Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (272)

Search Parameters:
Keywords = APEX model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7605 KB  
Article
From Cap to Collar: Ontogeny of the Endocytic Collar in Neurospora crassa
by Marisela Garduño-Rosales, Caleb Oliver Bedsole, Brian D. Shaw and Rosa R. Mouriño-Pérez
J. Fungi 2025, 11(8), 577; https://doi.org/10.3390/jof11080577 - 3 Aug 2025
Viewed by 542
Abstract
Endocytosis in filamentous fungi is spatially restricted to a subapical zone known as the endocytic collar, which plays essential roles in membrane recycling and the maintenance of polarized growth. In this study, we investigated the ontogeny of the endocytic collar in Neurospora crassa [...] Read more.
Endocytosis in filamentous fungi is spatially restricted to a subapical zone known as the endocytic collar, which plays essential roles in membrane recycling and the maintenance of polarized growth. In this study, we investigated the ontogeny of the endocytic collar in Neurospora crassa by tracking fimbrin-labeled endocytic patches using confocal microscopy during conidial germination, hyphal branching, and regeneration following mechanical injury. We consistently observed an initial accumulation of endocytic patches at the hyphal tip, forming an apical cap, which later reorganized into a subapical collar. This transition was correlated with a significant increase in elongation rate and the appearance of a Spitzenkörper, indicating a link between exocytosis and collar positioning. Although this correlation is robust, our data do not establish causality; rather, collar formation appears to occur after surpassing a critical elongation. Our findings suggest that exocytosis displaces endocytosis from the apex, resulting in the formation of the collar, which is not required for the establishment of polarized growth but is essential for its maintenance. These results support the development of a unified model of collar formation in filamentous fungi and provide new insight into the spatial coordination between endocytic and exocytic processes during hyphal development. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

22 pages, 32971 KB  
Article
Spatial-Channel Multiscale Transformer Network for Hyperspectral Unmixing
by Haixin Sun, Qiuguang Cao, Fanlei Meng, Jingwen Xu and Mengdi Cheng
Sensors 2025, 25(14), 4493; https://doi.org/10.3390/s25144493 - 19 Jul 2025
Viewed by 428
Abstract
In recent years, deep learning (DL) has been demonstrated remarkable capabilities in hyperspectral unmixing (HU) due to its powerful feature representation ability. Convolutional neural networks (CNNs) are effective in capturing local spatial information, but limited in modeling long-range dependencies. In contrast, transformer architectures [...] Read more.
In recent years, deep learning (DL) has been demonstrated remarkable capabilities in hyperspectral unmixing (HU) due to its powerful feature representation ability. Convolutional neural networks (CNNs) are effective in capturing local spatial information, but limited in modeling long-range dependencies. In contrast, transformer architectures extract global contextual features via multi-head self-attention (MHSA) mechanisms. However, most existing transformer-based HU methods focus only on spatial or spectral modeling at a single scale, lacking a unified mechanism to jointly explore spatial and channel-wise dependencies. This limitation is particularly critical for multiscale contextual representation in complex scenes. To address these issues, this article proposes a novel Spatial-Channel Multiscale Transformer Network (SCMT-Net) for HU. Specifically, a compact feature projection (CFP) module is first used to extract shallow discriminative features. Then, a spatial multiscale transformer (SMT) and a channel multiscale transformer (CMT) are sequentially applied to model contextual relations across spatial dimensions and long-range dependencies among spectral channels. In addition, a multiscale multi-head self-attention (MMSA) module is designed to extract rich multiscale global contextual and channel information, enabling a balance between accuracy and efficiency. An efficient feed-forward network (E-FFN) is further introduced to enhance inter-channel information flow and fusion. Experiments conducted on three real hyperspectral datasets (Samson, Jasper and Apex) and one synthetic dataset showed that SCMT-Net consistently outperformed existing approaches in both abundance estimation and endmember extraction, demonstrating superior accuracy and robustness. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

15 pages, 1629 KB  
Article
Exploring the Proteomic Landscape of Cochlear Implant Trauma: An iTRAQ-Based Quantitative Analysis Utilizing an Ex Vivo Model
by Jake Langlie, Rahul Mittal, David H. Elisha, Jaimee Cooper, Hannah Marwede, Julian Purrinos, Maria-Pia Tuset, Keelin McKenna, Max Zalta, Jeenu Mittal and Adrien A. Eshraghi
J. Clin. Med. 2025, 14(14), 5115; https://doi.org/10.3390/jcm14145115 - 18 Jul 2025
Viewed by 418
Abstract
Background: Cochlear implantation is widely used to provide auditory rehabilitation to individuals with severe-to-profound sensorineural hearing loss. However, electrode insertion during cochlear implantation leads to inner ear trauma, damage to sensory structures, and consequently, loss of residual hearing. There is very limited information [...] Read more.
Background: Cochlear implantation is widely used to provide auditory rehabilitation to individuals with severe-to-profound sensorineural hearing loss. However, electrode insertion during cochlear implantation leads to inner ear trauma, damage to sensory structures, and consequently, loss of residual hearing. There is very limited information regarding the target proteins involved in electrode insertion trauma (EIT) following cochlear implantation. Methods: The aim of our study was to identify target proteins and host molecular pathways involved in cochlear damage following EIT utilizing the iTRAQ™ (isobaric tags for relative and absolute quantification) technique using our ex vivo model. The organ of Corti (OC) explants were dissected from postnatal day 3 rats and subjected to EIT or left untreated (control). The proteins were extracted, labelled, and subjected to ultra-high performance liquid chromatography–tandem mass spectrometry. Results: We identified distinct molecular pathways involved in EIT-induced cochlear damage. Confocal microscopy confirmed the expression of these identified proteins in OC explants subjected to EIT. By separating the apical, middle, and basal cochlear turns, we deciphered a topographic array of host molecular pathways that extend from the base to the apex of the cochlea, which are activated post-trauma following cochlear implantation. Conclusions: The identification of target proteins involved in cochlear damage will provide novel therapeutic targets for the development of effective treatment modalities for the preservation of residual hearing in implanted individuals. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

11 pages, 960 KB  
Article
Influence of the Milling Cutter Drill on Implant Placement Accuracy in Partially Guided Surgery: An In Vitro Experimental Study
by Ana Raquel Ferreira, Catarina Mendes Fonseca, André Correia and Patrícia Fonseca
Appl. Sci. 2025, 15(14), 7826; https://doi.org/10.3390/app15147826 - 12 Jul 2025
Viewed by 342
Abstract
Partially guided implant surgery has emerged as a technique that enhances the precision of implant placement while maintaining surgical flexibility. This in vitro experimental study evaluated the influence of the milling cutter drill on the angular and linear deviations of implant placement in [...] Read more.
Partially guided implant surgery has emerged as a technique that enhances the precision of implant placement while maintaining surgical flexibility. This in vitro experimental study evaluated the influence of the milling cutter drill on the angular and linear deviations of implant placement in synthetic polyurethane bone models using a partially guided surgical protocol. Additionally, the effects of bone density and implant macrogeometry were assessed. A total of 120 Straumann® implants (BL, BLT, and BLX) were placed in polyurethane blocks simulating four bone densities (D1–D4). Implant positions were virtually planned with coDiagnostiX® (version 10.9) software and executed with or without the use of the milling cutter drill. Deviations between planned and final implant positions were measured at the neck and apex using the software’s “Treatment Evaluation” tool. The use of the milling cutter drill significantly reduced angular deviation (p = 0.007), while linear deviations showed no statistically significant differences. Bone density and implant macrogeometry did not significantly affect angular deviation but influenced linear and 3D deviations. Given that angular deviation may compromise prosthetic fit and biomechanical function, the observed reduction is of potential clinical relevance. These findings indicate that the milling cutter drill enhances angular accuracy in partially guided implant surgery and may improve outcomes in anatomically challenging cases. However, the results should be interpreted within the limitations of this in vitro model, including the absence of soft tissue simulation, intraoral constraints, and inter-operator variability. Full article
Show Figures

Figure 1

17 pages, 5128 KB  
Article
Growth Hormone Secretagogue Receptor (GHSR) Is Elevated in Myocardial Tissues of DMD mdx:utrn−/− Mice, and Correlates Strongly with Inflammatory Markers, and Negatively with Cardiac Function
by Maedeh Naghibosadat, Andrew McClennan, Margarita Egiian, Reema Flynn-Rizk, Tyler Lalonde, Carlie Charron, Anish Chhabra, Leonard G. Luyt, Savita Dhanvantari and Lisa M. Hoffman
Cells 2025, 14(13), 1002; https://doi.org/10.3390/cells14131002 - 1 Jul 2025
Viewed by 822
Abstract
Dilated cardiomyopathy affects greater than 1 in 2500 patients worldwide, including those with the neuromuscular disorder Duchenne muscular dystrophy (DMD). While inflammation within skeletal muscle is strongly associated with DMD pathology, the key biomarkers for inflammation and possible targets for therapy within cardiac [...] Read more.
Dilated cardiomyopathy affects greater than 1 in 2500 patients worldwide, including those with the neuromuscular disorder Duchenne muscular dystrophy (DMD). While inflammation within skeletal muscle is strongly associated with DMD pathology, the key biomarkers for inflammation and possible targets for therapy within cardiac tissue in DMD-associated dilated cardiomyopathy remain to be identified. One such potential target is the myocardial ghrelin-growth hormone secretagogue receptor (GHSR) system, which is associated with cardiomyocyte survival and inhibition of inflammation. We sought to determine alterations in myocardial GHSR together with markers of cardiac inflammation using mdx:utrn−/− mice as a model for DMD-associated dilated cardiomyopathy. With traditional histopathology, we determined that the pathology of DMD in mdx:utrn−/− mice was characterized by disruption of myofiber organization, lymphocytic infiltration, and extensive cardiomyocyte vacuolization and necrosis surrounding areas of fibrosis in the left ventricular wall and apex. Using a fluorescent ghrelin analog, Cy5-ghrelin (1–19), to visualize GHSR with fluorescence confocal microscopy, we demonstrate that GHSR is elevated in mdx/utrn−/− myocardial tissues and correlates strongly with both F4-80 (activated macrophages) and IL-6 (pro-inflammatory cytokine), and negatively with cardiac function. We also show that GHSR can be visualized in pro-inflammatory macrophages, suggesting a direct role for GHSR in the inflammatory progression of DMD. Full article
Show Figures

Figure 1

15 pages, 992 KB  
Article
Influence of Irrigant Activation Techniques on External Root Temperature Rise and Irrigation Penetration Depth in 3D-Printed Tooth Model: An In Vitro Study
by Ali Addokhi, Ahmed Rahoma, Neveen M. A. Hanna, Faisal Alonaizan, Faraz Farooqi and Shimaa Rifaat
Dent. J. 2025, 13(7), 295; https://doi.org/10.3390/dj13070295 - 29 Jun 2025
Viewed by 519
Abstract
Introduction: Successful root canal therapy relies on thorough cleaning and disinfection to eliminate microorganisms and residual pulp tissue. Advanced irrigation activation techniques, including Sonic, Ultrasonic, and Diode Laser activation, have improved cleaning efficacy, bacterial reduction, smear layer removal, and irrigant hydrodynamics. On the [...] Read more.
Introduction: Successful root canal therapy relies on thorough cleaning and disinfection to eliminate microorganisms and residual pulp tissue. Advanced irrigation activation techniques, including Sonic, Ultrasonic, and Diode Laser activation, have improved cleaning efficacy, bacterial reduction, smear layer removal, and irrigant hydrodynamics. On the other hand, these irrigation activation techniques may lead to a temperature rise that may risk the surrounding periodontal tissue. Thus, this study aimed to investigate the temperature rise during different irrigation activation techniques at various time intervals and evaluate the efficacy of these techniques in removing biofilm-mimicking hydrogel BMH of a simulated root canal system in 3D-printed tooth models. Methods: Ten extracted human mandibular premolars, prepared to size 40/0.04 taper, and a hundred 3D-printed resin premolars with simulated main (0.25 mm) and lateral canals (0.15 mm at 3, 7, 11 mm from apex) were used; 50 of them were filled with biofilm-mimicking hydrogel (BMH). Five irrigation activation techniques were evaluated: Diode Laser, Ultrasonic, Sonic, XP-Finisher, and Control (n = 10). Temperature rises were measured on the extracted premolars after 30 and 60 s of activation using a thermographic camera in a controlled environment (23 ± 2 °C). Irrigant penetration, with and without BMH, was assessed in 3D-printed premolars using a 2.5% sodium hypochlorite-contrast medium mixture, visualized with a CMOS radiographic sensor. Penetration was scored (main canal: 3 points; lateral canals: 0–2 points) and analyzed with non-parametric tests. Results: Diode Laser activation technique resulted in the highest temperature rise on the external root surface, followed by the Ultrasonic, with no statistically significant difference observed among the remaining groups. In terms of efficacy, Ultrasonic and Sonic activation achieved significantly greater irrigant penetration in samples without BMH, and greater BMH removal in samples with BMH, compared to Diode Laser, XP-Finisher, and Control groups. Conclusions: In this in vitro study, Diode Laser caused the highest temperature rise, followed by Ultrasonic, with significant increases from 30 to 60 s. Temperature rise did not significantly affect penetration or BMH removal. Ultrasonic and Sonic irrigation techniques achieved the highest depth of penetration (without BMH) and biofilm-mimicking Hydrogel removal (with BMH) compared to Diode Laser, XP-Finisher, and Control. Full article
Show Figures

Figure 1

23 pages, 2295 KB  
Article
Modeling Wolf, Canis lupus, Recolonization Dynamics to Plan Conservation Actions Ahead: Will the “Big Bad Wolves” Howl Again in Slavonia, Croatia?
by Matko Bišćan, Dušan Jelić, Ivana Maguire and Alessandro Massolo
Diversity 2025, 17(7), 461; https://doi.org/10.3390/d17070461 - 28 Jun 2025
Viewed by 1035
Abstract
A century ago, wolves ranged throughout Croatia but were eradicated from Slavonia—a region that could serve as a crucial corridor connecting the Carpathian and Dinaric–Balkan wolf populations. Such a corridor would promote genetic exchange and help maintain ecosystem stability. Recent wolf sightings in [...] Read more.
A century ago, wolves ranged throughout Croatia but were eradicated from Slavonia—a region that could serve as a crucial corridor connecting the Carpathian and Dinaric–Balkan wolf populations. Such a corridor would promote genetic exchange and help maintain ecosystem stability. Recent wolf sightings in Slavonia indicate that natural recolonization may be possible. Understanding how this process unfolds under different management scenarios is essential for minimizing conflicts and supporting successful recolonization. In this study, we modeled wolf population dynamics in Slavonia and surrounding areas using 11 scenarios, grouped into three categories: adverse events, increased carrying capacity, and population supplementation. These scenarios encompassed various management strategies, including a baseline scenario and others designed to address system uncertainties. Our results show that scenarios involving corridor construction and wolf translocation have the lowest probability of extinction. In contrast, adverse events carry a high risk of extinction, and simply expanding suitable habitats is not enough to ensure population viability. These findings underscore the importance of integrated conservation strategies that combine habitat corridors, population management, and conflict mitigation. Long-term planning is critical, as differences in outcomes become more pronounced over time. Connectivity with stable neighboring populations is vital for the long-term survival of wolves in the region. Future research should investigate whether protected areas alone are sufficient to sustain wolves as apex predators or if large-scale ecosystem restoration—including trophic rewilding—is necessary for successful recolonization. Full article
(This article belongs to the Special Issue Wildlife in Natural and Altered Environments)
Show Figures

Figure 1

17 pages, 1976 KB  
Article
Feasibility, Added Value, and Radiation Dose of Combined Coronary CT Angiography and Stress Dynamic CT Myocardial Perfusion Imaging in Moderate Coronary Artery Disease: A Real-World Study
by Marco Fogante, Enrico Paolini, Fatjon Cela, Paolo Esposto Pirani, Liliana Balardi, Gian Piero Perna and Nicolò Schicchi
J. Cardiovasc. Dev. Dis. 2025, 12(7), 241; https://doi.org/10.3390/jcdd12070241 - 24 Jun 2025
Viewed by 492
Abstract
Objective: We aimed to evaluate the feasibility, added value, and radiation dose of coronary computed tomography angiography (CCTA) and stress dynamic CT myocardial perfusion imaging (MPI) in patients with coronary artery disease (CAD) in a real-world setting. Materials and Methods: This retrospective study [...] Read more.
Objective: We aimed to evaluate the feasibility, added value, and radiation dose of coronary computed tomography angiography (CCTA) and stress dynamic CT myocardial perfusion imaging (MPI) in patients with coronary artery disease (CAD) in a real-world setting. Materials and Methods: This retrospective study included 65 patients (mean age: 51.2 ± 11.5 years; 21 female) with moderate CAD, selected from the Radiological Database of our hospital between May 2022 and December 2024. All patients underwent CCTA and stress dynamic CT-MPI using a third-generation dual-source CT scanner. The shuttle-mode acquisition technique was used for CT-MPI with 60 mL of contrast (iopamidol, 370 mg iodine/mL) administered at a flow rate of 6 mL/s. The mean myocardial blood flow (MBF) and other quantitative parameters were measured for both CAD and reference segments (RSs). A 17-segment-based analysis was employed (excluding the apex). The MBF ratio, defined as the mean MBF value of CAD segments divided by that of RS, was used with a cut-off value of 0.85 to distinguish hypoperfused from non-hypoperfused segments within CAD territories. Non-parametric statistical tests were applied. Results: A total of 1040 segments were evaluated. In 62 segments, the mean MBF of CAD territories was found to have decreased. The mean MBF and myocardial blood volume (MBV) in hypoperfused CAD segments were 65.1 ± 19.8 mL/100 mL/min and 14.5 ± 2.7 mL/100 mL, respectively, both significantly lower compared to non-hypoperfused CAD segments and RSs (p < 0.001). The mean effective dose of the protocol was 6.3 ± 1.4 mSv, corresponding to an estimated individual lifetime cancer risk of approximately 0.06% per test, based on BEIR VII Phase 2 modeling. This risk is cumulative, with repeat testing over a 10-year period potentially increasing lifetime cancer risk in proportion to total radiation exposure. The mean total examination time was 26 ± 4 min. Conclusion: The combined CCTA and dynamic CT-MPI protocol is feasible in real-world clinical practice and offers a comprehensive morphological and functional assessment of moderate CAD, with a manageable radiation dose and examination time. Full article
(This article belongs to the Section Imaging)
Show Figures

Figure 1

19 pages, 4790 KB  
Article
A Comprehensive Investigation on Shell Hydroforming of AA5052 Through Numerical Modeling and Experimental Analysis
by Arun Achuthankutty, Karthik Narayanan, Ajith Ramesh and Ratna Kishore Velamati
Symmetry 2025, 17(7), 989; https://doi.org/10.3390/sym17070989 - 23 Jun 2025
Viewed by 322
Abstract
This study investigates the shell hydroforming of 1.2 mm-thick AA5052 aluminum alloy sheets to produce hemispherical domes which possess inherent spatial symmetry about their central axis. Shell hydroforming is widely used in fabricating lightweight, high-strength components for aerospace, automotive, and energy applications. The [...] Read more.
This study investigates the shell hydroforming of 1.2 mm-thick AA5052 aluminum alloy sheets to produce hemispherical domes which possess inherent spatial symmetry about their central axis. Shell hydroforming is widely used in fabricating lightweight, high-strength components for aerospace, automotive, and energy applications. The forming process was driven by a spatially symmetrical internal pressure distribution applied uniformly across the blank to maintain balanced deformation and minimize geometrical distortion. Experimental trials aimed at achieving a dome depth of 50 mm revealed wrinkle formation at the blank periphery caused by circumferential compressive stresses symmetrical in nature with respect to the dome’s central axis. To better understand the forming behavior, a validated 3D finite element (FE) model was developed, capturing key phenomena such as material flow, strain rate evolution, hydrostatic stress distribution, and wrinkle development under symmetric boundary conditions. The effects of the internal pressure (IP), blank holding force (BHF), coefficient of friction (CoF), and flange radius (FR) were systematically studied. A strain rate of 0.1 s−1 in the final stage improved material flow, while a symmetric tensile hydrostatic stress of 160 MPa facilitated dome expansion. Although tensile stresses can induce void growth, the elevated strain rate helped suppress it. An optimized parameter set of IP = 5.43 MPa, BHF = 140 kN, CoF = 0.04, and FR = 5.42 mm led to successful formation of the 50 mm dome with 19.38% thinning at the apex. Internal pressure was identified as the most critical factor influencing symmetric formability. A process window was established to predict symmetric failure modes such as wrinkling and bursting. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

18 pages, 1439 KB  
Article
Study on the Response of Cotton Leaf Color to Plant Water Content Changes and Optimal Irrigation Thresholds
by Binbin Mao, Lulu Wang, Junhui Cheng, Bing Chen, Jiandong Wang, Kai Zhang and Xiaowei Liu
Agronomy 2025, 15(6), 1477; https://doi.org/10.3390/agronomy15061477 - 18 Jun 2025
Viewed by 536
Abstract
Real-time monitoring of cotton moisture status and determination of appropriate irrigation thresholds are essential for achieving precision irrigation. Currently employed diagnostic methods based on physiological indicators, remote sensing, or soil moisture measurements typically present limitations including cumbersome procedures, high labor intensity, requirements for [...] Read more.
Real-time monitoring of cotton moisture status and determination of appropriate irrigation thresholds are essential for achieving precision irrigation. Currently employed diagnostic methods based on physiological indicators, remote sensing, or soil moisture measurements typically present limitations including cumbersome procedures, high labor intensity, requirements for specialized technical expertise, and delayed results. To address these challenges, this study investigated the relationship between plant water content and leaf RGB color values (red, green, and blue color values measured using LScolor technology) during the bud, flowering, and boll development stages, with the objective of establishing a predictive model for rapid, real-time moisture status monitoring. Given that leaf position and color values (R, G, and B) of different functional leaves may influence the relationship between leaf color and plant water content, and this relationship varies across different temporal periods, a two-year experiment was conducted. In 2023, leaf color data from the top five functional leaves were measured at five time points daily throughout the irrigation cycle. In 2024, the following four irrigation treatments were established: one conventional irrigation control treatment (CK) and three irrigation treatments at 72% (T1), 70% (T2), and 68% (T3) plant water content thresholds. Results demonstrated that the following: (1) plant water content initially declined during the day and subsequently showed slight recovery, indicating cotton’s particular susceptibility to water stress between 2:30 p.m. and 7:00 p.m.; (2) plant water content continuously decreased across five measurement periods following irrigation during the bud, flowering, and boll development stages, with R and G color values of the five functional leaves showing declining trends between 2:30 p.m. and 7:00 p.m., while B color values exhibited no consistent pattern; (3) correlation analysis revealed significant positive correlations between plant water content and R and G color values of the five functional leaves during the 2:30 p.m. to 5:00 p.m. period, with highly significant correlations observed for the third and fourth leaves from the apex; (4) univariate and bivariate linear regression models were successfully established between cotton water content and R and G color values of the third and fourth leaves from the top; and (5) under 72% plant water content conditions, cotton achieved the highest yield and Irrigation Water Use Efficiency, indicating that 72% represents the optimal irrigation threshold. In conclusion, integrating leaf color–plant water content relationships with the 72% irrigation threshold enables rapid, non-destructive, large-scale diagnosis of cotton moisture status, providing a robust foundation for implementing effective precision irrigation strategies. Full article
(This article belongs to the Special Issue Water Saving in Irrigated Agriculture: Series II)
Show Figures

Figure 1

22 pages, 4788 KB  
Article
Genome-Wide Identification, Plasma Membrane Localization, and Functional Validation of the SUT Gene Family in Yam (Dioscorea cayennensis subsp. rotundata)
by Na Li, Yanfang Zhang, Xiuwen Huo, Linan Xing, Mingran Ge and Ningning Suo
Int. J. Mol. Sci. 2025, 26(12), 5756; https://doi.org/10.3390/ijms26125756 - 16 Jun 2025
Viewed by 426
Abstract
Yam (Dioscorea cayennensis subsp. rotundata,hereafter referred to as Dioscorea rotundata) is a staple tropical tuber crop with notable nutritional and economic value. Its development and yield depend on efficient sucrose allocation from source tissues. Sucrose transporters (SUTs), a conserved family [...] Read more.
Yam (Dioscorea cayennensis subsp. rotundata,hereafter referred to as Dioscorea rotundata) is a staple tropical tuber crop with notable nutritional and economic value. Its development and yield depend on efficient sucrose allocation from source tissues. Sucrose transporters (SUTs), a conserved family of membrane proteins, mediate sucrose loading, translocation, and unloading. Although well-studied in model plants and cereals, SUTs in yam remain largely uncharacterized. This study aims to identify and characterize the SUT gene family in yam and explore their roles in sucrose transport and tuber development. We conducted a genome-wide analysis of yam SUT genes, including gene structure, subcellular localization, and phylogeny. Molecular docking was used to predict sucrose-binding residues, and qRT-PCR assessed gene expression across tissues and tuber developmental stages. Eight SUT genes were identified and classified based on sequence similarity and domain structure. Docking analysis revealed key residues involved in sucrose binding and possible conformational shifts influencing transport. Expression profiling showed that most SUT genes, especially in the tuber apex, were progressively upregulated during development, suggesting roles in sucrose unloading and cell expansion. Additionally, functional validation of DrSUT1 in Arabidopsis thaliana confirmed its involvement in sucrose transport, supporting its role in yam sucrose partitioning. Yam SUT genes, especially those highly expressed in sink tissues, are involved in sucrose partitioning and tuber development. These findings provide structural and functional insights into SUT-mediated sugar transport and lay a foundation for improving sucrose utilization and yield in yam and other tuber crops. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 3627 KB  
Article
Stress Distribution on Endodontically Treated Anterior Teeth Restored via Different Ceramic Materials with Varying Post Lengths Versus Endocrown—A 3D Finite Element Analysis
by Mai Soliman, Nawaf Almutairi, Ali Alenezi, Raya Alenezi, Amal Abdallah A. Abo-Elmagd and Manal M. Abdelhafeez
J. Funct. Biomater. 2025, 16(6), 221; https://doi.org/10.3390/jfb16060221 - 12 Jun 2025
Viewed by 1138
Abstract
Objective: This study aims to evaluate the stress distribution on endodontically treated anterior teeth restored using different restorative materials and different post lengths versus endocrowns employing finite element analysis (FEA). Methods: An extracted human central incisor tooth with a fully formed apex was [...] Read more.
Objective: This study aims to evaluate the stress distribution on endodontically treated anterior teeth restored using different restorative materials and different post lengths versus endocrowns employing finite element analysis (FEA). Methods: An extracted human central incisor tooth with a fully formed apex was scanned using high-resolution cone beam computed tomography (CBCT) to generate 3D finite element models. Six models of restorations of badly destructed central incisor were grouped according to the type of ceramic material and post length versus endocrown restorations. Group V-L: Vita Enamic, long post (10 mm intra-radicular), Group C-L: Celtra Duo, long post (10 mm intra-radicular), Group V-Sh: Vita Enamic, short post (3 mm intra-radicular), Group C-Sh: Celtra Duo, short post (3 mm intra-radicular), Group V-E: Vita Enamic endocrown (3 mm intra-radicular), and Group C-E: Celtra Duo endocrown (3 mm intra-radicular). A static load of 200 N was applied to the palatal surface at a 45 degree angle to the tooth’s long axis. The maximum equivalent von Mises stress and maximum principal stress were analyzed at four locations: the finish line, coronal third of the root (12 mm from the apex), middle third of the root (8 mm from the apex), and apical third of the root (4 mm from the apex). Results: Group C-L exhibited the highest maximum VM stress and PS at the finish line, in addition to the highest maximum VM stress and PS at the root apical third, while group C-Sh reported the least maximum VM stress at the root apical third among the groups. All Celtra Duo groups reported higher maximum VM stress than the corresponding groups of Vita Enamic at the finish line and root coronal thirds. However, at the root middle and apical thirds, both materials recorded similar stresses. Conclusions: Short posts and Vita Enamic endocrowns showed minimal stress, especially at the finish line, while long posts increased stress and fracture risk. The findings support conservative restorations without posts, although clinical validation is needed to confirm their long-term effectiveness and safety. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

16 pages, 5703 KB  
Article
Biomechanical Analysis and Clinical Study of Augmented Versus Conventional Endoscopic Orbital Decompression for Dysthyroid Optic Neuropathy
by Pengsen Wu, Yiheng Wu, Jing Rao, Shenglan Yang, Hongyi Yao, Qingjiang Liu, Yuqing Wu, Shengli Mi and Guiqin Liu
Bioengineering 2025, 12(6), 618; https://doi.org/10.3390/bioengineering12060618 - 5 Jun 2025
Viewed by 602
Abstract
Dysthyroid optic neuropathy (DON) represents a severe ocular complication in thyroid eye disease (TED) that can lead to vision loss. Although surgical decompression is a well-established treatment modality, the optimal decompression area remains controversial in orbital decompression surgery. Purpose: This study aims to [...] Read more.
Dysthyroid optic neuropathy (DON) represents a severe ocular complication in thyroid eye disease (TED) that can lead to vision loss. Although surgical decompression is a well-established treatment modality, the optimal decompression area remains controversial in orbital decompression surgery. Purpose: This study aims to develop and validate a finite element analysis (FEA) model of DON to compare the biomechanical behavior between patients undergoing conventional or augmented orbital decompression surgery, with potential clinical implications for surgical planning. Methods: FEA models were established using magnetic resonance imaging data from patients with myopathic TED. Pre-disease, preoperative, and postoperative FEA models were developed for both the conventional orbital decompression group and the augmented group, in which the posteromedial floor and the orbital process of the palatine bone were additionally removed to analyze the stress distribution and displacement of the optic nerve, eyeball, and orbital wall. A retrospective analysis was performed to validate the biomechanical analysis results. Results: The FEA results reveal that DON patients experience higher stress on the optic nerve, eyeball, and orbital wall than healthy individuals, mainly concentrated at the orbital apex. Postoperatively, the stress on the optic nerve was significantly reduced in both groups. In addition, postoperative stress on the optic nerve was significantly lower in the augmented group than in the conventional group. The clinical results demonstrate that patients in the augmented group experienced significantly faster and more pronounced improvements in visual acuity and visual field. Conclusions: FEA shows that augmented orbital decompression surgery can alleviate stress more effectively, especially for the optic nerve, which was validated by clinical analysis. This developed FEA model of DON may facilitate determining the appropriate surgical procedure for orbital decompression. Full article
(This article belongs to the Special Issue Biomechanics Studies in Ophthalmology)
Show Figures

Figure 1

15 pages, 2050 KB  
Article
Stock Assessment of Marine Elasmobranchs (Sharks and Rays) in the Bay of Bengal, Bangladesh
by Dwipika Gope, Md. Mostafa Shamsuzzaman, Md. Shahidul Islam, Tanni Sarkar, Alaka Shah Roy, Mohammad Mojibul Hoque Mozumder and Partho Protim Barman
J. Mar. Sci. Eng. 2025, 13(6), 1126; https://doi.org/10.3390/jmse13061126 - 4 Jun 2025
Viewed by 1721
Abstract
The Bay of Bengal (BoB) is a global hub for marine elasmobranchs, particularly sharks and rays. These apex predators maintain and structure the balanced marine ecosystem and food webs. Marine elasmobranchs in Bangladesh are under-researched and under-managed, and face threats such as habitat [...] Read more.
The Bay of Bengal (BoB) is a global hub for marine elasmobranchs, particularly sharks and rays. These apex predators maintain and structure the balanced marine ecosystem and food webs. Marine elasmobranchs in Bangladesh are under-researched and under-managed, and face threats such as habitat degradation, global warming, pollution, illegal fishing, and overexploitation. This study aimed to evaluate the stock status of marine elasmobranches in the Bay of Bengal (BoB), Bangladesh. This research used catch and effort (CE) data for a period of 21 years (2002–2022). Both the Monte Carlo CMSY and BSM models were applied to assess biomass, exploitation rates, and sustainable yields. The BSM estimated a maximum carrying capacity (k) of 134,000 mt, which is larger than the CMSY estimate of 119,000 mt. The estimated intrinsic annual growth (r) from CMSY was 0.282. The MSY values ranged from 5110 mt (BSM) to 8420 mt (CMSY), with BSM indicating overexploitation, as the 2022 catch (7017 mt) exceeded the BSM-derived MSY. Both models suggested depleted and overfishing stock conditions, with B/BMSY ratios < 1.0 and F/FMSY ratios > 1.0. Effective management is crucial to prevent overfishing and ensure sustainable practices. Elasmobranch catches must be kept below the BSM-estimated maximum sustainable yield (MSY) of 5110 metric tons with fishing pressure maintained at or below F/FMSY = 1.0. It is vital to regulate illegal and unlicensed fishing activities. Because of the aggregation of CE data, the results should be interpreted cautiously and never serve as a substitute for species-level assessments. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

20 pages, 3875 KB  
Article
A Bottom-Up Multi-Feature Fusion Algorithm for Individual Tree Segmentation in Dense Rubber Tree Plantations Using Unmanned Aerial Vehicle–Light Detecting and Ranging
by Zhipeng Zeng, Junpeng Miao, Xiao Huang, Peng Chen, Ping Zhou, Junxiang Tan and Xiangjun Wang
Plants 2025, 14(11), 1640; https://doi.org/10.3390/plants14111640 - 27 May 2025
Viewed by 528
Abstract
Accurate individual tree segmentation (ITS) in dense rubber plantations is a challenging task due to overlapping canopies, indistinct tree apexes, and intricate branch structures. To address these challenges, we propose a bottom-up, multi-feature fusion method for segmenting rubber trees using UAV-LiDAR point clouds. [...] Read more.
Accurate individual tree segmentation (ITS) in dense rubber plantations is a challenging task due to overlapping canopies, indistinct tree apexes, and intricate branch structures. To address these challenges, we propose a bottom-up, multi-feature fusion method for segmenting rubber trees using UAV-LiDAR point clouds. Our approach first involves performing a trunk extraction based on branch-point density variations and neighborhood directional features, which allows for the precise separation of trunks from overlapping canopies. Next, we introduce a multi-feature fusion strategy that replaces single-threshold constraints, integrating geometric, directional, and density attributes to classify core canopy points, boundary points, and overlapping regions. Disputed points are then iteratively assigned to adjacent trees based on neighborhood growth angle consistency, enhancing the robustness of the segmentation. Experiments conducted in rubber plantations with varying canopy closure (low, medium, and high) show accuracies of 0.97, 0.98, and 0.95. Additionally, the crown width and canopy projection area derived from the segmented individual tree point clouds are highly consistent with ground truth data, with R2 values exceeding 0.98 and 0.97, respectively. The proposed method provides a reliable foundation for 3D tree modeling and biomass estimation in structurally complex plantations, advancing precision forestry and ecosystem assessment by overcoming the critical limitations of existing ITS approaches in high-closure tropical agroforests. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

Back to TopTop