Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = Amaranthus chenopodium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 334 KB  
Review
Potential of Andean Grains as Substitutes for Animal Proteins in Vegetarian and Vegan Diets: A Nutritional and Functional Analysis
by Jhonsson Luis Quevedo-Olaya, Marcio Schmiele and María Jimena Correa
Foods 2025, 14(17), 2987; https://doi.org/10.3390/foods14172987 - 27 Aug 2025
Viewed by 381
Abstract
The growing demand for sustainable protein sources has boosted interest in Andean pseudocereals, particularly quinoa (Chenopodium quinoa), cañihua (Chenopodium pallidicaule), and kiwicha (Amaranthus caudatus), due to their complete nutritional profile, high digestibility, and low allergenic potential. Their [...] Read more.
The growing demand for sustainable protein sources has boosted interest in Andean pseudocereals, particularly quinoa (Chenopodium quinoa), cañihua (Chenopodium pallidicaule), and kiwicha (Amaranthus caudatus), due to their complete nutritional profile, high digestibility, and low allergenic potential. Their inclusion in vegetarian and vegan diets represents a viable alternative that can replace animal proteins without compromising on nutritional quality. This study presents a critical review of indexed scientific literature analyzing essential amino acid composition, protein quality values—such as PDCAAS (Protein Digestibility-Corrected Amino Acid Score) and DIAAS (Digestible Indispensable Amino Acid Score)—and the impact of various processing technologies on the functionality of Andean proteins. Results show that these grains contain between 13 and 18 g of protein per 100 g of dry product and provide adequate levels of lysine, methionine, and threonine, meeting FAO (Food and Agriculture Organization) requirements for adult nutrition. Processes such as germination, fermentation, enzymatic hydrolysis, and extrusion have demonstrated improvements in both amino acid bioavailability and functional properties of proteins, enabling their application in gluten-free breads, meat analogs, and functional beverages. Furthermore, emerging strategies such as nanotechnology, bioactive peptide generation, and gene editing via CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)—a precise genome editing tool—open new possibilities for enhancing the nutritional and functional value of pseudocereals in the food industry. Taken together, the findings consolidate the strategic role of Andean grains as key ingredients in the development of sustainable, functional, and plant-based foods. Full article
(This article belongs to the Section Grain)
16 pages, 950 KB  
Article
Survey of Weed Flora Diversity as a Starting Point for the Development of a Weed Management Strategy for Medicinal Crops in Pančevo, Serbia
by Dragana Božić, Ana Dragumilo, Tatjana Marković, Urban Šilc, Svetlana Aćić, Teodora Tojić, Miloš Rajković and Sava Vrbničanin
Horticulturae 2025, 11(8), 882; https://doi.org/10.3390/horticulturae11080882 - 31 Jul 2025
Viewed by 399
Abstract
Similarly to conventional field crops, weeds often pose significant problems in the cultivation of medicinal plants. To date, no comprehensive documentation exists regarding weed infestation levels in these crops in Serbia. The objective of this study was to provide a valuable foundation for [...] Read more.
Similarly to conventional field crops, weeds often pose significant problems in the cultivation of medicinal plants. To date, no comprehensive documentation exists regarding weed infestation levels in these crops in Serbia. The objective of this study was to provide a valuable foundation for developing effective, site-specific weed management strategies in medicinal crop production. Weeds in five medicinal crops (lemon balm, fennel, peppermint, ribwort plantain, German chamomile), were surveyed based on the agro-phytosociological method between 2019 and 2024, and across 59 plots. A total of 109 weed species were recorded, belonging to 29 families and 88 genera. Among them, 75 were annuals and 34 perennials, including 93 broadleaved species, 10 grasses, and one parasitic species. All surveyed plots were heavily infested with perennial weeds such as Elymus repens, Cirsium arvense, Convolvulus arvensis, Lepidium draba, Rumex crispus, Sorghum halepense, Taraxacum officinale, etc. Also, several annual species were found in high abundance and frequency, including Amaranthus retroflexus, Chenopodium album, Galium aparine, Lactuca serriola, Lamium amplexicaule, L. purpureum, Papaver rhoeas, Stellaria media, Veronica hederifolia, V. persica, etc. The most important ecological factors influencing the composition of weed vegetation in investigated medicinal crops were temperature and light for fennel and peppermint plots, soil reaction for lemon balm and ribwort plantain plots, and nutrient content for German chamomile plots. A perspective for exploitation of these results is the development of effective weed control programs tailored to this specific cropping system. Weed control strategies should consider such information, targeting the control of the most frequent, abundant, and dominant species existing in a crops or locality. Full article
(This article belongs to the Special Issue Conventional and Organic Weed Management in Horticultural Production)
Show Figures

Graphical abstract

15 pages, 9151 KB  
Article
Study of the Herbicidal Potential and Infestation Mechanism of Fusarium oxysporum JZ-5 on Six Broadleaved Weeds
by Suifang Zhang, Haixia Zhu, Yongqiang Ma and Liang Cheng
Microorganisms 2025, 13(7), 1541; https://doi.org/10.3390/microorganisms13071541 - 30 Jun 2025
Viewed by 352
Abstract
Weeds compete with crops for resources, posing multiple negative impacts for agricultural production systems and triggering degradation of ecosystem services (e.g., alterations in the soil microbial community structure). Under the guidance of green plant protection, the development of efficient biocontrol strains with environmentally [...] Read more.
Weeds compete with crops for resources, posing multiple negative impacts for agricultural production systems and triggering degradation of ecosystem services (e.g., alterations in the soil microbial community structure). Under the guidance of green plant protection, the development of efficient biocontrol strains with environmentally friendly characteristics has become a crucial research direction for sustainable agriculture. This study aimed to develop a fungal bioherbicide by isolating and purifying a pathogenic fungal strain (JZ-5) from infected redroot pigweed (Amaranthus retroflexus L.). The strain exhibited pathogenicity rates ranging from 23.46% to 86.25% against six weed species, with the most pronounced control efficacy observed against henbit deadnettle (Lamium amplexicaule L.), achieving a pathogenicity rate of 86.25%. Through comprehensive characterization of cultural features, morphological observations, and molecular biological identification, the strain was taxonomically classified as Fusarium oxysporum. Scanning electron microscopy revealed that seven days post-inoculation, F. oxysporum JZ-5 formed dense mycelial networks on the leaf surfaces of cluster mallow (Malva verticillata L.), causing severe tissue damage. Safety assessments demonstrated that the spore suspension (104 spores/mL) had no adverse effects on three crops: hulless barley (Hordeum vulgare var. coeleste L.), wheat (Triticum aestivum L.), and potato (Solanum tuberosum L.). These findings suggest that F. oxysporum strain JZ-5 warrants further investigation as a potential bioherbicide for controlling three problematic weed species—Chenopodium album L. (common lambsquarters), Elsholtzia densa Benth. (dense-flowered elsholtzia), and Lamium amplexicaule L. (henbit deadnettle)—in cultivated fields of hulless barley (Hordeum vulgare var. coeleste L.), wheat (Triticum aestivum L.), and potato (Solanum tuberosum L.). This discovery provides valuable fungal resources for ecologically sustainable weed management strategies, contributing significantly to the advancement of sustainable agricultural practices. Full article
(This article belongs to the Special Issue Fungal Biology and Interactions—3rd Edition)
Show Figures

Figure 1

57 pages, 2557 KB  
Review
Recent Advances in the Therapeutic Potential of Bioactive Molecules from Plants of Andean Origin
by Carlos Barba-Ostria, Jéssica Guamán-Bautista, Augusto A. Tosi-Vélez, Juan A. Puente-Pineda, Melanie A. Cedeño-Zambrano, Enrique Teran and Linda P. Guamán
Nutrients 2025, 17(11), 1749; https://doi.org/10.3390/nu17111749 - 22 May 2025
Cited by 2 | Viewed by 1502
Abstract
Background: Andean plants are rich in bioactive compounds shaped by extreme environmental conditions, contributing to their antioxidant, antimicrobial, and anti-inflammatory properties. This review explores their phytochemical composition, biological activities, and therapeutic potential in modern medicine and nutrition of three plants of Andean origin. [...] Read more.
Background: Andean plants are rich in bioactive compounds shaped by extreme environmental conditions, contributing to their antioxidant, antimicrobial, and anti-inflammatory properties. This review explores their phytochemical composition, biological activities, and therapeutic potential in modern medicine and nutrition of three plants of Andean origin. Methods: A literature review of peer-reviewed studies was conducted, focusing on key species such as quinoa (Chenopodium quinoa), amaranth (Amaranthus spp.), and lupin (Lupinus spp.), selected for this review due to their Andean origin, long-standing role in traditional diets, and growing scientific interest in their unique phytochemical profiles and therapeutic potential. This analysis covers their phytochemistry, bioactivities, and the influence of environmental factors on compound potency. Results: These Andean-origin plants contain flavonoids, terpenoids, alkaloids, and phenolic compounds that support antioxidant, antimicrobial, anti-inflammatory, and anticancer activities. High-altitude conditions enhance the biosynthesis of these bioactives, increasing their therapeutic value. Quinoa, amaranth, and lupin show strong potential for dietary and pharmaceutical applications, particularly in metabolic health and disease prevention. Additionally, preclinical studies and clinical trials have begun exploring the efficacy of these compounds in preventing and treating metabolic and chronic diseases. Conclusions: Andean plants are a valuable source of functional bioactive molecules with diverse health benefits. Future research should optimize cultivation strategies and explore novel applications in nutrition and medicine. Full article
Show Figures

Figure 1

21 pages, 2556 KB  
Article
The Efficacy of Sunn Hemp (Crotalaria juncea) and Fe3O4 Nanoparticles in Controlling Weed Seed Germination
by Fatemeh Ahmadnia, Ali Ebadi, Mohammad Taghi Alebrahim, Ghasem Parmoon, Solmaz Feizpoor and Masoud Hashemi
Agronomy 2025, 15(4), 795; https://doi.org/10.3390/agronomy15040795 - 24 Mar 2025
Viewed by 889
Abstract
Utilizing nanotechnology for weed management offers a sustainable alternative to synthetic herbicides. This study evaluated the effectiveness of sunn hemp extract (SH), Fe3O4 nanoparticles (NPs), and Fe3O4/sunn hemp NPs in inhibiting the germination of redroot pigweed [...] Read more.
Utilizing nanotechnology for weed management offers a sustainable alternative to synthetic herbicides. This study evaluated the effectiveness of sunn hemp extract (SH), Fe3O4 nanoparticles (NPs), and Fe3O4/sunn hemp NPs in inhibiting the germination of redroot pigweed (Amaranthus retroflexus L.), wild mustard (Sinapis arvensis L.), and lamb’s quarters (Chenopodium album L.) weeds. The structural characteristics of the NPs were analyzed using Scanning electron microscopy (SEM), Scanning X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Vibrating sample magnetometer (VSM), Brunner–Emmet–Teller (BET), and Fourier-transform infrared spectroscopy (FTIR). The optimal Fe3O4 NP concentration for reducing seed germination ranged from 3000 to 3100 mg L−1. Higher concentrations of SH extract (100, 150, and 200 g L−1) effectively inhibited weed seed germination with A. retroflexus displaying the highest sensitivity. The maximal effective concentration (NOECmax) for Fe3O4/sunn hemp NPs was 10 g L−1 for S. arvensis, 150 g L1 for A. retroflexus, and 200 g L−1 for C. album. Fe3O4/sunn hemp NPs led to a reduction in 1/D50 and an increase in EEC50, indicating a rise in sensitivity to Fe3O4 NPs, particularly in S. arvensis. Variations in species responses to SH, Fe3O4 NPs, and Fe3O4/sunn hemp NPs are likely influenced by genetic, physiological, and ecological factors. Overall, the findings suggest that utilizing Fe3O4/sunn hemp NPs offers an effective strategy for sustainable weed management. Full article
Show Figures

Figure 1

15 pages, 786 KB  
Article
Measuring Minerals in Pseudocereals Using Inductively Coupled Plasma Optical Emission Spectrometry: What Is the Optimal Digestion Method?
by Ana C. Nascimento, Carla Motta, Andreia Rego, Inês Delgado, Susana Santiago, Ricardo Assunção, Ana Sofia Matos, Mariana Santos and Isabel Castanheira
Foods 2025, 14(4), 565; https://doi.org/10.3390/foods14040565 - 8 Feb 2025
Cited by 2 | Viewed by 869
Abstract
Pseudocereals have gained attention due to their adaptability to different climates, high nutritional value, and suitability for gluten-free and plant-based diets. However, a challenge lies in the necessary adaptations in the diet pathways, mainly due to the lack of matrix-matching metrological tools. To [...] Read more.
Pseudocereals have gained attention due to their adaptability to different climates, high nutritional value, and suitability for gluten-free and plant-based diets. However, a challenge lies in the necessary adaptations in the diet pathways, mainly due to the lack of matrix-matching metrological tools. To address this problem, we developed a classification system to support laboratory decisions without shaped Proficiency Testing (PT) or Certified/Standard References Material. This system evaluates method performance through limit of detection (LOD), maximum uncertainty, and statistical comparison. For that matter, the mineral contents (Cu, Mn, Fe, Zn, Mg, P, Ca, K, and Na) of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and buckwheat (Fagopyrum esculentum) were determined, using three different digestion methods, including dry-ashing, microwave, and graphite block acid digestion. A decision was reached concerning the optimal digestion method to be employed, with the results classified into three categories: (i) “rejected if results failed in two categories; (ii) “use with caution” if results were not satisfactory in one category; or (iii) “accepted”, if the results passed in all the categories. The system efficacy was exemplified by the effectiveness of dry-ashing and graphite block acid digestion by comparison with microwave digestion. Neither dry-ashing nor graphite block acid digestion can be recommended as an alternative method to the microwave digestion method when all the prioritized nutrient minerals are understudied. Although the microwave method is preferable for multi-elemental analysis, it is possible to obtain, with caution, comparable results from all the digestion methods if a higher relative combined uncertainty is defined (target uncertainty < 11%) under the assumption that this is suitable for the study. Full article
(This article belongs to the Special Issue Food Choice, Nutrition, and Public Health)
Show Figures

Figure 1

18 pages, 12538 KB  
Article
HAD-YOLO: An Accurate and Effective Weed Detection Model Based on Improved YOLOV5 Network
by Long Deng, Zhonghua Miao, Xueguan Zhao, Shuo Yang, Yuanyuan Gao, Changyuan Zhai and Chunjiang Zhao
Agronomy 2025, 15(1), 57; https://doi.org/10.3390/agronomy15010057 - 28 Dec 2024
Cited by 10 | Viewed by 2067
Abstract
Weeds significantly impact crop yields and quality, necessitating strict control. Effective weed identification is essential to precision weeding in the field. Existing detection methods struggle with the inconsistent size scales of weed targets and the issue of small targets, making it difficult to [...] Read more.
Weeds significantly impact crop yields and quality, necessitating strict control. Effective weed identification is essential to precision weeding in the field. Existing detection methods struggle with the inconsistent size scales of weed targets and the issue of small targets, making it difficult to achieve efficient detection, and they are unable to satisfy both the speed and accuracy requirements for detection at the same time. Therefore, this study, focusing on three common types of weeds in the field—Amaranthus retroflexus, Eleusine indica, and Chenopodium—proposes the HAD-YOLO model. With the purpose of improving the model’s capacity to extract features and making it more lightweight, this algorithm employs the HGNetV2 as its backbone network. The Scale Sequence Feature Fusion Module (SSFF) and Triple Feature Encoding Module (TFE) from the ASF-YOLO are introduced to improve the model’s capacity to extract features across various scales, and on this basis, to improve the model’s capacity to detect small targets, a P2 feature layer is included. Finally, a target detection head with an attention mechanism, Dynamic head (Dyhead), is utilized to improve the detection head’s capacity for representation. Experimental results show that on the dataset collected in the greenhouse, the mAP for weed detection is 94.2%; using this as the pre-trained weight, on the dataset collected in the field environment, the mAP for weed detection is 96.2%, and the detection FPS is 30.6. Overall, the HAD-YOLO model has effectively addressed the requirements for accurate weed identification, offering both theoretical and technical backing for automatic weed control. Future efforts will involve collecting more weed data from various agricultural field scenarios to validate and enhance the generalization capabilities of the HAD-YOLO model. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

22 pages, 4476 KB  
Article
Physiological and Biochemical Responses of Pseudocereals with C3 and C4 Photosynthetic Metabolism in an Environment with Elevated CO2
by Bruna Evelyn Paschoal Silva, Stefânia Nunes Pires, Sheila Bigolin Teixeira, Simone Ribeiro Lucho, Natan da Silva Fagundes, Larissa Herter Centeno, Filipe Selau Carlos, Fernanda Reolon de Souza, Luis Antonio de Avila and Sidnei Deuner
Plants 2024, 13(23), 3453; https://doi.org/10.3390/plants13233453 - 9 Dec 2024
Viewed by 1110
Abstract
The present work aimed to investigate the effect of increasing CO2 concentration on the growth, productivity, grain quality, and biochemical changes in quinoa and amaranth plants. An experiment was conducted in open chambers (OTCs) to evaluate the responses of these species to [...] Read more.
The present work aimed to investigate the effect of increasing CO2 concentration on the growth, productivity, grain quality, and biochemical changes in quinoa and amaranth plants. An experiment was conducted in open chambers (OTCs) to evaluate the responses of these species to different levels of CO2 {a[CO2] = 400 ± 50 μmol mol−1 CO2 for ambient CO2 concentration, e[CO2] = 700 ± 50 μmol mol−1 CO2 for the elevated CO2 concentration}. Growth parameters and photosynthetic pigments reflected changes in gas exchange, saccharolytic enzymes, and carbohydrate metabolism when plants were grown under e[CO2]. Furthermore, both species maintained most of the parameters related to gas exchange, demonstrating that the antioxidant system was efficient in supporting the primary metabolism of plants under e[CO2] conditions. Both species were taller and had longer roots and a greater dry weight of roots and shoots when under e[CO2]. On the other hand, the panicle was shorter under the same situation, indicating that the plants invested energy, nutrients, and all mechanisms in their growth to mitigate stress in expense of yield. This led to a reduction on panicle size and, ultimately, reducing quinoa grain yield. Although e[CO2] altered the plant’s metabolic parameters for amaranth, the plants managed to maintain their development without affecting grain yield. Protein levels in grains were reduced in both species under e[CO2] in the average of two harvests. Therefore, for amaranth, the increase in CO2 mainly contributes to lowering the protein content of the grains. As for quinoa, its yield performance is also affected, in addition to its protein content. These findings provide new insights into how plants C3 (amaranth) and C4 (quinoa) respond to e[CO2], significantly increasing photosynthesis and its growth but ultimately reducing yield for quinoa and protein content in both species. This result ultimately underscore the critical need to breed plants that can adapt to e[CO2] as means to mitigate its negative effects and to ensure sustainable and nutritious crop production in future environmental conditions. Full article
Show Figures

Figure 1

5 pages, 233 KB  
Proceeding Paper
Development and Characterization of Andean Pseudocereal Bars Enriched with Native Collagen from Pota (Dosidicus gigas) By-Products
by Yeromi Coral Paredes Llosa, Klidem Francisco Velazquez Carlier and Nancy Chasquibol
Biol. Life Sci. Forum 2024, 37(1), 21; https://doi.org/10.3390/blsf2024037021 - 4 Dec 2024
Viewed by 552
Abstract
In recent years, consumers have been increasingly concerned about their health. Therefore, the snack market is rapidly developing more innovative and functional products such as cereal bars. Quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus) are Andean pseudocereals with protein [...] Read more.
In recent years, consumers have been increasingly concerned about their health. Therefore, the snack market is rapidly developing more innovative and functional products such as cereal bars. Quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus) are Andean pseudocereals with protein (10.90–11.35%) content and other functional components that reduce the risk of cardiovascular diseases and inflammatory illnesses. Peru is the world’s second largest exporter of Pota (Dosidicus gigas), with 476.5 million metric tons in 2023; however, only between 50% and 70% of it has been taken advantage of. Pota by-products such as skins, viscera, and necks have significant protein content (70%) and are discarded. In this investigation, cereal bar formulations with Pota by-products and Andean pseudocereals were optimized and characterized using a five-run simplex centroid mixture design. The effects of two independent variables were examined, namely collagen (2–8%) and binders (22–28%), on the sugar (%), protein (%), and antioxidant (µg Trolox/g dry weight, dw) content as response variables. The optimized cereal bar (M6) showed high protein (21.27 ± 1.51%) content, moisture (10.37 ± 0.04%), ash (2.57 ± 0.03%), fat (15.12 ± 0.15%), carbohydrates (53.67 ± 1.70%), total polyphenol (1570 ± 267 µg Gallic acid equivalent/g dw) content, antioxidant activity (1656 ± 77 µg Trolox/g dw), essential amino acid–leucine (15.65 ± 1.83 mg/g protein) content, and higher in vitro digestibility (78.78 ± 1.40%) than the control sample. The cereal bar had a positive sensory acceptability (88.89%) and complied with Peruvian standards. The functional bar emerges as a nutritious alternative in the food industry and proposes a sustainable solution using Pota by-products, fostering a circular economy. Full article
(This article belongs to the Proceedings of VI International Congress la ValSe-Food)
7 pages, 386 KB  
Proceeding Paper
Production of Kefir Powdered Milk Beverage Based on Probiotic Bacteria Enriched with Lupin, Kiwicha, and Quinoa
by Nisde Nayeli Trujillo, Nancy Ascencion Chasquibol and Silvia Patricia Ponce
Biol. Life Sci. Forum 2024, 37(1), 4; https://doi.org/10.3390/blsf2024037004 - 31 Oct 2024
Viewed by 979
Abstract
The production of functional foods has aroused growing interest due to its proven health benefits and potential to improve quality of life. One of the products that have gained importance due to its practicality is enriched beverages. Kefir, a fermented beverage traditionally produced [...] Read more.
The production of functional foods has aroused growing interest due to its proven health benefits and potential to improve quality of life. One of the products that have gained importance due to its practicality is enriched beverages. Kefir, a fermented beverage traditionally produced from cow’s milk, is cultivated using kefir grains containing a symbiotic culture of bacteria and yeast, which has great nutritional power and benefits the microbiota. In this research, an enriched powdered milk beverage with a high protein content is prepared due to the incorporation of lupine (Lupinus mutabilis), kiwicha (Amaranthus caudatus), and quinoa (Chenopodium quinoa). The beverage prepared shows a 48% increase in protein content compared to commercialized kefir. After the beverage was obtained, it was freeze-dried to preserve its nutritional and functional properties. The resulting beverage, kefir milk powder, enriched with native Andean grains such as lupin, kiwicha, and quinoa, presents a sustainable and nutrient-rich option that contributes to dietary diversification. Full article
(This article belongs to the Proceedings of VI International Congress la ValSe-Food)
Show Figures

Figure 1

18 pages, 1224 KB  
Article
Effect of Sprouting, Fermentation and Cooking on Antioxidant Content and Total Antioxidant Activity in Quinoa and Amaranth
by Martina Vento, Clara Maria Della Croce, Lorenza Bellani, Eliana Lanfranca Tassi, Maria Cristina Echeverria and Lucia Giorgetti
Int. J. Mol. Sci. 2024, 25(20), 10972; https://doi.org/10.3390/ijms252010972 - 12 Oct 2024
Cited by 6 | Viewed by 2159
Abstract
The study of different processing techniques, such as sprouting, cooking and fermentation, can help to develop new products for human health. In this work, raw, cooked and fermented seeds and germinated seeds of Chenopodium quinoa Willd. var. Tunkahuan and Amaranthus caudatus L. var. [...] Read more.
The study of different processing techniques, such as sprouting, cooking and fermentation, can help to develop new products for human health. In this work, raw, cooked and fermented seeds and germinated seeds of Chenopodium quinoa Willd. var. Tunkahuan and Amaranthus caudatus L. var. Alegrìa were compared for the content of antioxidant molecules, total antioxidant capacity and mineral elements. Fermentation was induced spontaneously, with the yeast Saccharomyces cerevisiae, with the bacterium Lactobacillus plantarum and with both microorganisms, for 24 and 48 h. The increase in antioxidant molecules and antioxidant activity was induced by germination, by 24 h of spontaneous fermentation (polyphenols and flavonoids) and by 24 h of L. plantarum fermentation (total antioxidant activity) for both species. Germinated seeds of the two plants showed higher values in respect to seeds of macroelements and microelements. No genotoxic but rather protective effects were determined for seed and germinated seed extracts using the D7 strain of S. cerevisiae, a good tool for the evaluation of protection from oxidative damage induced by radical oxygen species (ROS) in cells and tissues. Therefore, the two varieties could be very suitable for their use in human diet and in supplements, especially as germinated seeds or as fermented foods. Full article
(This article belongs to the Special Issue New Insights in Natural Bioactive Compounds: 3rd Edition)
Show Figures

Figure 1

15 pages, 3182 KB  
Article
Crop Safety and Weed Control of Foliar Application of Penoxsulam in Foxtail Millet
by Shuqi Dong, Tingting Chen, Ruize Xi, Shulin Gao, Gaofeng Li, Xuena Zhou, Xie Song, Yongqing Ma, Chunyan Hu and Xiangyang Yuan
Plants 2024, 13(16), 2296; https://doi.org/10.3390/plants13162296 - 18 Aug 2024
Cited by 1 | Viewed by 1553
Abstract
Grass damage has become an important factor restricting foxtail millet production; chemical weeding can help resolve this issue. However, special herbicides in foxtail millet fields are lacking. Penoxsulam has a broad weed control spectrum and a good control effect. In this project, Jingu [...] Read more.
Grass damage has become an important factor restricting foxtail millet production; chemical weeding can help resolve this issue. However, special herbicides in foxtail millet fields are lacking. Penoxsulam has a broad weed control spectrum and a good control effect. In this project, Jingu 21 was used as the test material, and five different concentrations of penoxsulam were used for spraying test in the three–five leaf stage. In this experiment, the effects on the growth of foxtail millet were discussed by measuring the agronomic characters and antioxidant capacity of foxtail millet after spraying penoxsulam. The results showed that: (1) penoxsulam is particularly effective in controlling Amaranthus retroflexus L. (A. retroflexus) and Echinochloa crus-galli (L.) Beauv. (E. crus-galli), but is ineffective in controlling Chenopodium album L. (C. album) and Digitaria sanguinalis (L.) Scop. (D. sanguinalis); (2) the stem diameter, fresh weight, and dry weight of the above-ground parts decreased with the increase in spraying amount; (3) as the spraying dosage increased, the superoxide (SOD), peroxidase (POD), and catalase (CAT) activities in the foxtail millet initially increased and subsequently decreased; the malonaldehyde (MDA) content increased. Our experiment found that 1/2X and 1X spraying dosages had certain application value in controlling gramineous weeds in foxtail millet field. Other spraying dosages are not recommended as they may harm the crops. Our findings provide reference for identifying new herbicides in the foxtail millet field. Full article
Show Figures

Figure 1

17 pages, 12555 KB  
Article
A Static Laser Weeding Device and System Based on Fiber Laser: Development, Experimentation, and Evaluation
by Zhongyi Yu, Xiongkui He, Peng Qi, Zhichong Wang, Limin Liu, Leng Han, Zhan Huang and Changling Wang
Agronomy 2024, 14(7), 1426; https://doi.org/10.3390/agronomy14071426 - 30 Jun 2024
Cited by 4 | Viewed by 2272
Abstract
To demonstrate the feasibility and improve the implementation of laser weeding, a static movable lift-adjustable closed fiber laser weeding device and system have been developed, followed by experiments and performance evaluations. Physical experiments were conducted on the energy required for laser cutting of [...] Read more.
To demonstrate the feasibility and improve the implementation of laser weeding, a static movable lift-adjustable closed fiber laser weeding device and system have been developed, followed by experiments and performance evaluations. Physical experiments were conducted on the energy required for laser cutting of weed stems, targeting four common larger weeds (Chenopodium album, Amaranthus spinosus, Setaria viridis, and Eleusine indica) in farmland and orchards. At the same irradiation distances, the energy required to cut the same type of large weed generally increases with increasing distances and stem diameters but decreases with increasing irradiation time. The variance of stems’ power density after irradiation was larger and the values were more dispersed for Chenopodium album and Setaria viridis weeds, and the values were relatively scattered, while the power density values of Amaranthus spinosus and Eleusine indica weeds were more concentrated. When the irradiation time was 10 s, the 3.892 W/mm2 laser was sufficient to eliminate weeds and plants with the irradiation distances of 2 m. The 2.47 W/mm2 laser was more effective, as it killed weeds within a distance of 1 m in less than 1 s. This work demonstrates the feasibility of the laser weeding device and system that can completely cut off the stems of large weeds, and this technology has the potential to promote sustainable agriculture. Full article
Show Figures

Figure 1

19 pages, 5966 KB  
Article
Allelopathic Effects of Corn Straw and Its Water Extracts on Four Weed Species and Foxtail Millet
by Shuqi Dong, Jiaxin Dong, Peiyao Li, Bo Cao, Mengyao Liu, Zhenyu Guo, Xie Song, Yongqing Ma, Chunyan Hu and Xiangyang Yuan
Plants 2024, 13(10), 1315; https://doi.org/10.3390/plants13101315 - 10 May 2024
Cited by 1 | Viewed by 1552
Abstract
Straw covering is a protective tillage measure in agricultural production, but there is relatively little research on the allelopathic effects of corn straw on weeds and foxtail millet. This experiment studied the allelopathic effects of corn straw on four weeds (Chenopodium album [...] Read more.
Straw covering is a protective tillage measure in agricultural production, but there is relatively little research on the allelopathic effects of corn straw on weeds and foxtail millet. This experiment studied the allelopathic effects of corn straw on four weeds (Chenopodium album, Setaria viridis, Echinochloa crus-galli and Amaranthus retroflexus) in foxtail millet fields, and also measured the growth indicators of foxtail millet. The study consisted of Petri dish and field experiments. Five treatments were used in the Petri dish experiment: clear water as control (0 g/L, TCK) and four types of corn straw water extracts. They were, respectively, the stock solution (100 g/L, T1), 10 X dilution (10 g/L, T2), 50 X dilution (2 g/L, T3), and 100 X dilution (1 g/L, T4) of corn straw water extracts. Additionally, seven treatments were set up in the field experiment, consisting of three corn straw covering treatments, with covering amounts of 3000 (Z1), 6000 (Z2) and 12,000 kg/ha (Z3), and four control treatments—one treatment with no corn straw cover (CK) and three treatments involving the use of a black film to create the same shading area as the corn straw covered area, with black film coverage areas of 50% (PZ1), 70% (PZ2), and 100% (PZ3), respectively. The results showed that the corn straw water extract reduced the germination rate of the seeds of the four weeds. The T1 treatment resulted in the allelopathic promotion of C. album growth but the inhibition of S. viridis, E. crus-galli, and A. retroflexus growth. Treatments T2, T3, and T4 all induced the allelopathic promotion of the growth of the four weeds. The order of the effects of the corn straw water extracts on the comprehensive allelopathy index of the four weed seeds was as follows: C. album > S. viridis > A. retroflexus > E. crus-galli. With an increase in the corn straw mulching amount, the density and total coverage of the four weeds showed a gradual downward trend, whereas the plant control effect and fresh weight control effect showed a gradual upward trend. All indices showed the best results under 12,000 kg/ha of mulching and returning to the field. Overall, corn straw coverage significantly impacted the net photosynthetic rate and transpiration rate of foxtail millet and increased the yield of foxtail millet. Under coverages of 6000 and 12,000 kg/ha, the growth of foxtail millet is better. Based on our findings, we recommend a corn straw coverage of 12,000 kg/ha for the allelopathic control of weeds in foxtail millet fields. Full article
(This article belongs to the Special Issue Plant Chemical Ecology)
Show Figures

Figure 1

10 pages, 639 KB  
Article
Olfactory Responses of Asproparthenis punctiventris Germar to Leaf Odours of Amaranthaceae Plants
by Elisabeth H. Koschier, Lena Dittmann and Bernhard Spangl
Insects 2024, 15(4), 297; https://doi.org/10.3390/insects15040297 - 22 Apr 2024
Viewed by 1497
Abstract
Understanding the stimuli used by insect pests to find their food plants can be a first step towards manipulating their behaviour and, thus, controlling them. We investigated the responses of the sugar beet weevil Asproparthenis punctiventris (Coleoptera: Curculionidae) to the volatile leaf odours [...] Read more.
Understanding the stimuli used by insect pests to find their food plants can be a first step towards manipulating their behaviour and, thus, controlling them. We investigated the responses of the sugar beet weevil Asproparthenis punctiventris (Coleoptera: Curculionidae) to the volatile leaf odours of its food plants, including Beta vulgaris subsp. vulgaris (Altissima and Cicla groups), Atriplex hortensis, Chenopodium album, and Amaranthus retroflexus, in a four-arm olfactometer. A bioassay procedure was developed, and the frequency of visits and time spent by adult weevils in the quadrant of the olfactometer with leaf volatiles was recorded, as was their first choice of quadrant. Females and males were equally attracted to the leaf odours of young B. vulgaris subsp. vulgaris plants, i.e., sugar beet and chard, as indicated by the overall picture of the behavioural parameters analysed. Males, but not females, responded positively to the leaf odour of the garden orache (A. hortensis), and no response was observed when the weevils were tested with the leaf odours of fat hen (C. album) or common amaranth (A. retroflexus). These results suggest that A. punctiventris uses leaf odours to locate sugar beet and other food plants. Knowledge of the olfactory responses of this pest can provide a basis for improved monitoring or mass trapping strategies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Back to TopTop