Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,175)

Search Parameters:
Keywords = AZ80

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5637 KB  
Article
Study on Loading of Na2WO4 and Silanization Treatment on Surface of Plasma Electrolytic Oxidation Coatings with Different Structures
by Donghao Lei, Ziyi Wang, Jinjun Qiao, Lingyun An, Chenggong Chang, Leichao Meng, Zhanying Wang and Yanping Yang
Materials 2025, 18(17), 4146; https://doi.org/10.3390/ma18174146 - 4 Sep 2025
Viewed by 312
Abstract
To explore the influence of the microstructure of plasma electrolytic oxidation (PEO) coating on the loading of corrosion inhibitors and the silanization treatment on its surface, PEO coatings were first prepared on the surface of AZ31B magnesium alloy under different voltages. Secondly, sodium [...] Read more.
To explore the influence of the microstructure of plasma electrolytic oxidation (PEO) coating on the loading of corrosion inhibitors and the silanization treatment on its surface, PEO coatings were first prepared on the surface of AZ31B magnesium alloy under different voltages. Secondly, sodium tungstate (Na2WO4) was loaded into the micropores and onto the surface of the PEO coatings via vacuum impregnation, and which were subsequently subjected to silanization treatment. The phase composition of the coatings was studied by XRD, while the elemental composition and valence state were investigated by XPS. The surface and cross-sectional morphology of the coatings, as well as the composition and distribution of elements, were studied by SEM and EDS. Image J software was employed to analyze the thickness of the coatings. The results show that the microstructure of PEO coatings prepared under different voltages varies, which affects the loading of Na2WO4 on the surface of PEO coating and the sealing effect of silanization treatment, thereby influencing the corrosion resistance of the coatings. As the voltage increases, the coating thickness and roughness gradually increase, while the surface porosity first increases and then decreases, and the loaded content of Na2WO4 also follows a trend of first increasing and then decreasing. Meanwhile, at 300 V and 350 V, silanization treatment effectively seals the PEO coatings loaded with Na2WO4. However, when the voltage increases to 400 V, due to the uneven surface of the PEO coating, nonuniform distribution of micropores, and high roughness, the silanization treatment fails to completely cover the coating. This results in defects such as pits on the surface of the composite coating prepared at 400 V. Therefore, the composite coating prepared at 350 V exhibits the best corrosion resistance. After immersion in a 3.5 wt.% NaCl solution for 240 h, the composite coating formed at 350 V remains intact, and its low-frequency impedance modulus |Z|0.01Hz is as high as 1.06 × 106 cm2. This value is approximately two orders of magnitude higher than that of the composite coating fabricated at 400 V and about three orders of magnitude higher than that of the pure PEO coating prepared at 350 V. Full article
Show Figures

Figure 1

10 pages, 510 KB  
Article
Mid-Term Outcomes of EVAR in Hostile Neck Anatomy: Impact of Graft Adaptability on Type III Endoleak, Aortic Remodeling, and Distal Sealing
by Alessandra Fittipaldi, Chiara Barillà, Narayana Pipitò, Domenico Squillaci, Giovanni De Caridi and Filippo Benedetto
J. Clin. Med. 2025, 14(17), 6226; https://doi.org/10.3390/jcm14176226 - 3 Sep 2025
Viewed by 240
Abstract
Aim: Hostile aortic neck anatomy—characterized by short neck length, severe angulation, conical shape, and mural thrombus or calcifications—represents a major limitation to the durability and applicability of standard endovascular aneurysm repair (EVAR). In response to these challenges, newer endografts with improved conformability [...] Read more.
Aim: Hostile aortic neck anatomy—characterized by short neck length, severe angulation, conical shape, and mural thrombus or calcifications—represents a major limitation to the durability and applicability of standard endovascular aneurysm repair (EVAR). In response to these challenges, newer endografts with improved conformability have been developed. This study aimed to evaluate the mid-term outcomes of EVAR using the GORE EXCLUDER Conformable AAA Endoprosthesis (CEXC) (W.L. Gore & Associates Inc., Flagstaff, AZ, USA) in patients with hostile neck anatomy, with specific attention to type III endoleak occurrence, aortic sac remodeling, and maintenance of distal sealing. Methods: A retrospective observational analysis was conducted on 50 consecutive patients treated with the CEXC endograft between October 2019 and September 2023. Patients included had either elective or urgent indications for EVAR and were evaluated preoperatively using CT angiography. Hostile neck criteria were defined according to the 2019 Delphi Consensus. Procedural variables, imaging follow-up, and clinical outcomes were collected. The primary endpoints were technical and clinical success, while secondary outcomes included endoleak rates, aneurysm sac evolution, and reintervention-free survival. Results: Technical success was achieved in 100% of cases, with a clinical success rate of 98%. No type Ia, Ib, or III endoleaks were observed at a median follow-up of 23 months. Sac shrinkage (>5 mm reduction) occurred in 70% of patients, and distal sealing was preserved in 100% of cases. One perioperative death occurred in an emergency setting, and no late reinterventions or aneurysm-related mortalities were reported. The use of intravascular ultrasound (IVUS) and floppy guidewires contributed to precise deployment and sealing in angulated anatomies. Conclusions: The CEXC endograft proved to be a safe and effective option for EVAR in patients with hostile aortic anatomy, ensuring durable proximal and distal sealing, promoting favorable sac remodeling, and preventing type III endoleaks. These findings support the use of CEXC in anatomically complex settings, as long as procedures are meticulously planned and guided by appropriate intraoperative imaging and deployment techniques. Full article
Show Figures

Figure 1

14 pages, 3570 KB  
Article
Synthesis and Properties of Ethylene Imine-Based Porous Polymer Nanocomposites with Metal Oxide Nanoparticles
by Naofumi Naga, Julia Janas, Tomoya Takenouchi and Tamaki Nakano
Molecules 2025, 30(17), 3574; https://doi.org/10.3390/molecules30173574 - 31 Aug 2025
Viewed by 475
Abstract
Ethylene imine-based porous polymer nanocomposites were prepared by ring-opening polymerization of 2,2-bishydroxymethylbutanol-tris [3-(1-aziridinyl)propionate] (3AZ), a tri-functional aziridine compound, in the presence of commercially available metal oxide nanoparticles, SiO2 or ZrO2, accompanied by polymerization-induced phase separation. The reactions with SiO2 [...] Read more.
Ethylene imine-based porous polymer nanocomposites were prepared by ring-opening polymerization of 2,2-bishydroxymethylbutanol-tris [3-(1-aziridinyl)propionate] (3AZ), a tri-functional aziridine compound, in the presence of commercially available metal oxide nanoparticles, SiO2 or ZrO2, accompanied by polymerization-induced phase separation. The reactions with SiO2 and ZrO2 nanoparticles successfully yielded nanocomposite porous polymers as rigid materials. The nanocomposite porous polymers with SiO2 and ZrO2 nanoparticles showed characteristic surface morphologies composed of gathered particles with diameters less than 1 micrometer. These nanocomposites were effective in increasing Young’s moduli of the porous polymers due to an increase in their bulk densities. The presence of SiO2 and ZrO2 nanoparticles in the porous polymers efficiently retarded thermal decomposition. Full article
(This article belongs to the Special Issue Functional Porous Frameworks: Synthesis, Properties, and Applications)
Show Figures

Figure 1

43 pages, 4354 KB  
Review
A Comprehensive Review of Azelaic Acid Pharmacological Properties, Clinical Applications, and Innovative Topical Formulations
by Andreea-Georgiana Petrovici, Mariachiara Spennato, Ioan Bîtcan, Francisc Péter, Livius Cotarcă, Anamaria Todea and Valentin Laurențiu Ordodi
Pharmaceuticals 2025, 18(9), 1273; https://doi.org/10.3390/ph18091273 - 26 Aug 2025
Viewed by 1548
Abstract
Azelaic acid (AzA), a saturated dicarboxylic acid, is indicated for the treatment of acne vulgaris, rosacea, melasma, and post-inflammatory hyperpigmentation. Its antimicrobial, anti-inflammatory, and antimelanogenic properties support its use; however, its poor aqueous solubility and limited skin permeability constrain its optimal topical delivery. [...] Read more.
Azelaic acid (AzA), a saturated dicarboxylic acid, is indicated for the treatment of acne vulgaris, rosacea, melasma, and post-inflammatory hyperpigmentation. Its antimicrobial, anti-inflammatory, and antimelanogenic properties support its use; however, its poor aqueous solubility and limited skin permeability constrain its optimal topical delivery. This review summarizes clinical evidence and advances in formulations—including conventional vehicles, polymeric/lipid nanocarriers, and deep eutectic solvent (DES) systems—to promote more effective and well-tolerated use. Across indications, 15–20% azelaic acid (AzA) formulations produced clinically meaningful improvements with mild, transient local irritation. For acne vulgaris, reductions in inflammatory and noninflammatory lesions were comparable to those of topical retinoids/adapalene, and tolerability was superior in some studies. For rosacea, the 15% gel formulation was comparable to metronidazole in reducing papules, pustules, and erythema while maintaining negligible systemic exposure. In melasma and other dyschromias, 20% cream demonstrated efficacy similar to hydroquinone, exhibiting a favorable safety profile. Advanced delivery systems, including liposomes, niosomes/ethosomes, nanostructured lipid carriers, microemulsions, nanosponges, and DES platforms, increased AzA solubilization, cutaneous deposition, and stability. This enabled dose-sparing strategies and improved adherence. Data on AzA cocrystals and ionic salts suggest additional control over release and irritation. AzA remains a versatile and well-tolerated dermatologic agent whose performance is strongly vehicle-dependent. Rational selection and engineering of carriers, particularly DES-integrated polymeric and lipid systems, can mitigate solubility and permeability limitations, enhance skin targeting, and reduce irritation in the treatment of acne and rosacea. Full article
(This article belongs to the Special Issue Natural Products for Therapeutic Potential)
Show Figures

Graphical abstract

18 pages, 1211 KB  
Article
Sustainable Greywater Treatment in Jordan: The Role of Constructed Wetlands as Nature-Based Solutions
by Ahmed M. N. Masoud, Amani Alfarra, Alham W. Al-Shurafat and Sabrina Sorlini
Water 2025, 17(16), 2497; https://doi.org/10.3390/w17162497 - 21 Aug 2025
Viewed by 913
Abstract
Water scarcity in Jordan is intensifying, creating an urgent need for innovative approaches to maximize the use of nonconventional water resources, such as greywater treatment and reuse. This study presents a detailed analysis of the suitability of nature-based solutions (NbSs) for greywater treatment, [...] Read more.
Water scarcity in Jordan is intensifying, creating an urgent need for innovative approaches to maximize the use of nonconventional water resources, such as greywater treatment and reuse. This study presents a detailed analysis of the suitability of nature-based solutions (NbSs) for greywater treatment, with a focus on the application of horizontal flow constructed wetlands (HFCWs). Two systems were implemented to treat greywater generated from mosques located in Az-Zarqa Governorate, a dry region in Jordan. Following several months of operation, monitoring, and evaluation, the systems demonstrated high removal efficiencies: turbidity (>87%), total suspended solids (TSS) (>96%), chemical oxygen demand (COD) (>91%), and five-day biological oxygen demand (BOD5) (>85%). The eight-square-meter HFCW units successfully produced one cubic meter of treated greywater per day, meeting Jordanian standards for reclaimed greywater (JS 1776:2013) for use in irrigating food crops, including those consumed raw. The system achieved a 70% reduction in water consumption compared to the same period in the year prior to its implementation. These results demonstrate the potential of constructed wetlands (CWs) as effective, low-cost, and sustainable NbSs for decentralized greywater treatment and reuse in water-scarce regions. Full article
(This article belongs to the Special Issue Impacts of Climate Change & Human Activities on Wetland Ecosystems)
Show Figures

Figure 1

24 pages, 4238 KB  
Article
Hydrothermal Magnesium Alloy Extracts Modulate MicroRNA Expression in RAW264.7 Cells: Implications for Bone Remodeling
by Viviana Costa, Lavinia Raimondi, Daniele Bellavia, Angela De Luca, Pasquale Guglielmi, Angela Cusanno, Luca Cattini, Lia Pulsatelli, Matteo Pavarini, Roberto Chiesa and Gianluca Giavaresi
J. Funct. Biomater. 2025, 16(8), 303; https://doi.org/10.3390/jfb16080303 - 21 Aug 2025
Viewed by 511
Abstract
Magnesium (Mg) alloys, particularly Mg AZ31, have emerged as promising biomaterials for orthopedic applications due to their biodegradability and favorable mechanical characteristics. Among these, the Mg AZ31+SPF alloy, subjected to hydrothermal (HT) treatment, has demonstrated enhanced bioactivity. Our previous research established that this [...] Read more.
Magnesium (Mg) alloys, particularly Mg AZ31, have emerged as promising biomaterials for orthopedic applications due to their biodegradability and favorable mechanical characteristics. Among these, the Mg AZ31+SPF alloy, subjected to hydrothermal (HT) treatment, has demonstrated enhanced bioactivity. Our previous research established that this surface modification supports the osteogenic differentiation of human mesenchymal stem cells (hMSCs) by modulating both canonical and non-canonical signaling pathways, including those implicated in osteogenesis, hypoxic response, exosome biogenesis, and lipid metabolism. In the present study, we extended our investigation to assess the effects of Mg AZ31+SPF+HT and Mg AZ31+SPF extracts on murine pre-osteoclasts (RAW 264.7 cells) over 3- and 6-day treatment periods. The primary objectives were to evaluate biocompatibility and to investigate potential impacts on osteoclastogenesis induction and miRNA expression profiles. Methods: To assess cytocompatibility, metabolic activity, DNA integrity, and morphological alterations in RAW 264.7 cells were evaluated. Osteoclast differentiation was quantified using TRAP staining, alongside the assessment of osteoclastogenic marker expression by qRT-PCR and ELISA. The immunomodulatory properties of the extracts were examined using multiplex BioPlex assays to quantify soluble factors involved in bone healing. Additionally, global miRNA expression profiling was performed using a specialized panel targeting 82 microRNAs implicated in bone remodeling and inflammatory signaling. Results: Mg AZ31+SPF+HT extract exhibited high biocompatibility, with no observable adverse effects on cell viability. Notably, a significant reduction in the number of TRAP-positive and multinucleated cells was observed relative to the Mg AZ31+SPF group. This effect was corroborated by the downregulation of osteoclast-specific gene expression and decreased MMP9 protein levels. Cytokine profiling indicated that Mg AZ31+SPF+HT extract promoted an earlier release of key cytokines involved in maintaining the balance between bone formation and resorption, suggesting a beneficial role in bone healing. Furthermore, miRNA profiling revealed a distinct regulatory signature in Mg AZ31+SPF+HT-treated cells, with differentially expressed miRNAs associated with inflammation, osteoclast differentiation, apoptosis, bone resorption, hypoxic response, and metabolic processes compared to Mg AZ31+SPF-treated cells. Conclusions: Collectively, these findings indicate that hydrothermal treatment of Mg AZ31+SPF (resulting in Mg AZ31+SPF+HT) attenuates pre-osteoclast activation by influencing cellular morphology, gene and protein expression, as well as post-transcriptional regulation via modulation of miRNAs. The preliminary identification of miRNAs and the activation of their regulatory networks in pre-osteoclasts exposed to hydrothermally treated Mg alloy are described herein. In the context of orthopedic surgery—where balanced bone remodeling is imperative—our results emphasize the dual significance of promoting bone formation while modulating bone resorption to achieve optimal implant integration and ensure long-term bone health. Full article
(This article belongs to the Special Issue Metals and Alloys for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

15 pages, 706 KB  
Article
Performance of Turf Bermudagrass Hybrids with Deficit Irrigation in the Desert Southwest USA
by Desalegn D. Serba, Reagan W. Hejl, Yanqi Wu, Kelly R. Thorp, Matthew M. Conley and Clinton F. Williams
Appl. Sci. 2025, 15(16), 9151; https://doi.org/10.3390/app15169151 - 20 Aug 2025
Viewed by 281
Abstract
Water scarcity poses a substantial challenge for turfgrass irrigation in the drought- and heat-stressed Desert Southwest region of the United States. Bermudagrass (Cynodon spp.), renowned for its exceptional drought resistance, is the predominant warm-season turfgrass in the region. Selecting and using drought-resistant [...] Read more.
Water scarcity poses a substantial challenge for turfgrass irrigation in the drought- and heat-stressed Desert Southwest region of the United States. Bermudagrass (Cynodon spp.), renowned for its exceptional drought resistance, is the predominant warm-season turfgrass in the region. Selecting and using drought-resistant bermudagrass cultivars remains a primary strategy for sustaining the turfgrass industry in the region. This study evaluated 48 hybrid bermudagrasses (Cynodon dactylon × C. transvaalensis Burtt-Davy), including two commercial cultivars (‘TifTuf’ and ‘Tifway’, as controls), under 80% × ETo (0.8ET), 60% × ETo (0.6ET) and 40% × ETo (0.4ET) reference evapotranspiration (ETo) replacement irrigation systems at Maricopa, AZ. The experiment was laid out in a split-plot design with two replications, where the 3 irrigation treatments were assigned to main plots and 48 genotypes were in sub-plots. Analysis of data from two years (2022 and 2023) revealed significant differences among bermudagrass hybrids, irrigation treatments, and their interaction effects. The hybrids exhibited substantial variation for spring green-up, density, turf color, and quality. With the largest deficit irrigation treatment 40% × ETo (0.4ET), OSU2104, OSU2106, and OSU2105 showed greater mean greenness and aesthetic quality scores than recorded for ‘TifTuf’ (6.5), a popular drought-tolerant cultivar. The results highlight the prevalence of genetic variation in germplasm with potential for development of improved varieties for drought tolerance. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

20 pages, 3600 KB  
Article
Functional Analyses of a Rhodobium marinum RH-AZ Genome and Its Application for Promoting the Growth of Rice Under Saline Stress
by Yang Gao, Cheng Xu, Tao Tang, Xiao Xie, Renyan Huang, Youlun Xiao, Xiaobin Shi, Huiying Hu, Yong Liu, Jing Peng and Deyong Zhang
Plants 2025, 14(16), 2516; https://doi.org/10.3390/plants14162516 - 13 Aug 2025
Viewed by 370
Abstract
Soil salinity stands among the most critical abiotic stressors, imposing severe limitations on global rice cultivation. Emerging evidence highlights the potential of beneficial microorganisms to enhance crop salt tolerance. In this study, a halotolerant bacterial strain, Rhodobium marinum RH-AZ (Gram-negative) was identified and [...] Read more.
Soil salinity stands among the most critical abiotic stressors, imposing severe limitations on global rice cultivation. Emerging evidence highlights the potential of beneficial microorganisms to enhance crop salt tolerance. In this study, a halotolerant bacterial strain, Rhodobium marinum RH-AZ (Gram-negative) was identified and analyzed. It exhibited exceptional survival at 9% (w/v) NaCl salinity. Whole-genome sequencing revealed a circular chromosome spanning 3,875,470 bp with 63.11% GC content, encoding 5534 protein-coding genes. AntiSMASH analysis predicted eight secondary metabolite biosynthetic gene clusters. Genomic annotation identified functional genes associated with nitrogen cycle coordination, phytohormone biosynthesis, micronutrient management and osmoprotection. Integrating genomic evidence with the existing literature suggests RH-AZ’s potential for enhancing rice salt tolerance and promoting the growth of rice plants. Subsequent physiological investigations revealed that the RH-AZ strain had significant growth-promoting effects on rice under high salinity stress. Compared with a non-inoculated control, RH-AZ-inoculated rice plants exhibited stem elongation and fresh biomass enhancement under salt stress conditions. The RH-AZ strain concurrently affected key stress mitigation biomarkers: it enhanced the activity of antioxidant enzymes including superoxide dismutase, peroxidase, catalase and ascorbate peroxidase, and the contents of proline and chlorophyll in plants, and reduced the content of malondialdehyde. These findings demonstrate that R. marinum RH-AZ, as a multifunctional bioinoculant, enhances rice salt tolerance by enhancing the stress responses of the plants, presenting a promising solution for sustainable agriculture in saline-affected ecosystems. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

23 pages, 7940 KB  
Article
A Novel Iodine–Dextrin Complex Exhibits No Acute or Subacute Toxicity and Enhances Azithromycin Efficacy in an LPS-Induced Sepsis Model
by Nailya Ibragimova, Arailym Aitynova, Seitzhan Turganbay, Marina Lyu, Alexander Ilin, Karina Vassilyeva, Diana Issayeva, Tamari Gapurkhaeva, Arkadiy Krasnoshtanov, Galina Ponomareva and Amir Azembayev
Pharmaceutics 2025, 17(8), 1040; https://doi.org/10.3390/pharmaceutics17081040 - 11 Aug 2025
Viewed by 521
Abstract
Background/Objectives: Our work was designed to study the physicochemical properties, safety profile, pharmacokinetics, and prophylactic efficacy of an original iodine–dextrin-based pharmaceutical formulation (PA), both alone and in combination with azithromycin (AZ), in a murine model of LPS-induced sepsis. Methods/Results: UV–vis and 1H-NMR [...] Read more.
Background/Objectives: Our work was designed to study the physicochemical properties, safety profile, pharmacokinetics, and prophylactic efficacy of an original iodine–dextrin-based pharmaceutical formulation (PA), both alone and in combination with azithromycin (AZ), in a murine model of LPS-induced sepsis. Methods/Results: UV–vis and 1H-NMR spectroscopy confirmed the formation of a stable iodine–dextrin complex, with triiodide anions stabilized by hydrogen bonding and donor–acceptor interactions. No clinical signs of acute toxicity were observed at doses up to 5000 mg/kg, and subacute administration (62.5 and 125 mg/kg) showed no adverse effects on hematological or biochemical parameters. A mild, non-pathological enlargement of thyrocytes and parallel increases in TSH, T3, and T4 levels were observed at 125 mg/kg, consistent with physiological adaptation to iodine. Pharmacokinetic analysis revealed high oral bioavailability (~92%), prolonged half-life (~21 h), and wide tissue distribution with low clearance. In the sepsis model, pretreatment with AZ+PA alleviated clinical symptoms, maintained body weight, and significantly improved hematological parameters, reducing WBCs and CRP levels. The combination also decreased plasma IL-6 and TNF-α concentrations more effectively than either agent alone, indicating a synergistic anti-inflammatory effect. Histological analysis confirmed that PA, particularly in combination with AZ, mitigated LPS-induced tissue injury in the liver, kidney, and lungs. Conclusions: These findings suggest that PA is a safe, bioavailable compound with immunomodulatory properties that enhance azithromycin’s protective effects during systemic inflammation. This supports its potential use as a prophylactic agent in clinical settings, such as preoperative immune modulation to prevent sepsis-related complications. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

13 pages, 4261 KB  
Article
Research on Comparative Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy in South China Sea
by Tianlong Zhang, Shuai Wu, Hao Liu, Lihui Yang, Tianxing Chen, Xiutong Wang and Yantao Li
Materials 2025, 18(15), 3585; https://doi.org/10.3390/ma18153585 - 30 Jul 2025
Viewed by 319
Abstract
In this study, the atmospheric corrosion behavior of AZ31 magnesium alloy exposed in Sanya and Nansha for one year was investigated. While existing studies have characterized marine corrosion of magnesium alloys, the synergistic corrosion mechanisms under extreme tropical marine conditions (simultaneous high Cl [...] Read more.
In this study, the atmospheric corrosion behavior of AZ31 magnesium alloy exposed in Sanya and Nansha for one year was investigated. While existing studies have characterized marine corrosion of magnesium alloys, the synergistic corrosion mechanisms under extreme tropical marine conditions (simultaneous high Cl, rainfall, and temperature fluctuations) remain poorly understood—particularly regarding dynamic corrosion–product evolution. The corrosion characteristics and behavior of AZ31 magnesium alloy exposed in Sanya and Nansha were evaluated using X-ray photoelectron spectroscopy, X-ray diffraction, electrochemical measurements, scanning electron microscopy, and weight loss tests. The results showed that the main components of corrosion products were MgCO3·xH2O(x = 3, 5), Mg5(CO3)4(OH)2·4H2O, Mg2Cl(OH)3·4H2O, and Mg(OH)2. The corrosion rate exposed in the Nansha was 26.5 μm·y−1, which was almost two times than that in Sanya. Localized corrosion is the typical corrosion characteristic of AZ31 magnesium alloy in this tropical marine atmosphere. This study exposes the dynamic crack–regeneration mechanism of corrosion products under high-Cl-rainfall synergy. The corrosion types of AZ31 magnesium alloy in this tropical marine atmosphere were mainly represented by pitting corrosion and filamentous corrosion. Full article
(This article belongs to the Special Issue Future Trend of Marine Corrosion and Protection)
Show Figures

Figure 1

20 pages, 1780 KB  
Systematic Review
Morphological Variations of the Anterior Cerebral Artery: A Systematic Review with Meta-Analysis of 85,316 Patients
by George Triantafyllou, Ioannis Paschopoulos, Katerina Kamoutsis, Panagiotis Papadopoulos-Manolarakis, Juan Jose Valenzuela-Fuenzalida, Juan Sanchis-Gimeno, Alejandro Bruna-Mejias, Andres Riveros-Valdés, Nikolaos-Achilleas Arkoudis, Alexandros Samolis, George Tsakotos and Maria Piagkou
Diagnostics 2025, 15(15), 1893; https://doi.org/10.3390/diagnostics15151893 - 28 Jul 2025
Viewed by 635
Abstract
Background: The anterior cerebral artery (ACA), a critical component of the cerebral arterial circle, exhibits substantial morphological variability. While previous studies have explored ACA morphology using cadaveric and imaging methods, a comprehensive meta-analysis incorporating the latest evidence is lacking. Methods: Following [...] Read more.
Background: The anterior cerebral artery (ACA), a critical component of the cerebral arterial circle, exhibits substantial morphological variability. While previous studies have explored ACA morphology using cadaveric and imaging methods, a comprehensive meta-analysis incorporating the latest evidence is lacking. Methods: Following current guidelines, a systematic review and meta-analysis were performed across four major databases, supplemented by the gray literature and targeted journal searches. Ninety-nine studies, encompassing 85,316 patients, met the inclusion criteria. Statistical analyses were conducted using R, applying random effects models to estimate pooled prevalence and morphometric parameters. Results: The pooled prevalence of typical ACA morphology was 93.75%, whereas variants were noted in 6.25% of cases. The predominant variation identified was the accessory ACA (aACA) (1.99%), followed by unilateral absence of the A1 segment (1.78%), with the latter being more frequently recognized in imaging studies (p < 0.0001). Rare variants encompassed azygos ACA (azACA) (0.22%), fenestrated ACA (fACA) (0.02%), and bihemispheric ACA (bACA) (0.02%). The mean diameter and length of the A1 segment were measured at 2.10 mm and 14.24 mm, respectively. Hypoplasia of the A1 segment (<1 mm diameter) was recorded in 3.15% of cases. The influences of imaging modality, laterality, and population distribution on prevalence estimates were minimal. No significant publication bias was detected. Conclusions: Although infrequent, variants of the ACA possess significant clinical importance attributable to their correlation with aneurysm formation and the impairment of collateral circulation. The aACA and the absence of the A1 segment emerged as the most common variations. This meta-analysis presents an updated and high-quality synthesis of ACA morphology, serving as a valuable reference for clinicians and anatomists. Full article
(This article belongs to the Special Issue Advances in Anatomy—Third Edition)
Show Figures

Figure 1

12 pages, 1196 KB  
Article
DNN-Based Noise Reduction Significantly Improves Bimodal Benefit in Background Noise for Cochlear Implant Users
by Courtney Kolberg, Sarah O. Holbert, Jamie M. Bogle and Aniket A. Saoji
J. Clin. Med. 2025, 14(15), 5302; https://doi.org/10.3390/jcm14155302 - 27 Jul 2025
Viewed by 699
Abstract
Background/Objectives: Traditional hearing aid noise reduction algorithms offer no additional benefit in noisy situations for bimodal cochlear implant (CI) users with a CI in one ear and a hearing aid (HA) in the other. Recent breakthroughs in deep neural network (DNN)-based noise [...] Read more.
Background/Objectives: Traditional hearing aid noise reduction algorithms offer no additional benefit in noisy situations for bimodal cochlear implant (CI) users with a CI in one ear and a hearing aid (HA) in the other. Recent breakthroughs in deep neural network (DNN)-based noise reduction have improved speech understanding for hearing aid users in noisy environments. These advancements could also boost speech perception in noise for bimodal CI users. This study investigated the effectiveness of DNN-based noise reduction in the HAs used by bimodal CI patients. Methods: Eleven bimodal CI patients, aged 71–89 years old, were fit with a Phonak Audéo Sphere Infinio 90 HA in their non-implanted ear and were provided with a Calm Situation program and Spheric Speech in Loud Noise program that uses DNN-based noise reduction. Sentence recognition scores were measured using AzBio sentences in quiet and in noise with the CI alone, hearing aid alone, and bimodally with both the Calm Situation and DNN HA programs. Results: The DNN program in the hearing aid significantly improved bimodal performance in noise, with sentence recognition scores reaching 79% compared to 60% with Calm Situation (a 19% average benefit, p < 0.001). When compared to the CI-alone condition in multi-talker babble, the DNN HA program offered a 40% bimodal benefit, significantly higher than the 21% score seen with the Calm Situation program. Conclusions: DNN-based noise reduction in HA significantly improves speech understanding in noise for bimodal CI users. Utilization of this technology is a promising option to address patients’ common complaint of speech understanding in noise. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

17 pages, 2227 KB  
Article
Divergent Mechanisms of H2AZ.1 and H2AZ.2 in PRC1-Mediated H2A Ubiquitination
by Xiangyu Shen, Chunxu Chen, Amanda E. Jones, Xiaokun Jian, Gengsheng Cao and Hengbin Wang
Cells 2025, 14(15), 1133; https://doi.org/10.3390/cells14151133 - 23 Jul 2025
Viewed by 498
Abstract
The histone H2A variant H2AZ plays pivotal roles in shaping chromatin architecture and regulating gene expression. We recently identified H2AZ.2 in histone H2A lysine 119 ubiquitination (H2AK119ub)-enriched nucleosomes, but it is not known whether its highly related isoform H2AZ.1 also regulates this modification. [...] Read more.
The histone H2A variant H2AZ plays pivotal roles in shaping chromatin architecture and regulating gene expression. We recently identified H2AZ.2 in histone H2A lysine 119 ubiquitination (H2AK119ub)-enriched nucleosomes, but it is not known whether its highly related isoform H2AZ.1 also regulates this modification. In this study, we employed isoform-specific epitope-tagged knock-in mouse embryonic stem cell (ESC) lines to dissect the roles of each isoform in Polycomb Repressive Complex 1 (PRC1)-mediated H2AK119ub. Our results show that H2AZ.1 and H2AZ.2 share highly overlapping genomic binding profiles, both co-localizing extensively with H2AK119ub-enriched loci. The knockdown of either isoform led to reduced H2AK119ub levels; however, the two isoforms appear to function through distinct mechanisms. H2AZ.1 facilitates the recruitment of Ring1B, the catalytic subunit of PRC1, thereby promoting the deposition of H2AK119ub. In contrast, H2AZ.2 does not significantly affect Ring1B recruitment but instead functions as a structural component that stabilizes H2AK119ub-modified nucleosomes. In vitro ubiquitination assays indicate that H2AZ.1-containing nucleosomes serve as more efficient substrates for PRC1-mediated ubiquitination compared to those containing H2AZ.2. Thus, these findings define the distinct mechanisms of the two H2AZ variants in regulated PRC1-mediated H2AK119 ubiquitination and highlight a functional division of labor in epigenetic regulation. Full article
Show Figures

Figure 1

24 pages, 73556 KB  
Article
Neural Network-Guided Smart Trap for Selective Monitoring of Nocturnal Pest Insects in Agriculture
by Joel Hinojosa-Dávalos, Miguel Ángel Robles-García, Melesio Gutiérrez-Lomelí, Ariadna Berenice Flores Jiménez and Cuauhtémoc Acosta Lúa
Agriculture 2025, 15(14), 1562; https://doi.org/10.3390/agriculture15141562 - 21 Jul 2025
Viewed by 699
Abstract
Insect pests remain a major threat to agricultural productivity, particularly in open-field cropping systems where conventional monitoring methods are labor-intensive and lack scalability. This study presents the design, implementation, and field evaluation of a neural network-guided smart trap specifically developed to monitor and [...] Read more.
Insect pests remain a major threat to agricultural productivity, particularly in open-field cropping systems where conventional monitoring methods are labor-intensive and lack scalability. This study presents the design, implementation, and field evaluation of a neural network-guided smart trap specifically developed to monitor and selectively capture nocturnal insect pests under real agricultural conditions. The proposed trap integrates light and rain sensors, servo-controlled mechanical gates, and a single-layer perceptron neural network deployed on an ATmega-2560 microcontroller by Microchip Technology Inc. (Chandler, AZ, USA). The perceptron processes normalized sensor inputs to autonomously decide, in real time, whether to open or close the gate, thereby enhancing the selectivity of insect capture. The system features a removable tray containing a food-based attractant and yellow and green LEDs designed to lure target species such as moths and flies from the orders Lepidoptera and Diptera. Field trials were conducted between June and August 2023 in La Barca, Jalisco, Mexico, under diverse environmental conditions. Captured insects were analyzed and classified using the iNaturalist platform, with the successful identification of key pest species including Tetanolita floridiana, Synchlora spp., Estigmene acrea, Sphingomorpha chlorea, Gymnoscelis rufifasciata, and Musca domestica, while minimizing the capture of non-target organisms such as Carpophilus spp., Hexagenia limbata, and Chrysoperla spp. Statistical analysis using the Kruskal–Wallis test confirmed significant differences in capture rates across environmental conditions. The results highlight the potential of this low-cost device to improve pest monitoring accuracy, and lay the groundwork for the future integration of more advanced AI-based classification and species recognition systems targeting nocturnal Lepidoptera and other pest insects. Full article
(This article belongs to the Special Issue Design and Development of Smart Crop Protection Equipment)
Show Figures

Figure 1

15 pages, 7744 KB  
Article
FEM Analysis of Superplastic-Forming Process to Manufacture a Hemispherical Shell
by Gillo Giuliano and Wilma Polini
Appl. Sci. 2025, 15(14), 8080; https://doi.org/10.3390/app15148080 - 21 Jul 2025
Viewed by 384
Abstract
Superplastic materials are characterised by extreme lightness and remarkable ductility. Instead of a punch, a gas is used to push the sheet into the die cavity, and it is precisely regulated to control the material’s strain rate. Forming a superplastic material while maintaining [...] Read more.
Superplastic materials are characterised by extreme lightness and remarkable ductility. Instead of a punch, a gas is used to push the sheet into the die cavity, and it is precisely regulated to control the material’s strain rate. Forming a superplastic material while maintaining a high strain rate sensitivity index requires the forming gas to follow a precise pressure–time loading curve. This can be excellently predicted with the aid of the finite element method (FEM). Therefore, for the superplastic material to exhibit its best formability throughout the entire process, it is necessary to control the strain rate step by step to keep the maximum strain rate within the material’s optimal superplastic range. In this work, the results of a superplastic-forming process used to create a hemispherical shell are presented. This was carried out using both a circular blank of uniform thickness and a blank with a conical cross-section. The analysis was performed using finite element modelling. Specifically, the results obtained using 3D analysis were compared with those obtained using axisymmetric analysis for conditions of axial symmetry. Using the conical cross-section blank helped achieve a more uniform thickness distribution in the produced hemispherical shell. The success of the numerical activity was validated through results from appropriate experimental work conducted on the magnesium alloy AZ31. The results show that, by employing a blank characterised by a conical section profile, the thickness distribution appears more uniform than that of a constant-thickness blank. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop