The Efficacy of Sunn Hemp (Crotalaria juncea) and Fe3O4 Nanoparticles in Controlling Weed Seed Germination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sunn Hemp Biomass and Extract Preparation
2.2. Seed Gathering and Storage
2.3. Biosynthesis of Fe3O4 NPs
2.4. Characterization Techniques
2.5. Experimental Design
2.6. Gas Chromatography–Mass Spectrometry (GC-MS)
2.7. Statistical Analysis
3. Results
3.1. Characterization of Prepared NPs
3.2. Optimizing the Fe3O4 NPs
3.3. Effect of Fe3O4/Sunn Hemp NPs on Cumulative Germination
3.4. Optimizing Sunn Hemp Extract Effect
3.5. Extract Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BET | Brunner–Emmet–Teller |
EEC50 | Half-maximal effective concentration |
FTIR | Fourier-transform infrared spectroscopy |
GC-MS | Gas chromatography–mass spectrometry |
Gmax | Final germination percentage or Maximum germination |
NOEC50 | Half maximal effective concentration of Fe3O4 NPs and Fe3O4/sunn hemp NPs |
NOECmax | The maximal effective concentration of Fe3O4 NPs and Fe3O4/sunn hemp NPs |
NPs | Nanoparticles |
SEM | Scanning electron microscopy |
SH | Sunn hemp extract |
TGA | Thermogravimetric analysis |
VSM | Vibrating sample magnetometer |
XRD | Scanning X-ray diffraction |
Appendix A
Sunn Hemp Extract Concentrations (g L−1) | Sunn Hemp Aqueous Extract | Fe3O4/Sunn Hemp NPs | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SH | SH + NOEC50 | SH + NOECmax | |||||||||||||
Estimate Parameter | R2 | RMSE | Estimate Parameter | R2 | RMSE | Estimate Parameter | R2 | RMSE | |||||||
Gmax (%) | D50 (h) | Slope | Gmax (%) | D50 (h) | Slope | Gmax (%) | D50 (h) | Slope | |||||||
0 | 99.9 ± 0.05 | 21.3 ± 0.01 | 5.3 ± 0.01 | 0.999 | 0.002 | 50.8 ± 1.3 | 27.3 ± 3.6 | 25.8 ± 7.7 | 0.961 | 3.54 | 8.0 ± 0.00 | 192.6 ± 0.39 | 0.30 ± 0.02 | 0.999 | 0.001 |
10 | 84.6 ± 0.01 | 26.5 ± 0.02 | 5.2 ± 0.01 | 0.999 | 0.004 | 45.5 ± 0.5 | 52.7 ± 1.7 | 33.5 ± 2.3 | 0.995 | 1.25 | 2.6 ± 0.00 | 196.1 ± 0.30 | 0.36 ± 0.02 | 0.999 | 0.001 |
50 | 15.1 ± 0.24 | 95.5 ± 1.74 | 21.0 ± 2.0 | 0.995 | 0.530 | 8.5 ± 0.2 | 133.6 ± 2.1 | 16.7 ± 2.5 | 0.991 | 0.41 | 2.0 ± 0.00 | 200.1 ± 0.30 | 0.30 ± 0.01 | 0.999 | 0.002 |
100 | - | - | - | - | - | 4.7 ± 3.2 | 200.7 ± 8.1 | 38.0 ± 10.6 | 0.859 | 0.34 | 1.0 ± 0.00 | 204.8 ± 0.36 | 0.30 ± 0.01 | 0.995 | 0.067 |
150 | - | - | - | - | - | 1.4 ± 3.2 | 239.4 ± 2.7 | 38.2 ± 1.3 | 0.999 | 0.01 | 0.6 ± 0.00 | 222.1 ± 0.34 | 0.26 ± 0.01 | 0.999 | 0.002 |
200 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Sunn Hemp Extract Concentrations (g L−1) | Sunn Hemp Aqueous Extract | Fe3O4/Sunn Hemp NPs | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SH | SH + NOEC50 | SH + NOECmax | |||||||||||||
Estimate Parameter | R2 | RMSE | Estimate Parameter | R2 | RMSE | Estimate Parameter | R2 | RMSE | |||||||
Gmax (%) | D50 (h) | Slope | Gmax (%) | D50 (h) | Slope | Gmax (%) | D50 (h) | Slope | |||||||
0 | 99.8 ± 0.01 | 30.6 ± 0.11 | 7.2 ± 0.01 | 0.999 | 0.30 | 50.8 ± 1.10 | 60.9 ± 2.9 | 38.7 ± 4.1 | 0.989 | 2.17 | 2.0 ± 0.00 | 198.2 ± 0.29 | 0.05 ± 0.02 | 0.999 | 0.001 |
10 | 96.2 ± 0.87 | 42.1 ± 1.17 | 16.8 ± 1.4 | 0.996 | 2.49 | 46.8 ± 0.47 | 63.0 ± 1.4 | 27.0 ± 1.8 | 0.996 | 1.16 | - | - | - | - | - |
50 | 6.0 ± 0.06 | 55.3 ± 1.08 | 15.9 ± 1.3 | 0.996 | 0.16 | 3.2 ± 0.29 | 121.2 ± 9.0 | 39.8 ± 9.2 | 0.934 | 0.39 | - | - | - | - | - |
100 | 3.9 ± 0.12 | 69.9 ± 4.05 | 21.5 ± 5.0 | 0.958 | 0.33 | 2.0 ± 0.13 | 169.0 ± 4.8 | 26.3 ± 7.2 | 0.971 | 0.17 | - | - | - | - | - |
150 | - | - | - | - | - | 1.9 ± 0.03 | 172.0 ± 1.3 | 26.3 ± 7.2 | 0.921 | 0.14 | - | - | - | - | - |
200 | - | - | - | - | - | 1.0 ± 0.03 | 199.0 ± 0.8 | 0.26 ± 0.2 | 0.999 | 0.00 | - | - | - | - | - |
Sunn Hemp Extract Concentrations (g L−1) | Sunn Hemp Aqueous Extract | Fe3O4/Sunn Hemp NPs | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SH | SH + NOEC50 | SH + NOECmax | |||||||||||||
Estimate Parameter | R2 | RMSE | Estimate Parameter | R2 | RMSE | Estimate Parameter | R2 | RMSE | |||||||
Gmax (%) | D50 (h) | Slope | Gmax (%) | D50 (h) | Slope | Gmax (%) | D50 (h) | Slope | |||||||
0 | 77.3 ± 0.05 | 50.7 ± 0.04 | 8.8 ± 0.07 | 0.999 | 0.14 | 42.6 ± 1.72 | 61.3 ± 1.32 | 45.9 ± 7.12 | 0.982 | 2.49 | 6.0 ± 0.001 | 192.6 ± 0.38 | 0.35 ± 0.02 | 0.999 | 0.001 |
10 | 66.7 ± 0.03 | 54.0 ± 0.05 | 7.9 ± 0.04 | 0.999 | 0.10 | 36.9 ± 0.36 | 82.9 ± 2.92 | 27.5 ± 1.73 | 0.997 | 0.87 | 2.0 ± 0.001 | 192.5 ± 0.38 | 0.05 ± 0.02 | 0.999 | 0.001 |
50 | 60.6 ± 0.15 | 68.7 ± 1.24 | 1.6 ± 0.085 | 0.999 | 0.42 | 32.5 ± 0.89 | 90.9 ± 4.68 | 30.2 ± 3.98 | 0.989 | 1.85 | 1.5 ± 0.001 | 196.0 ± 0.35 | 0.06 ± 0.01 | 0.999 | 0.001 |
100 | - | - | - | - | - | 2.5 ± 0.70 | 134.9 ± 32.7 | 87.8 ± 42.2 | 0.893 | 0.29 | 1.3 ± 0.002 | 200.1 ± 0.30 | 0.30 ± 0.01 | 0.999 | 0.001 |
150 | - | - | - | - | - | 2.0 ± 0.13 | 169.0 ± 4.8 | 26.3 ± 7.2 | 0.971 | 0.17 | 0.9 ± 0.002 | 208.3 ± 0.40 | 0.26 ± 0.01 | 0.999 | 0.001 |
200 | - | - | - | - | - | 1.0 ± 0.13 | 199.8 ± 2.4 | 0.26 ± 0.2 | 0.999 | 0.001 | 0.6 ± 0.001 | 221.2 ± 0.35 | 0.19 ± 0.01 | 0.999 | 0.001 |
References
- Kostina-Bednarz, M.; Plonka, J.; Barchanska, H. Allelopathy as a source of bioherbicides: Challenges and prospects for sustainable agriculture. Rev. Environ. Sci. Biotechnol. 2023, 22, 471–504. [Google Scholar] [CrossRef]
- Yadav, T.; Chopra, N.K.; Chopra, N.K.; Kumar, R.; Soni, P.G. Assessment of critical period of crop-weed competition in forage cowpea (Vigna unguiculata) and its effect on seed yield and quality. Indian J. Agron. 2018, 63, 124–127. [Google Scholar]
- Hunter, J.E.; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management. Pest. Manag. Sci. 2020, 76, 1386–1392. [Google Scholar] [CrossRef]
- Esposito, M.; Crimaldi, M.; Cirillo, V.; Sarghini, F.; Maggio, A. Drone and sensor technology for sustainable weed management: A review. Chem. Biol. Technol. Agric. 2021, 8, 18. [Google Scholar] [CrossRef]
- Gawel, A.; Seiwert, B.; Sühnholz, S.; Schmitt-Jansen, M.; Mackenzie, K. In-situ treatment of herbicide-contaminated groundwater–Feasibility study for the cases atrazine and bromacil using two novel nanoremediation-type materials. J. Hazard. Mater. 2020, 393, 1–10. [Google Scholar] [CrossRef]
- Li, Z.F.; Dong, J.X.; Vasylieva, N.; Cui, Y.L.; Wan, D.B.; Hua, X.D.; Huo, J.Q.; Yang, D.C.; Gee, S.J.; Hammock, B.D. Highly specific nanobody against herbicide 2,4-dichlorophenoxyacetic acid for monitoring of its contamination in environmental water. Sci. Total Environ. 2021, 753, 141950. [Google Scholar] [CrossRef] [PubMed]
- Ghahremani, S.; Ebadi, A.; Tobeh, A.; Hashemi, M.; Sedghi, M.; Gholipoouri, A.; Barker, V. Short-term impact of monoculture and mixed cover crops on soil properties, weed suppression, and lettuce yield. Commun. Soil. Sci. Plant Anal. 2021, 52, 406–415. [Google Scholar] [CrossRef]
- Yadav, A.S.; Srivastava, D.S. Application of nano-technology in weed management: A Review. Res. Rev. J. Crop Sci. Technol. 2015, 4, 21–23. [Google Scholar]
- Choudhary, S.K.; Kumar, A.; Kumar, R. Novel nanotechnological tools for weed management—A review. Chem. Rev. Lett. 2020, 9, 886–894. [Google Scholar]
- Mondal, P.; Anweshan, A.; Purkait, M.K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere 2020, 259, 1–111. [Google Scholar] [CrossRef]
- Markova, Z.; Novak, P.; Kaslik, J.; Plachtova, P.; Brazdova, M.; Jancula, D.; Siskova, K.; Machala, L.; Marsalek, B.; Zboril, R.; et al. Iron (II, III)-Polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact. ACS Sustain. Chem. Eng. 2014, 2, 1674–1680. [Google Scholar] [CrossRef]
- Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Adv. 2014, 96, 53467–53474. [Google Scholar] [CrossRef]
- Besançon, T.E.; Wasacz, M.H.; Heckman, J.R. Weed suppression, nitrogen availability, and cabbage production following Sunn hemp or Sorghum-Sudan grass. HortTechnology 2021, 31, 439–447. [Google Scholar] [CrossRef]
- Cho, A.H.; Chase, C.A.; Treadwell, D.D.; Koenig, R.L.; Morris, J.B.; Morales-Payan, J.P. Apical dominance and planting density effects on weed suppression by Sunn Hemp (Crotalaria juncea L.). HortScience 2015, 50, 263–267. [Google Scholar] [CrossRef]
- Parenti, A.; Cappelli, G.; Zegada-Lizarazu, W.; Sastre, C.M.; Christou, M.; Monti, A.; Ginaldi, F. SunnGro: A new crop model for the simulation of Sunn hemp (Crotalaria juncea L.) grown under alternative management practices. Biomass Bioenergy 2021, 146, 1–16. [Google Scholar] [CrossRef]
- Meagher, R.L.; Rodney, J.R.; Nagoshi, N.; Brown, J.T. Flowering of the cover crop Sunn hemp, Crotalaria juncea L. HortScience 2017, 52, 986–990. [Google Scholar] [CrossRef]
- Bundit, A.; Ostlie, M.; Prom-U-Thai, C. Sunn hemp (Crotalaria juncea) weed suppression and allelopathy at different timings. Biocontrol Sci. Technol. 2021, 31, 694–704. [Google Scholar] [CrossRef]
- Javaid, M.M.; Bhan, M.; Johnson, J.V.; Rathinasabapathi, B.; Chase, C.A. Biological and chemical characterizations of allelopathic potential of diverse accessions of the cover crop Sunn hemp. J. Am. Soc. Hortic. Sci. 2015, 140, 532–541. [Google Scholar] [CrossRef]
- Morris, J.B.; Chase, C.; Treadwell, D.; Koenig, R.; Cho, A.; Morales-Payan, J.P.; Murphy, T.; Antonious, G.F. Effect of Sunn hemp (Crotalaria juncea L.) cutting date and planting density on weed suppression in Georgia, USA. J. Environ. Sci. Health [B] 2015, 50, 614–621. [Google Scholar] [CrossRef]
- Colegate, S.M.; Gardner, D.R.; Joy, R.J.; Betz, J.M.; Panter, K.E. Dehydropyrrolizidine alkaloids, including monoesters with an unusual esterifying acid, from cultivated Crotalaria juncea (Sunn hemp cv. ‘Tropic Sun’). J. Agric. Food Chem. 2012, 60, 3541–3550. [Google Scholar] [CrossRef]
- Adams, R.; Gianturco, M. The alkaloids of Crotalaria juncea. J. Am. Chem. Soc. 1956, 78, 1919–1921. [Google Scholar] [CrossRef]
- Li, A.; Zheng, R.; Tian, L.; Wei, Y.; Wu, J.; Hou, X. Allelopathic effects of switchgrass on redroot pigweed and crabgrass growth. J. Plant Ecol. 2021, 222, 1–12. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Feizi, H.; Ahmadian, A.; Izadi Darbandi, E. Extracts obtained from organs of saffron (Crocus sativus) alter growth and seed germination of common lamb’s quarters (Chenopodium album) and barnyard grass (Echinochloa crus-galli). Plant Biosyst.-An. Int. J. Deal. All Asp. Plant Biol. 2023, 157, 1–8. [Google Scholar] [CrossRef]
- Boukhili, M.; Szilágyi, A.; Cheradil, A. Allelopathic effect of five invasive plants on seed germination and growth of wild mustard. Rev. Agric. Rural. Dev. 2022, 11, 1–5. [Google Scholar] [CrossRef]
- Skinner, E.M.; Díaz-Pérez, J.C.; Phatak, S.C.; Schomberg, H.H.; Vencill, W. Allelopathic effects of Sunn hemp (Crotalaria juncea L.) on germination of vegetables and weeds. HortScience 2012, 47, 138–142. [Google Scholar] [CrossRef]
- Rotar, P.P.; Joy, R.J. ‘Tropic Sun’ Sunn Hemp (Crotalaria juncea L.); Research Extension Series; University of Hawaii: Honolulu, HI, USA, 1983. [Google Scholar]
- Iftikhar Hussain, M.; El-Sheikh, M.A.; Reigosa, M.J. Allelopathic potential of aqueous extract from Acacia melanoxylon R. Br. on Lactuca sativa. Plants 2020, 9, 1228. [Google Scholar] [CrossRef] [PubMed]
- Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J. 2007, 1, 1–4. [Google Scholar] [CrossRef]
- Babaei-Ghaghelestany, A.; Alebrahim, M.T.; MacGregor, D.R.; Khatami, S.A.; Hasani Nasab Farzaneh, R. Evaluation of ultrasound technology to break seed dormancy of common lamb’s quarters (Chenopodium album). Food Sci. Nutr. 2020, 8, 2662–2669. [Google Scholar] [CrossRef]
- Ahmadnia, F.; Alebrahim, M.T.; Nabati Souha, L.; MacGregor, D.R. Evaluation of techniques to break seed dormancy in Redroot pigweed (Amaranthus retroflexus). Food Sci. Nutr. 2024, 12, 2334–2345. [Google Scholar] [CrossRef]
- Şin, B.; Kadıoğlu, I. A Study on germination biology of Wild Mustard (Sinapis arvensis L.). Turk. J. Agric.-Food Sci. Technol. 2021, 9, 728–732. [Google Scholar] [CrossRef]
- Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247–1248. [Google Scholar] [CrossRef]
- Perry, D. Methodology and application of vigour tests. In Handbook of Vigour Test Methods International Seed Testing Association; International Seed Testing Association: Wallisellen, Switzerland, 1981; pp. 3–7. [Google Scholar]
- Scott, S.; Jones, R.; Williams, W. Review of data analysis methods for seed germination 1. Crop Sci. 1984, 24, 1192–1199. [Google Scholar] [CrossRef]
- Burnett, S.E.; Pennisi, S.V.; Thomas, P.A.; Van Iersel, M.W. Controlled drought affects morphology and anatomy of Salvia splendens. J. Am. Soc. Hortic. Sci. 2005, 130, 775–781. [Google Scholar]
- Antarnusa, G.; Jayanti, P.D.; Denny, Y.R.; Suherman, A. Utilization of co-precipitation method on synthesis of Fe3O4/PEG with different concentrations of PEG for biosensor applications. Materialia 2022, 25, 101525. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, S.; Zhang, W.; Peng, K. Influence of processed parameters on the magnetic properties of Fe/Fe3O4 composite cores. J. Mater. Sci.: Mater. Electron. 2021, 32, 1233–1241. [Google Scholar] [CrossRef]
- Sahu, S.R.; Jagannatham, M.; Gautam, R.; Rikka, V.R.; Prakash, R.; Mallikarjunaiah, K.J.; Reddy, G.S. A facile synthesis of raspberry-shaped Fe3O4 nanoaggregate and its magnetic and lithium-ion storage properties. Mater. Sci. Eng. B 2022, 282, 115771. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.H.; Miah, M.Y.; Paul, S.C.; Aka, T.D.; Saha, O.; Rahaman, M.M.; Sharif, M.J.I.; Habiba, O.; Ashaduzzaman, M. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 2020, 6, e04603. [Google Scholar] [CrossRef] [PubMed]
- Elgorban, A.M.; Marraiki, N.; Akber Ansari, S.; Syed, A. Green synthesis of Cu/Fe3O4 nanocomposite using Calendula extract and evaluation of its catalytic activity for chemo selective oxidation of sulfides to sulfoxides with aqueous hydrogen peroxide. J. Org. Chem. 2021, 954–955, 122077. [Google Scholar] [CrossRef]
- Tiama, T.M.; Ismail, A.M.; Elhaes, H.; Ibrahim, M.A. Structural and spectroscopic studies for chitosan/Fe3O4 nanocomposites as glycine biosensors. Biointerface Res. Appl. Chem. 2023, 13, 547. [Google Scholar] [CrossRef]
- Sari, E.K.; Tumbelaka, R.M.; Ardiyanti, H.; Istiqomah, N.I.; Chotimah Suharyadi, E. Green synthesis of magnetically separable and reusable Fe3O4/Cdots nanocomposites photocatalyst utilizing Moringa oleifera extract and watermelon peel for rapid dye degradation. Carbon. Resour. Convers. 2023, 6, 274–286. [Google Scholar] [CrossRef]
- Inbaraj, B.S.; Chen, B.Y.; Liao, C.W.; Chen, B.H. Green synthesis, characterization and evaluation of catalytic and antibacterial activities of chitosan, glycol chitosan and poly (γ-glutamic acid) capped gold nanoparticles. Int. J. Biol. Macromol. 2020, 161, 1484–1495. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wei, D.; Liu, L.; Nai, J.; Liu, Y.; Xiong, Y.; Peng, J.; Mahmud, S.; Liu, H. Green synthesis of Konjac glucomannan templated palladium nanoparticles for catalytic reduction of azo compounds and hexavalent chromium. Mater. Chem. Phys. 2021, 267, 124651. [Google Scholar] [CrossRef]
- Ahmadnia, F.; Ebadi, A.; Hashemi, M.; Ghavidel, A.; Alebrahim, M.T. Investigating the effect of aqueous extracts of Sunn hemp (Crotalaria juncea) and Oats (Avena sativa L.) on the germination of wild mustard weed (Sinapis arvensis). Iran. J. Seed Sci. Res. 2023, 10, 1–19. [Google Scholar]
- Ojo, S.K.S.; Otugboyega, J.O.; Ayo, I.O.; Ojo, A.M.; Oluwole, B.R. Mitigating Action of Nanobioherbicides from Natural Products on Agricultural Produce. In Handbook of Agricultural Biotechnology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2024; Volume 2, pp. 19–44. [Google Scholar] [CrossRef]
- Mondéjar-López, M.; García-Simarro, M.P.; Navarro-Simarro, P.; Gómez-Gómez, L.; Ahrazem, O.; Niza, E. A review on the encapsulation of “eco-friendly” compounds in natural polymer-based nanoparticles as next generation nano-agrochemicals for sustainable agriculture and crop management. Int. J. Biol. Macromol. 2024, 280, 136030. [Google Scholar] [CrossRef]
- Hao, J.H.; Lv, S.S.; Bhattacharya, S.; Fu, J.G. Germination response of four alien congeneric Amaranthus species to environmental factors. PLoS ONE 2017, 12, e0170297. [Google Scholar] [CrossRef]
- Singh, A.; Mahajan, G.; Chauhan, B.S. Germination ecology of wild mustard (Sinapis arvensis) and its implications for weed management. Weed Sci. 2022, 70, 103–111. [Google Scholar] [CrossRef]
- Bana, R.S.; Kumar, V.; Sangwan, S.; Singh, T.; Kumari, A.; Dhanda, S.; Dawar, R.; Godara, S.; Singh, V. Seed germination ecology of Chenopodium album and Chenopodium murale. Biology 2022, 11, 1599. [Google Scholar] [CrossRef]
- Loades, E.; Pérez, M.; Turečková, V.; Tarkowská, D.; Strnad, M.; Seville, A.; Nakabayashi, K.; Leubner-Metzger, G. Distinct hormonal and morphological control of dormancy and germination in Chenopodium album dimorphic seeds. Front. Plant Sci. 2023, 14, 1156794. [Google Scholar] [CrossRef]
- Voegele, A.; Graeber, K.; Oracz, K.; Tarkowská, D.; Jacquemoud, D.; Tarkowská, V.; Urbanová, T.; Strnad, M.; Leubner-Metzger, G. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone. J. Exp. Bot. 2012, 63, 5337–5350. [Google Scholar] [CrossRef]
- Bachheti, A.; Sharma, A.; Bachheti, R.; Husen, A.; Pandey, D. Plant allelochemicals and their various applications. In Co-Evolution of Secondary Metabolites; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2020; pp. 441–465. [Google Scholar]
- Pandharmise, P.; Tambe, A.N.; Kamble, S.; Tuwar, D.A. Preliminary phytochemical screening and HPTLC analysis of leaf extract of Crotalaria juncea from Vidarbha region, MS, India. J. Maharaja Sayajirao Univ. Baroda 2022, 56, 269–274. [Google Scholar]
- Samajdar, S.; Mukherjee, S.; Das, P.P. Seed germination inhibitors: Molecular and phytochemical aspects. Int. J. Appl. Pharm. Sci. Res. 2018, 3, 12–23. [Google Scholar] [CrossRef]
- Nikolova, M.; Yankova-Tsvetkova, E.; Stefanova, T.; Berkov, S. Exudate flavonoids of Primula veris leaves and their inhibitory activity on Lolium perrene seed germination. Pap. Present. Proc. Bulg. Acad. Sci. 2023, 76, 388–393. [Google Scholar] [CrossRef]
- Torawane, S.; Mokat, D. Allelopathic potential of weed Neanotis lancifolia (Hook. f.) W.H. Lewis on seed germination and metabolism of mungbean and rice. Allelopath. J. 2021, 52, 277–290. [Google Scholar] [CrossRef]
- Abdelmalik, A.M.; Alshahrani, T.S.; Alqarawi, A.A.; Ahmed, E.M. Allelopathic potential of Nicotiana glauca aqueous extract on seed germination and seedlings of Acacia gerrardii. Diversity 2024, 16, 26. [Google Scholar] [CrossRef]
- Mahur, B.K.; Ahuja, A.; Singh, S.; Maji, P.K.; Rastogi, V.K. Different nanocellulose morphologies (cellulose nanofibers, nanocrystals and nanospheres) extracted from Sunn hemp (Crotalaria Juncea). Int. J. Biol. Macromol. 2023, 253, 126657. [Google Scholar] [CrossRef]
- Lesiak, B.; Rangam, N.; Jiricek, P.; Gordeev, I.; Tóth, J.; Kövér, L.; Mohai, M.; Borowicz, P. Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Front. Chem. 2019, 7, 642. [Google Scholar] [CrossRef]
- Periakaruppan, R.; Kumar, T.S.; Vanathi, P.; Al-Awsi, G.R.L.; Al-Dayan, N.; Dhanasekaran, S. Phyto-synthesis and characterization of parthenium-mediated iron oxide nanoparticles and an evaluation of their antifungal and antioxidant activities and effect on seed germination. Miner. Met. Mater. Soc. 2023, 75, 5235–5242. [Google Scholar] [CrossRef]
- Sainao, W.; Shi, Z.; Pang, H.; Feng, H. Alleviative effects of magnetic Fe3O4 nanoparticles on the physiological toxicity of 3-nitrophenol to rice (Oryza sativa L.) seedlings. Open Life Sci. 2022, 17, 626–640. [Google Scholar] [CrossRef]
- Kornarzyński, K.; Sujak, A.; Czernel, G.; Wiącek, D. Effect of Fe3O4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. under constant magnetic field. Sci. Rep. 2020, 10, 8068. [Google Scholar]
- Serpoush, M.; Kiyasatfar, M.; Ojaghi, J. Impact of Fe3O4 nanoparticles on wheat and barley seeds germination and early growth. Mater. Today 2022, 65, 2915–2919. [Google Scholar] [CrossRef]
- Das, C.K.; Srivastava, G.; Dubey, A.; Verma, S.; Saxena, M.; Roy, M.; Sethy, N.K.; Bhargava, K.; Singh, S.K.; Sarkar, S.; et al. The seed stimulant effect of nano iron pyrite is compromised by nano cerium oxide: Regulation by the trace ionic species generated in the aqueous suspension of iron pyrite. RSC Adv. 2016, 6, 67029–67038. [Google Scholar] [CrossRef]
- Gupta, N.; Singh, P.M.; Sagar, V.; Pandya, A.; Chinnappa, M.; Kumar, R.; Bahadur, A. Seed priming with ZnO and Fe3O4 nanoparticles alleviate the lead toxicity in Basella alba L. through reduced lead uptake and regulation of ROS. Plants 2022, 11, 2227. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, R.; Alkhatib, B.; Abdo, N. Effect of Fe3O4 nanoparticles on seed germination in tobacco. Environ. Sci. Pollut. 2021, 28, 53568–53577. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Akhtar, N.; Rehman, S.U.; Shujah, S.; Rha, E.S.; Jamil, M. Biosynthesized iron oxide nanoparticles (Fe3O4 NPs) mitigate arsenic toxicity in rice seedlings. Toxics 2021, 9, 2. [Google Scholar] [CrossRef]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; et al. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef]
Sample | Surface Area (m2g−1) | Mean Pore Diameter (nm) | Total Pore Volume (cm3g−1) |
---|---|---|---|
Fe3O4 | 35.8 | 4.677 | 0.041 |
Fe3O4/Extract (15%) | 10.7 | 4.006 | 0.010 |
Fe3O4/Extract (20%) | 6.2 | 3.703 | 0.005 |
Species | Estimate Parameter | Gmax | 1/D50 | ||||
---|---|---|---|---|---|---|---|
SH | SH+ NOEC50 | SH+ NOECmax | SH | SH+ NOEC50 | SH+ NOECmax | ||
Amaranthus retroflexus | Ymax | 99.6 ± 2.3 | 51.0 ± 1.5 | 8.0 ± 0.5 | 0.047 ± 0.002 | 0.037 ± 0.002 | 0.005 ± 0.0002 |
EEC50 | 21.9 ± 1.5 | 25.3 ± 2.4 | 3.6 ± 2.7 | 22.7 ± 3.2 | 11.0 ± 2.2 | 155.6 ± 25.4 | |
Slope | −2.3 ± 0.17 | −2.2 ± 0.22 | −0.61 ± 0.20 | −1.88 ± 0.26 | −0.92 ± 0.12 | −57.6 ± 4.63 | |
R2 | 0.999 | 0.998 | 0.979 | 0.994 | 0.992 | 0.997 | |
RMSE | 2.24 | 1.49 | 0.54 | 0.002 | 0.002 | 0.0001 | |
Sinapis arvensis | Ymax | 99.9 ± 1.9 | 50.9 ± 1.5 | - | 0.026 ± 0.003 | 0.017 ± 0.001 | - |
EEC50 | 23.9 ± 2.5 | 21.7 ± 2.3 | - | 78.3 ± 15.8 | 62.8 ± 17.8 | - | |
Slope | −3.6 ± 0.47 | −3.0 ± 0.40 | - | −2.8 ± 1.2 | −0.96 ± 0.24 | - | |
R2 | 0.999 | 0.998 | - | 0.940 | 0.962 | - | |
RMSE | 1.95 | 1.48 | - | 0.004 | 0.001 | - | |
Chenopodium album | Ymax | 72.0 ± 2.50 | 39.7 ± 1.8 | 6.0 ± 0.2 | 0.019 ± 0.007 | 0.016 ± 0.001 | 0.005 ± 0.0001 |
EEC50 | 52.3 ± 3.61 | 64.5 ± 5.3 | 1.9 ± 1.4 | 51.3 ± 6.52 | 83.4 ± 3.2 | 523.4 ± 57.4 | |
Slope | −36.0 ± 4.60 | −5.8 ± 1.6 | −0.38 ± 0.08 | −35.5 ± 4.90 | −0.73 ± 0.09 | −1.97 ± 0.21 | |
R2 | 0.992 | 0.990 | 0.992 | 0.998 | 0.977 | 0.996 | |
RMSE | 4.32 | 2.59 | 0.22 | 0.004 | 0.001 | 0.0002 |
Row | Components | Time | Plant Content (mg/g) | Extract Content | |
---|---|---|---|---|---|
Min (mg/L) | Max (mg/L) | ||||
1 | Naphthalene | 14.9 | 11.9 | 0.06 | 2.38 |
2 | Apha-Cubebene | 18.3 | 7 | 0.04 | 1.40 |
3 | Caryophyllene | 19.2 | 7.5 | 0.04 | 1.50 |
4 | H-Cyclopropa[a]naphthalene | 19.5 | 10.7 | 0.05 | 2.14 |
5 | 5,9-Undecadien-2-one, 6,10-dimet | 19.9 | 8.3 | 0.04 | 1.66 |
6 | Hexadecane | 20.1 | 5.6 | 0.03 | 1.12 |
7 | 1,2,4-Methenoazulene, decahydro | 20.6 | 6.9 | 0.03 | 1.38 |
8 | Buten-2-one, 4-2,6,6-trimethy | 20.7 | 13.8 | 0.07 | 2.76 |
9 | Caryophyllene oxide | 22.7 | 11.7 | 0.06 | 2.34 |
10 | Cyclohexane, 1,1,3,5-tetramethyl | 22.8 | 5.7 | 0.03 | 1.14 |
11 | Heptadecane | 24.7 | 31.8 | 0.16 | 6.36 |
12 | Octadecane | 26.5 | 5.1 | 0.03 | 1.02 |
13 | Pentadecanone, 6,10,14-trimethyl | 27.3 | 33.3 | 0.17 | 6.66 |
14 | Z-5-Nonadecene | 27.8 | 13.4 | 0.07 | 2.68 |
15 | Nonadecane | 28.3 | 105.8 | 0.53 | 21.16 |
16 | 5,9, 13-Pentadecatrien-2-one, 6,1 | 28.6 | 11.5 | 0.06 | 2.30 |
17 | Triallylsilane | 29.1 | 33.7 | 0.17 | 6.74 |
18 | N-Hexadecanoic acid | 29.3 | 8.5 | 0.04 | 1.70 |
19 | Eicosane | 29.8 | 19.2 | 0.10 | 3.84 |
20 | Heneicosane | 31.4 | 58.1 | 0.29 | 11.62 |
21 | Phytol | 31.6 | 39.5 | 0.20 | 7.90 |
22 | Dodecane, 1-cyclopentyl-4-3-cyc | 32.9 | 28.2 | 0.14 | 5.64 |
23 | Cyclohexane, 1-ethyl-2-propyl | 35.1 | 10.8 | 0.05 | 2.16 |
24 | Cyclohexane, 1,1′-methylenebis | 35.6 | 6 | 0.03 | 1.20 |
25 | Triallylsilane | 36.4 | 20.5 | 0.10 | 4.10 |
26 | Tetracosane | 41.5 | 12.1 | 0.06 | 2.42 |
27 | Cyclohexane, 1,1′-propylidenebis | 43.3 | 17.5 | 0.09 | 3.50 |
28 | Eicosane, 3-cyclohexyl | 43.4 | 14.5 | 0.07 | 2.50 |
29 | Cyclooctane, 1-methyl-3-propyl | 43.9 | 7.7 | 0.04 | 1.54 |
30 | Cyclohexane, (1-decylundecyl) | 44.2 | 16.3 | 0.08 | 3.26 |
31 | Phosphorous acid, tris (decyl) ester | 44.3 | 11.6 | 0.06 | 2.32 |
32 | Cyclohexane, 2,4-diethyl-1-methyl | 44.4 | 7.1 | 0.04 | 1.42 |
33 | Decane, 5, 6-bis 2,2-dimethylprop | 44.9 | 6.3 | 0.03 | 1.26 |
34 | Benzene, 1-fluoro-2-methoxy | 45.6 | 24.5 | 0.12 | 4.90 |
35 | Crotonic acid, menthyl ester | 45.7 | 35.4 | 0.18 | 7.08 |
36 | 1,2-Dodecanediol | 46.2 | 6.6 | 0.03 | 1.32 |
37 | Octen-2-one, 3,6-dimethyl | 46.3 | 28.8 | 0.14 | 5.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadnia, F.; Ebadi, A.; Alebrahim, M.T.; Parmoon, G.; Feizpoor, S.; Hashemi, M. The Efficacy of Sunn Hemp (Crotalaria juncea) and Fe3O4 Nanoparticles in Controlling Weed Seed Germination. Agronomy 2025, 15, 795. https://doi.org/10.3390/agronomy15040795
Ahmadnia F, Ebadi A, Alebrahim MT, Parmoon G, Feizpoor S, Hashemi M. The Efficacy of Sunn Hemp (Crotalaria juncea) and Fe3O4 Nanoparticles in Controlling Weed Seed Germination. Agronomy. 2025; 15(4):795. https://doi.org/10.3390/agronomy15040795
Chicago/Turabian StyleAhmadnia, Fatemeh, Ali Ebadi, Mohammad Taghi Alebrahim, Ghasem Parmoon, Solmaz Feizpoor, and Masoud Hashemi. 2025. "The Efficacy of Sunn Hemp (Crotalaria juncea) and Fe3O4 Nanoparticles in Controlling Weed Seed Germination" Agronomy 15, no. 4: 795. https://doi.org/10.3390/agronomy15040795
APA StyleAhmadnia, F., Ebadi, A., Alebrahim, M. T., Parmoon, G., Feizpoor, S., & Hashemi, M. (2025). The Efficacy of Sunn Hemp (Crotalaria juncea) and Fe3O4 Nanoparticles in Controlling Weed Seed Germination. Agronomy, 15(4), 795. https://doi.org/10.3390/agronomy15040795