From Cap to Collar: Ontogeny of the Endocytic Collar in Neurospora crassa
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Live-Cell Imaging of Germlings and Mycelia
2.3. Live-Cell Imaging of Regenerating Hyphae Following Mechanical Injury
2.4. Image Processing
2.5. Statistical Analysis
3. Results
3.1. Endocytic Patches Form a Cap During Germling Development
3.2. Transition from Cap to Collar During Branch Formation
3.3. Collar Formation in Regenerating Hyphae After Injury
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conner, S.D.; Schmid, S.L. Regulated portals of entry into the cell. Nature 2003, 422, 37–44. [Google Scholar] [CrossRef]
- Kaksonen, M.; Toret, C.P.; Drubin, D.G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2006, 7, 404–414. [Google Scholar] [CrossRef]
- Doherty, G.J.; McMahon, H.T. Mechanisms of endocytosis. Annu. Rev. Biochem. 2009, 78, 857–902. [Google Scholar] [CrossRef]
- Kaksonen, M.; Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2018, 19, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Conibear, E.A. comparison of endocytic recycling pathways in yeast and mammalian cells. Curr. Opin. Cell Biol. 2002, 14, 507–513. [Google Scholar]
- Peñalva, M.A. Endocytosis in filamentous fungi: Cinderella gets her reward. Curr. Opin. Microbiol. 2010, 13, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Drubin, D.G.; Sun, Y. Clathrin-mediated endocytosis in budding yeast at a glance. J. Cell Scie 2016, 129, 1531–1536. [Google Scholar] [CrossRef]
- Galletta, B.J.; Mooren, O.L.; Cooper, J.A. Actin dynamics and endocytosis in yeast and mammals. Curr. Opin. Biotechnol. 2010, 21, 604–610. [Google Scholar] [CrossRef]
- Kirchhausen, T. Clathrin. Ann. Rev. Biochem. 2000, 69, 699–727. [Google Scholar] [CrossRef]
- McMahon, H.T.; Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2011, 12, 517–533. [Google Scholar] [CrossRef]
- Kaksonen, M.; Toret, C.P.; Drubin, D.G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 2005, 123, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.G.; Pearse, B.M.; Higgins, M.K.; Vallis, Y.; Owen, D.J.; Gibson, A.; Hopkins, C.R.; Evans, P.R.; McMahon, H.T. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 2001, 291, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Goode, B.L.; Eskin, J.A.; Wendland, B. Actin and endocytosis in budding yeast. Genetics 2015, 199, 315–358. [Google Scholar] [CrossRef] [PubMed]
- Moseley, J.B.; Goode, B.L. The yeast actin cytoskeleton: From cellular function to biochemical mechanism. Microbiol. Mol. Biol. Rev. 2006, 70, 605–645. [Google Scholar] [CrossRef]
- Brach, T.; Godlee, C.; Moeller-Hansen, I.; Boeke, D.; Kaksonen, M. The initiation of clathrin-mediated endocytosis is mechanistically highly flexible. Curr. Biol. 2014, 24, 548–554. [Google Scholar] [CrossRef]
- Martzoukou, O.; Amillis, S.; Zervakou, A.; Christoforidis, S.; Diallinas, G. The AP-2 complex has a specialized clathrin-independent role in apical endocytosis and polar growth in fungi. eLife 2017, 6, e20083. [Google Scholar] [CrossRef]
- Bartnicki-García, S. Hyphal tip growth. In Molecular Biology of Fungal Development; Osiewacz, H.D., Ed.; Marcel-Dekker, Inc.: New York, NY, USA, 2002; pp. 22–58. [Google Scholar]
- Taheri-Talesh, N.; Horio, T.; Araujo-Bazán, L.; Dou, X.; Espeso, E.A.; Peñalva, M.A.; Osmani, S.A.; Oakley, B.R. The tip growth apparatus of Aspergillus nidulans. Mol. Biol. Cell 2008, 19, 1439–1449. [Google Scholar] [CrossRef]
- Delgado-Álvarez, D.L.; Callejas-Negrete, O.A.; Gomez, N.; Freitag, M.; Roberson, R.W.; Smith, L.G.; Mouriño-Pérez, R.R. Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet. Biol. 2010, 47, 573–586. [Google Scholar] [CrossRef]
- Echauri-Espinosa, R.O.; Callejas-Negrete, O.A.; Roberson, R.W.; Bartnicki-García, S.; Mouriño-Pérez, R.R. Coronin is a component of the endocytic collar of hyphae of Neurospora crassa and is necessary for normal growth and morphogenesis. PLoS ONE 2012, 7, e38237. [Google Scholar] [CrossRef]
- Lara-Rojas, F.; Bartnicki-García, S.; Mouriño-Pérez, R.R. Localization and role of MYO-1, an endocytic protein in hyphae of Neurospora crassa. Fungal Genet. Biol. 2016, 88, 24–34. [Google Scholar] [CrossRef]
- Vida, T.A.; Emr, S.D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 1995, 128, 779–792. [Google Scholar] [CrossRef]
- Yamashita, R.A.; May, G.S. Constitutive activation of endocytosis by mutation of myoA, the myosin I gene of Aspergillus nidulans. J. Biol. Chem. 1998, 273, 14644–14648. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Parton, S.; Parton, R.M.; Hickey, P.C.; Dijksterhuis, J.; Atkinson, H.A.; Read, N.D. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J. Microscop. 2000, 198, 246–259. [Google Scholar] [CrossRef]
- Higuchi, Y.; Shoji, J.Y.; Arioka, M.; Kitamoto, K. Endocytosis is crucial for cell polarity and apical membrane recycling in the filamentous fungus Aspergillus oryzae. Eukaryot. Cell 2009, 8, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Bartnicki-Garcia, S.; Garduño-Rosales, M.; Delgado-Alvarez, D.L.; Mourino-Perez, R.R. Experimental measurement of endocytosis in fungal hyphae. Fungal Genet. Biol. 2018, 118, 32–36. [Google Scholar] [CrossRef]
- Shaw, B.D.; Chung, D.W.; Wang, C.L.; Quintanilla, L.A.; Upadhyay, S. A role for endocytic recycling in hyphal growth. Fungal Biol. 2011, 115, 541–546. [Google Scholar] [CrossRef]
- Han, X.; Chen, L.; Li, W.; Zhang, L.; Zhang, L.; Zou, S.; Liang, Y.; Yu, J.; Dong, H. Endocytic FgEde1 regulates virulence and autophagy in Fusarium graminearum. Fungal Genet. Biol. 2020, 141, 103400. [Google Scholar] [CrossRef]
- Vasselli, J.G.; Kainer, E.; Shaw, B.D. Using fimbrin to quantify the endocytic subapical collar during polarized growth in three filamentous fungi. Mycologia 2023, 115, 456–469. [Google Scholar] [CrossRef]
- Davis, R.H. Neurospora: Contributions of a Model Organism; OUP: New York, NY, USA, 2000. [Google Scholar]
- Hickey, P.C.; Jacobson, D.; Read, N.D.; Glass, N.L. Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet. Biol. 2002, 37, 109–119. [Google Scholar] [CrossRef]
- Zhang, J.; Yun, Y.; Lou, Y.; Abubakar, Y.S.; Guo, P.; Wang, S.; Li, C.; Feng, Y.; Adnan, M.; Zhou, J.; et al. FgAP-2 complex is essential for pathogenicity and polarized growth and regulates the apical localization of membrane lipid flippases in Fusarium graminearum. Cell Microbiol. 2019, 21, e13041. [Google Scholar] [CrossRef]
- Bedsole, C.O.; Vasselli, J.G.; Shaw, B.D. Endocytosis in filamentous fungi: Coordinating polarized hyphal growth and membrane recycling. Fungal Genet. Biol. 2025, 179, 104000. [Google Scholar] [CrossRef]
- Araujo-Palomares, C.L.; Castro-Longoria, E.; Riquelme, M. Ontogeny of the Spitzenkörper in germlings of Neurospora crassa. Fungal Genet. Biol. 2007, 44, 492–503. [Google Scholar] [CrossRef]
- Zimmerberg, J.; McLaughlin, S. Membrane curvature: How BAR domains bend bilayers. Curr. Biol. 2004, 14, R250–R252. [Google Scholar] [CrossRef]
- Mim, C.; Unger, V.M. Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 2012, 37, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Shree, A.; Singh, K.; Kumar, K.; Singh, S.K.; Kumar, V.; Verma, P.K. Modulation of fungal virulence through CRZ1 regulated F-BAR-dependent actin remodeling and endocytosis in chickpea infecting phytopathogen Ascochyta rabiei. PLoS Genet. 2021, 17, e1009137. [Google Scholar] [CrossRef] [PubMed]
- Shree, A.; Sinha, M.; Verma, P.K. BAR domain is essential for early endosomal trafficking and dynamics in Ascochyta rabiei. 3 Biotech. 2023, 13, 49. [Google Scholar] [CrossRef]
- Dautt-Castro, M.; Rosendo-Vargas, M.; Casas-Flores, S. The Small GTPases in Fungal Signaling Conservation and Function. Cells 2021, 10, 1039. [Google Scholar] [CrossRef]
- Harris, S.D. Hyphal morphogenesis: An evolutionary perspective. Fungal Biol. 2011, 115, 475–484. [Google Scholar] [CrossRef]
- Riquelme, M.; Aguirre, J.; Bartnicki-García, S.; Braus, G.H.; Feldbrügge, M.; Fleig, U.; Peñalva, M.A. Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol. Mol. Biol. Rev. 2018, 82, e00068-17. [Google Scholar] [CrossRef]
- Roy, A.; Kumar, A.; Baruah, D.; Tamuli, R. Calcium signaling is involved in diverse cellular processes in fungi. Mycology 2020, 12, 10–24. [Google Scholar] [CrossRef]
- Steinberg, G.; Peñalva, M.A.; Riquelme, M.; Wösten, H.A.B.; Harris, S.D. Cell biology of hyphal growth. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Kukulski, W.; Schorb, M.; Kaksonen, M.; Briggs, J.A. Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 2012, 150, 508–520. [Google Scholar] [CrossRef]
Developmental Stage | Patches Organization | Elongation Rate (µm/min) | Elongation Ratio |
---|---|---|---|
Germling | Cap | 0.26 ± 0.04 | 6.83 |
Collar | 1.75 ± 0.4 | ||
Branch | Cap | 2.23 ± 0.26 | 5.38 |
Collar | 12.00 ± 0.60 | ||
Hyphal Regeneration | Cap | 1.17 ± 0.18 | 1.58 |
Collar | 2.75 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garduño-Rosales, M.; Bedsole, C.O.; Shaw, B.D.; Mouriño-Pérez, R.R. From Cap to Collar: Ontogeny of the Endocytic Collar in Neurospora crassa. J. Fungi 2025, 11, 577. https://doi.org/10.3390/jof11080577
Garduño-Rosales M, Bedsole CO, Shaw BD, Mouriño-Pérez RR. From Cap to Collar: Ontogeny of the Endocytic Collar in Neurospora crassa. Journal of Fungi. 2025; 11(8):577. https://doi.org/10.3390/jof11080577
Chicago/Turabian StyleGarduño-Rosales, Marisela, Caleb Oliver Bedsole, Brian D. Shaw, and Rosa R. Mouriño-Pérez. 2025. "From Cap to Collar: Ontogeny of the Endocytic Collar in Neurospora crassa" Journal of Fungi 11, no. 8: 577. https://doi.org/10.3390/jof11080577
APA StyleGarduño-Rosales, M., Bedsole, C. O., Shaw, B. D., & Mouriño-Pérez, R. R. (2025). From Cap to Collar: Ontogeny of the Endocytic Collar in Neurospora crassa. Journal of Fungi, 11(8), 577. https://doi.org/10.3390/jof11080577