory properties. Crayfish shell protein hydrolysates (CSPH1–3) with different molecular weights were analyzed. CSPH2 (3–5 kDa) exhibited the strongest antioxidant activities, which could scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the 2,2′-azobis(3-ethylbenzothiazoline-6-sulfonic acid) sodium salt (ABTS) radical by (77.40 ± 4.54)% and (91.59 ± 0.30)%, respectively, and ACE inhibition activity of (64.74 ± 0.64)%. CSPH2 was further separated into three fractions, and CSPHF2 showed the maximum biological activity. The sequences of the purified antioxidant peptide (APAPLPPPAP) and ACE inhibitory peptide (QGPDDPLIPIM) were identified by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in CSPHF2. These peptides increased the nitric oxide (NO) concentration and decreased the endothelin-1 (ET-1) content in human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner, while also inhibiting reactive oxygen species (ROS). In addition, CSPH showed protective effects in terms of oxidative damage to HepG2 cells induced by H2O2. These findings suggest that crayfish shell peptides have potential applications as ingredients in antihypertensive agents and antioxidants, offering significant health benefits when consumed. Full article
Show Figures

Figure 1

22 pages, 1038 KB  
Review
Bioactivities Derived from Dry-Cured Ham Peptides: A Review
by Noelia Hernández Correas, Andrea M. Liceaga, Adela Abellán, Beatriz Muñoz-Rosique and Luis Tejada
Antioxidants 2025, 14(8), 1011; https://doi.org/10.3390/antiox14081011 - 18 Aug 2025
Viewed by 732
Abstract
Dry-cured ham is a traditional food in the Mediterranean diet, which, in addition to its sensory qualities, is a natural source of bioactive peptides generated during the curing process through the action of endogenous enzymes on muscle and sarcoplasmic proteins. These low-molecular-weight peptides [...] Read more.
Dry-cured ham is a traditional food in the Mediterranean diet, which, in addition to its sensory qualities, is a natural source of bioactive peptides generated during the curing process through the action of endogenous enzymes on muscle and sarcoplasmic proteins. These low-molecular-weight peptides have attracted growing interest due to their multiple bioactivities, including antihypertensive, antioxidant, antimicrobial, antidiabetic, and anti-inflammatory effects described in vitro, in vivo, and in preliminary human studies. The identification of specific sequences, such as AAPLAP, KPVAAP, and KAAAAP (ACE inhibitors), SNAAC and GKFNV (antioxidants), RHGYM (antimicrobial), and AEEEYPDL and LGVGG (dipeptidyl peptidase-IV and α-glucosidase inhibitors), has been possible thanks to the use of peptidomics techniques, tandem mass spectrometry, and bioinformatics tools that allow their activity to be characterized, their digestive stability to be predicted, and their bioavailability to be evaluated. This review article summarizes current knowledge on the bioactivities of peptides derived from dry-cured ham, advances in their functional characterization, and challenges associated with their application in functional foods and nutraceuticals, with the aim of providing a comprehensive overview of their potential in health promotion and chronic disease prevention. Full article
(This article belongs to the Special Issue Antioxidant Peptides)
Show Figures

Figure 1

17 pages, 3330 KB  
Article
Valorization of Coffee Silverskin via Integrated Biorefinery for the Production of Bioactive Peptides and Xylooligosaccharides: Functional and Prebiotic Properties
by Thanongsak Chaiyaso, Kamon Yakul, Wilasinee Jirarat, Wanaporn Tapingkae, Noppol Leksawasdi and Pornchai Rachtanapun
Foods 2025, 14(15), 2745; https://doi.org/10.3390/foods14152745 - 6 Aug 2025
Viewed by 575
Abstract
Coffee silverskin (CS), a by-product generated during coffee roasting, contains high levels of xylan hemicellulose and protein, making it a promising substrate for functional ingredient production. This study developed an integrated bioprocess to simultaneously produce bioactive peptides and xylooligosaccharides (CS-XOS) from CS. Conventional [...] Read more.
Coffee silverskin (CS), a by-product generated during coffee roasting, contains high levels of xylan hemicellulose and protein, making it a promising substrate for functional ingredient production. This study developed an integrated bioprocess to simultaneously produce bioactive peptides and xylooligosaccharides (CS-XOS) from CS. Conventional alkaline extraction (CAE) under optimized conditions (1.0 M NaOH, 90 °C, 30 min) yielded 80.64 mg of protein per gram of CS and rendered the solid residue suitable for XOS production. Enzymatic hydrolysis of the extracted protein using protease_SE5 generated low-molecular-weight peptides (0.302 ± 0.01 mg/mL), including FLGY, FYDTYY, and FDYGKY. These peptides were non-toxic, exhibited in vitro antioxidant activity (0–50%), and showed ACE-inhibitory activities of 60%, 26%, and 79%, and DPP-IV-inhibitory activities of 19%, 18%, and 0%, respectively. Concurrently, the alkaline-treated CS solid residue (ACSS) was hydrolyzed using recombinant endo-xylanase, yielding 52.5 ± 0.08 mg of CS-XOS per gram of ACSS. The CS-XOS exhibited prebiotic effects by enhancing the growth of probiotic lactic acid bacteria (μmax 0.100–0.122 h−1), comparable to commercial XOS. This integrated bioprocess eliminates the need for separate processing lines, enhances resource efficiency, and provides a sustainable strategy for valorizing agro-industrial waste. The co-produced peptides and CS-XOS offer significant potential as functional food ingredients and nutraceuticals. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

19 pages, 1974 KB  
Review
Research Progress on the Mechanism of Action of Food-Derived ACE-Inhibitory Peptides
by Ting Li, Wanjia Du, Huiyan Huang, Luzhang Wan, Chenglong Shang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1219; https://doi.org/10.3390/life15081219 - 1 Aug 2025
Viewed by 1096
Abstract
Hypertension is a major pathogenic contributor to cardiovascular diseases, primarily mediated through activation of the angiotensin-converting enzyme (ACE) system. Food-derived ACE-inhibitory peptides represent a promising alternative to synthetic drugs due to their favorable safety profile and minimal side effects. ACE-inhibitory peptides have been [...] Read more.
Hypertension is a major pathogenic contributor to cardiovascular diseases, primarily mediated through activation of the angiotensin-converting enzyme (ACE) system. Food-derived ACE-inhibitory peptides represent a promising alternative to synthetic drugs due to their favorable safety profile and minimal side effects. ACE-inhibitory peptides have been extensively identified from various foods, with their antihypertensive activity and molecular mechanisms comprehensively characterized through in vitro and in vivo studies. ACE-inhibitory peptides can be prepared by methods such as natural extraction, enzymatic hydrolysis, and fermentation. The production process significantly modulates structural characteristics of the polypeptides including peptide chain length, amino acid composition, and sequence, consequently determining their functional activity. To comprehensively elucidate the gastrointestinal stability and mechanisms action of ACE-inhibitory peptides, integrated experimental approaches combining both in vitro and in vivo methodologies are essential. This review systematically examines current advances in food-derived ACE-inhibitory peptides in terms of sources, production, structure, in vivo and in vitro activities, and bioavailability. Full article
Show Figures

Figure 1

20 pages, 3985 KB  
Article
Activity Analysis and Inhibition Mechanism of Four Novel Angiotensin I-Converting Enzyme Inhibitory Peptides Prepared from Flammulina velutipes by Enzymatic Hydrolysis
by Yajie Zhang, Xueqi Zhao, Xia Ma, Jiaqi Li, Xiaoyu Ye, Xuerui Wang, Wenwei Zhang and Jianmin Yun
Foods 2025, 14(15), 2619; https://doi.org/10.3390/foods14152619 - 26 Jul 2025
Viewed by 436
Abstract
In order to innovatively develop high-activity ACE inhibitory peptides from edible fungi, the conditions for a double-enzymatic hydrolysis preparation of ACE inhibitory peptides from Flammulina velutipes were optimized by response surface methodology. After purification by macroporous resin, gel chromatography, and RP-HPLC, a crude [...] Read more.
In order to innovatively develop high-activity ACE inhibitory peptides from edible fungi, the conditions for a double-enzymatic hydrolysis preparation of ACE inhibitory peptides from Flammulina velutipes were optimized by response surface methodology. After purification by macroporous resin, gel chromatography, and RP-HPLC, a crude peptide fraction was obtained; its ACE inhibition rate was 85.73 ± 0.95% (IC50 = 0.83 ± 0.09 mg/mL). Based on LC-MS/MS sequencing, the four novel peptides, namely, FAGGP, FDGY, FHPGY, and WADP, were screened by computer analysis and molecular docking technology. The four peptides exhibited a binding energy between −9.4 and −10.3 kcal/mol, and formed hydrogen bonds with Tyr523, Ala354, and Glu384 in the S1 pocket, Tyr520 and His353 in the S2 pocket, and His383 in the HEXXH zinc-coordinating motif of ACE, indicating their good affinity with the ACE active site. The IC50 values of the four ACE inhibitory peptides were 29.17, 91.55, 14.79, and 41.27 μM, respectively, suggesting that these peptides could potentially contribute to the development of new antihypertensive products. Full article
(This article belongs to the Special Issue Bioactive Peptides and Probiotic Bacteria: Modulators of Human Health)
Show Figures

Graphical abstract

21 pages, 4136 KB  
Article
Microwave Irradiation Pre-Treatment as a Sustainable Method to Obtain Bioactive Hydrolysates from Chicken Feathers
by Álvaro Torices-Hernández, Marta Gallego, Leticia Mora and Fidel Toldrá
Int. J. Mol. Sci. 2025, 26(13), 6344; https://doi.org/10.3390/ijms26136344 - 30 Jun 2025
Viewed by 769
Abstract
Chicken feathers constitute a major by-product from the poultry industry, with a potential environmental impact and significant difficulties in their management. This study aimed to develop a sustainable method to hydrolyse chicken feathers and evaluate the effects of microwave (MW) irradiation pre-treatment in [...] Read more.
Chicken feathers constitute a major by-product from the poultry industry, with a potential environmental impact and significant difficulties in their management. This study aimed to develop a sustainable method to hydrolyse chicken feathers and evaluate the effects of microwave (MW) irradiation pre-treatment in the generation of bioactive hydrolysates by simple or sequential hydrolysis with Alcalase. The hydrolysate with MW irradiation pre-treatment and Alcalase (2%, 2 h) (MWA) showed the highest overall antioxidant activity and neprilysin-inhibitory activity (55%), whereas samples without MW irradiation pre-treatment exerted the highest inhibitory activity of dipeptidyl peptidase IV (DPP IV) and angiotensin-converting enzyme (ACE-I), with values close to 50 and 70%, respectively. Mass spectrometry in tandem of bioactive hydrolysates was performed, and an in silico approach was used to characterise the obtained sequences. These results confirmed that MW irradiation pre-treatment improved Alcalase hydrolysis, leading to the generation of bioactive peptides with potential multifunctional properties, including antioxidant, antidiabetic, and antihypertensive activities. Moreover, this study highlights the potential of combining MW irradiation and enzymatic hydrolysis as a sustainable strategy for the revalorisation of chicken feathers. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

18 pages, 3303 KB  
Article
Crucian Carp-Derived ACE-Inhibitory Peptides with In Vivo Antihypertensive Activity: Insights into Bioactivity, Mechanism, and Safety
by Runxi Han, Jingshan Tian, Yingge Han, Guoxiang Wang, Guanghong Zhou, Chen Dai and Chong Wang
Molecules 2025, 30(13), 2812; https://doi.org/10.3390/molecules30132812 - 30 Jun 2025
Cited by 1 | Viewed by 647
Abstract
This study explores the identification, characterization, and biological evaluation of angiotensin I-converting enzyme (ACE)-inhibitory peptides derived from enzymatic hydrolysates of crucian carp swim bladders. Following sequential purification by size-exclusion and reversed-phase chromatography, two bioactive peptides—Hyp-Gly-Ala-Arg (Hyp-GAR) and Gly-Ala-Hyp-Gly-Ala-Arg (GA-Hyp-GAR)—were identified using ultra-high-performance liquid [...] Read more.
This study explores the identification, characterization, and biological evaluation of angiotensin I-converting enzyme (ACE)-inhibitory peptides derived from enzymatic hydrolysates of crucian carp swim bladders. Following sequential purification by size-exclusion and reversed-phase chromatography, two bioactive peptides—Hyp-Gly-Ala-Arg (Hyp-GAR) and Gly-Ala-Hyp-Gly-Ala-Arg (GA-Hyp-GAR)—were identified using ultra-high-performance liquid chromatography coupled with linear ion trap–Orbitrap tandem mass spectrometry. The synthetic peptides demonstrated potent ACE-inhibitory activity in vitro, with IC₅₀ values of 12.2 μM (Hyp-GAR) and 4.00 μM (GA-Hyp-GAR). Molecular docking and enzyme kinetics confirmed competitive inhibition through key interactions with ACE active site residues and zinc coordination. In vivo antihypertensive activity was evaluated in spontaneously hypertensive rats, revealing that GA-Hyp-GAR significantly reduced systolic blood pressure in a dose-dependent manner. At a dose of 36 mg/kg, GA-Hyp-GAR reduced systolic blood pressure by 60 mmHg—an effect comparable in magnitude and timing to that of captopril. Mechanistically, GA-Hyp-GAR modulated levels of angiotensin II, bradykinin, endothelial nitric oxide synthase, and nitric oxide. A 90-day subchronic oral toxicity study in mice indicated no significant hematological, biochemical, or histopathological alterations, supporting the peptide’s safety profile. These findings suggest that GA-Hyp-GAR is a promising natural ACE inhibitor with potential application in functional foods or as a nutraceutical for hypertension management. Full article
Show Figures

Graphical abstract

19 pages, 3862 KB  
Article
Characterization of Novel ACE-Inhibitory Peptides from Nemopilema nomurai Jellyfish Venom Hydrolysate: In Vitro and In Silico Approaches
by Ramachandran Loganathan Mohan Prakash, Deva Asirvatham Ravi, Du Hyeon Hwang, Changkeun Kang and Euikyung Kim
Mar. Drugs 2025, 23(7), 267; https://doi.org/10.3390/md23070267 - 26 Jun 2025
Viewed by 985
Abstract
The venom of Nemopilema nomurai jellyfish represents a promising source of bioactive compounds with potential pharmacological applications. In our previous work, we identified two novel angiotensin-converting enzyme (ACE)-inhibitory peptides—IVGRPLANG (896.48 Da) and IGDEPRHQYL (1227.65 Da)—isolated from N. nomurai venom hydrolysates via papain digestion. [...] Read more.
The venom of Nemopilema nomurai jellyfish represents a promising source of bioactive compounds with potential pharmacological applications. In our previous work, we identified two novel angiotensin-converting enzyme (ACE)-inhibitory peptides—IVGRPLANG (896.48 Da) and IGDEPRHQYL (1227.65 Da)—isolated from N. nomurai venom hydrolysates via papain digestion. In this study, we conducted a detailed biochemical and computational characterization of these peptides. The IC50 values were determined to be 23.81 µM for IVGRPLANG and 5.68 µM for IGDEPRHQYL. Kinetic analysis using Lineweaver–Burk plots revealed that both peptides act as competitive ACE inhibitors, with calculated inhibition constants (Ki) of 51.38 µM and 5.45 µM, respectively. To assess the structural stability of the ACE–peptide complexes, molecular dynamics simulations were performed. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) analyses provided insights into complex stability, while interaction fraction analysis elucidated key bond types and residue–ligand contacts involved in binding. Furthermore, a network pharmacology approach was employed to predict therapeutic targets within the renin–angiotensin–aldosterone system (RAAS). Eleven target proteins were identified: IVGRPLANG was associated with REN, ACE, CTSB, CTSS, and AGTR2; IGDEPRHQYL was linked to REN, AGT, AGTR1, AGTR2, KNG1, and BDKR2. Molecular docking analyses using HADDOCK software (version 2.4) were conducted for all targets to evaluate binding affinities, providing further insight into the peptides’ therapeutic potential. Full article
(This article belongs to the Special Issue Jellyfish-Derived Compounds)
Show Figures

Figure 1

16 pages, 1392 KB  
Review
Chemodiversity and Biotechnological Potential of Microginins
by Joaquim da Silva Pinto Neto, Gustavo Marques Serra, Luciana Pereira Xavier and Agenor Valadares Santos
Int. J. Mol. Sci. 2025, 26(13), 6117; https://doi.org/10.3390/ijms26136117 - 25 Jun 2025
Viewed by 546
Abstract
Biotechnology has increasingly focused on cyanobacteria as these microorganisms are a rich source of secondary metabolites with significant potential for various industries. Cyanobacterial metabolites have been described to have a wide range of biological activities, including cytotoxicity in cancer cells, inhibition of pathogenic [...] Read more.
Biotechnology has increasingly focused on cyanobacteria as these microorganisms are a rich source of secondary metabolites with significant potential for various industries. Cyanobacterial metabolites have been described to have a wide range of biological activities, including cytotoxicity in cancer cells, inhibition of pathogenic bacteria and fungi, and inhibition of various enzymes, demonstrating a great diversity of bioactive compounds. The cyanobacterium Microcystis aeruginosa is well known for its toxicity and production of the cyanotoxin microcystin. However, another peptide produced by this cyanobacterium, microginins, has significant biotechnological potential. These linear pentapeptides were initially discovered for their angiotensin-converting enzyme (ACE) inhibitory activity. Subsequent studies have explored the full potential of this peptide, revealing its ability to inhibit other enzymes as well. This review aims to compile and systematize the microginins with biotechnological potential described in the literature, as well as outline their main structural characteristics and the predominant methodologies for their isolation and identification. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 7591 KB  
Article
Production of Protein Hydrolysates with Antioxidant and Antihypertensive Activity from Edible Larvae of Aegiale hesperiaris and Comadia redtenbacheri
by Eduardo R. Garrido-Ortiz and Jocksan I. Morales-Camacho
Foods 2025, 14(12), 2124; https://doi.org/10.3390/foods14122124 - 17 Jun 2025
Cited by 1 | Viewed by 885
Abstract
The search for sustainable and health-promoting food sources has increased interest in edible insects, which are rich in proteins and bioactive compounds with potential nutraceutical applications. In this study, we evaluated the bioactive properties of protein hydrolysates derived from Aegiale hesperiaris (maguey white [...] Read more.
The search for sustainable and health-promoting food sources has increased interest in edible insects, which are rich in proteins and bioactive compounds with potential nutraceutical applications. In this study, we evaluated the bioactive properties of protein hydrolysates derived from Aegiale hesperiaris (maguey white worm, WW) and Comadia redtenbacheri (maguey red worm, RW), two culturally and economically significant insect species in Mexico. Hydrolysates were obtained via enzymatic treatments: either single hydrolysis with pepsin (PH) or sequential hydrolysis with pepsin followed by trypsin (PTH). The PTH hydrolysates exhibited strong antioxidant activity, with 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical inhibition above 90% and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity between 75–85%. Additionally, they showed significant angiotensin-converting enzyme (ACE) inhibitory activity, reaching IC50 values of 0.35 and 0.017 μg/mL for WWPH and RWPH, respectively—the latter outperforming the commercial drug Enalapril (IC50 = 0.11 μg/mL). SDS-PAGE analysis revealed low molecular weight peptides (<10 kDa), especially between 5–9 kDa, associated with enhanced bioactivity. Peptides from RW also showed low Hill coefficients, suggesting a gradual and sustained interaction with ACE. These findings support the use of insect-derived hydrolysates as promising multifunctional ingredients for the development of functional foods targeting cardiovascular health. Full article
Show Figures

Figure 1

16 pages, 278 KB  
Article
In Silico Models of Biological Activities of Peptides Using the Coefficient of Conformism of a Correlative Prediction and the Las Vegas Algorithm
by Alla P. Toropova, Andrey A. Toropov, Alessandra Roncaglioni and Emilio Benfenati
Macromol 2025, 5(2), 27; https://doi.org/10.3390/macromol5020027 - 13 Jun 2025
Cited by 1 | Viewed by 1236
Abstract
Peptides are substances with numerous applications in chemistry, biology, medicine, and agriculture. Systematization of knowledge related to peptides may well have not only scientific research but also economic consequences. This study examines the antioxidant activity of peptides and the ACE-inhibitory capacity of peptides. [...] Read more.
Peptides are substances with numerous applications in chemistry, biology, medicine, and agriculture. Systematization of knowledge related to peptides may well have not only scientific research but also economic consequences. This study examines the antioxidant activity of peptides and the ACE-inhibitory capacity of peptides. Peptides are considered here containing three or four amino acids. Nevertheless, instead of considering peptides as traditional molecules, an attempt is made here to systematize the corresponding endpoints as mathematical functions of lists of amino acids, rather than considering the corresponding atoms and covalent bonds. New techniques that may be useful in theory and in practice for the development of quantitative structure–property/activity relationships (QSPRs/QSARs) related to certain types of biological activity of peptides are proposed and discussed. Full article
21 pages, 1370 KB  
Article
Potential of Marine Bacterial Metalloprotease A69 in the Preparation of Antarctic Krill Peptides with Multi-Bioactivities
by Rui Liu, Wen-Jie Cao, Wen-Xiao Zhao, Xiao-Jie Yuan, Yu-Zhong Zhang, Qi-Long Qin, Xiao-Yan Song, Xi-Ying Zhang, Jian Li, Xiu-Lan Chen and Yu-Qiang Zhang
Mar. Drugs 2025, 23(6), 226; https://doi.org/10.3390/md23060226 - 24 May 2025
Viewed by 782
Abstract
Antarctic krill (Euphausia superba) is a nutrient-rich marine resource. Although several terrestrial proteases have been used to prepare Antarctic krill peptides (AKPs), there has been no report on the preparation of AKPs using a marine protease. Here, marine bacterial protease A69 [...] Read more.
Antarctic krill (Euphausia superba) is a nutrient-rich marine resource. Although several terrestrial proteases have been used to prepare Antarctic krill peptides (AKPs), there has been no report on the preparation of AKPs using a marine protease. Here, marine bacterial protease A69 was used to prepare AKPs with multi-bioactivities. Through optimizing hydrolysis parameters, we established a process for AKPs preparation by hydrolyzing Antarctic krill powder with A69. In the prepared AKPs, peptides less than 3000 Da and 1000 Da accounted for 99.23% and 88.37%, respectively. The scavenging ratios of the AKPs to ABTS+, DPPH· and ·OH reached 93.23 ± 0.09%, 99.90 ± 0.15%, and 93.90 ± 0.47%, respectively. The AKPs also had high angiotensin-converting enzyme (ACE)-inhibitory activity, with an IC50 of 0.22 ± 0.04 mg/mL. At 40 mg/mL, the AKPs inhibited α-glucosidase and dipeptidyl peptidase IV (DPP-IV) activities by 7.18% and 13.62%, respectively, and displayed antibacterial activity to Escherichia coli. Moreover, 14 antioxidant peptides, 24 ACE-inhibitory peptides, 2 α-glucosidase-inhibitory peptides, and 10 DPP-Ⅳ-inhibitory peptides were identified from the AKPs. These results demonstrate that the prepared AKPs contain diverse bioactive peptides and have multi-bioactivities. This study indicates that marine bacterial protease A69 has promising application potential in preparing AKPs with multi-bioactivities. Full article
(This article belongs to the Special Issue Marine Proteins and Enzymes: Bioactivities and Medicinal Applications)
Show Figures

Figure 1

15 pages, 2257 KB  
Article
ACE- and DPP-IV-Inhibitory Peptides from Bambara Groundnut Hydrolysate: Elucidation Using Computational Tools and Molecular Docking
by Jirakrit Saetang, Thaiyawat Haewphet, Krisana Nilsuwan and Soottawat Benjakul
Biology 2025, 14(5), 511; https://doi.org/10.3390/biology14050511 - 7 May 2025
Viewed by 967
Abstract
Hypertension and type 2 diabetes are the major metabolic syndromes, often managed using synthetic ACE and DPP-IV inhibitors that may cause adverse effects on health. This study investigated Bambara groundnut protein hydrolysates as a natural source of dual ACE- and DPP-IV-inhibitory peptides. Protein [...] Read more.
Hypertension and type 2 diabetes are the major metabolic syndromes, often managed using synthetic ACE and DPP-IV inhibitors that may cause adverse effects on health. This study investigated Bambara groundnut protein hydrolysates as a natural source of dual ACE- and DPP-IV-inhibitory peptides. Protein isolates were hydrolyzed using Flavourzyme, and the resulting peptides were fractionated using membranes with different molecular weight cut-offs. Those fractions were then analyzed for enzyme inhibition. Peptides were identified by LC-MS/MS and screened using PeptideRanker and BIOPEP-UWM, followed by molecular docking against ACE (PDB: 1O8A) and DPP-IV (PDB: 1NU6). The >10 kDa and 5–10 kDa fractions showed the highest ACE- and DPP-IV-inhibitory activities, respectively. Some peptides such as YKDGLYSPHW, LPVSTPGKF, and EPWWPK displayed strong binding affinities (ΔG: −10.2 to −11.3 kcal/mol for ACE, −8.6 to −9.1 kcal/mol for DPP-IV) and interacted with key catalytic residues, including His387 and Glu411 in ACE, and Ser630, Glu205, and Phe357 in DPP-IV. These findings highlight the potential of Bambara groundnut hydrolysates or peptides as a source of natural ACE and DPP-IV inhibitors. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

27 pages, 940 KB  
Article
Bovine Milk Protein-Derived Preparations and Their Hydrolysates as Sources of ACE-Inhibitory, DPP-IV-Inhibitory, and Antioxidative Peptides Analyzed Using in Silico and in Vitro Protocols
by Anna Iwaniak, Piotr Minkiewicz, Damir Mogut, Justyna Borawska-Dziadkiewicz, Justyna Żulewska and Małgorzata Darewicz
Int. J. Mol. Sci. 2025, 26(9), 4323; https://doi.org/10.3390/ijms26094323 - 1 May 2025
Cited by 1 | Viewed by 1284
Abstract
Bovine milk protein preparations (MPPs), namely micellar casein concentrate (MCC), serum protein concentrate (SPC), and MCC with ultrafiltrated buttermilk permeate (MBP), were analyzed as sources of inhibitors of angiotensin-converting enzyme (i.e., ACE) and dipeptidylpeptidase IV (i.e., DPP-IV) as well as antioxidative peptides. The [...] Read more.
Bovine milk protein preparations (MPPs), namely micellar casein concentrate (MCC), serum protein concentrate (SPC), and MCC with ultrafiltrated buttermilk permeate (MBP), were analyzed as sources of inhibitors of angiotensin-converting enzyme (i.e., ACE) and dipeptidylpeptidase IV (i.e., DPP-IV) as well as antioxidative peptides. The studies involved in silico predictions of the release of biopeptides from bovine milk proteins. Then, all MPPs were subjected to the simulated gastrointestinal digestion using the INFOGEST protocol. Results using a BIOPEP-UWM database tool indicated that 59 biopeptides exhibiting the above-mentioned activities could be produced upon the action of pepsin, trypsin, and chymotrypsin. Thirty-six biopeptides were identified in at least one of the three MPPs subjected to the INFOGEST protocol. MCC before simulated digestion exhibited the strongest ACE-inhibiting activity among all MPPs (IC50 = 1.856 mg/mL). The weakest ACE inhibitory effect was demonstrated for MBP after duodenal digestion (i.e., MBP D; IC50 = 7.627 mg/mL). The above MPP showed the strongest DPP-IV-inhibiting activity (IC50 = 0.0067 mg/mL). All MPPs exhibited antioxidative activity, with the strongest ABTS•+ (i.e., 2,2′-azino-bis(3-ethylbenzotialozline-6-sulfonic acid) radical scavenging effect shown for MBP D (IC50 = 2.754 mg/mL), and the strongest DPPH (i.e., 2,2-diphenyl-β-picrylhydrazyl) radical scavenging activity (IC50 = 1.238 mg/mL) demonstrated for SPC D. Among all MPPs, SPC D also exhibited the highest FRAP (i.e., Ferric Reducing Antioxidant Power) bioactivity (IC50 = 13.720 mg/mL), whereas MBP D was the MPP with the lowest FRAP potential (IC50 = 20.140 mg/mL). The present study results show the potential of all MPPs as functional additives to support health-beneficial functions of dairy products. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

Back to TopTop