Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Anagyrus vladimiri

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1702 KB  
Article
Use of Sugar Dispensers at Lower Density Can Decrease Mealybug (Hemiptera: Pseudococcidae) Infestation in Vineyards by Disrupting Ants
by Giovanni Burgio, Serena Magagnoli, Luca Casoli, Marco Profeta, Donato Antonio Grasso, Enrico Schifani, Daniele Giannetti and Martina Parrilli
Insects 2025, 16(5), 468; https://doi.org/10.3390/insects16050468 - 29 Apr 2025
Cited by 1 | Viewed by 833
Abstract
Vineyard mealybugs (Hemiptera: Pseudococcidae) are economic pests in vineyards, demanding integrated control strategies. Several ant species can facilitate mealybug infestation by protecting them from natural enemies in a mutualistic relationship known as trophobiosis. In the frame of an ant management system, the provision [...] Read more.
Vineyard mealybugs (Hemiptera: Pseudococcidae) are economic pests in vineyards, demanding integrated control strategies. Several ant species can facilitate mealybug infestation by protecting them from natural enemies in a mutualistic relationship known as trophobiosis. In the frame of an ant management system, the provision of sugary liquid has proved worldwide to improve mealybug control. In the present study, a field trial was carried out within an important vineyard cultivation area of northern Italy with the aim of testing a lower density (80/ha) of sugar dispenser to facilitate the practicality of this method. The sugar dispensers tested, along with predators and parasitoid release, were effective in reducing mealybug infestations by 22% and resulted in a double increase in larval density of the predator Cryptolaemus mountrouzieri Mulsant. Mealybug parasitism was in general high, but it was not improved by sugar dispensers at this density. Our field validation confirms the importance of ants in mealybug infestation dynamics, and the benefits of ant management in the context of integrated strategies against mealybugs. Full article
Show Figures

Figure 1

14 pages, 2557 KB  
Article
Toxicity of Pesticides Applied in European Vineyards on Anagyrus vladimiri and Trichogramma evanescens, Parasitoids of Planococcus ficus and Lobesia botrana
by Ramzi Mansour, Anna Lena Bauer, Maryam Goodarzi and Christoph Hoffmann
Insects 2023, 14(12), 907; https://doi.org/10.3390/insects14120907 - 24 Nov 2023
Cited by 9 | Viewed by 2486
Abstract
Risk assessments of chemical pesticides toward natural enemies are crucial for ensuring sustainable grapevine-integrated pest management. In this context, laboratory experiments were conducted to evaluate the toxicity of four insecticides (lambda-cyhalothrin, flupyradifurone, acetamiprid, and cyantraniliprole) and one fungicide (spiroxamine) commonly applied in German [...] Read more.
Risk assessments of chemical pesticides toward natural enemies are crucial for ensuring sustainable grapevine-integrated pest management. In this context, laboratory experiments were conducted to evaluate the toxicity of four insecticides (lambda-cyhalothrin, flupyradifurone, acetamiprid, and cyantraniliprole) and one fungicide (spiroxamine) commonly applied in German (European) vineyards on the pupae and adults of both Anagyrus vladimiri, a parasitoid of the vine mealybug Planococcus ficus, and Trichogramma evanescens, a parasitoid of the European grapevine moth, Lobesia botrana. The tested pesticides did not significantly affect the development of the pupal stage inside mealybug mummies or the emergence of the parasitoid A. vladimiri. The pesticides flupyradifurone, acetamiprid, and spiroxamine resulted in the highest mortality percentages for all emerged A. vladimiri parasitoids at 8 and 10 days after treatment compared with either in lambda-cyhalothrin or cyantraniliprole. However, all pesticides, except the diamide insecticide cyantraniliprole, significantly affected the development of the pupal stage and the emergence of the parasitoid T. evanescens. The percentages of T. evanescens emergence following the application of the fungicide spiroxamine or either lambda-cyhalothrin or flupyradifurone were significantly higher than those observed in the acetamiprid treatment. Regarding direct contact toxicity, the highest percentages (100%) of A. vladimiri adult parasitoid mortality were obtained in the flupyradifurone, acetamiprid, and spiroxamine treatments, while the lowest mortality percentages were observed in lambda-cyhalothrin, cyantraniliprole, and untreated control treatments. According to the IOBC classes of toxicity, flupyradifurone, acetamiprid, and spiroxamine were classified as harmful, while both lambda-cyhalothrin and cyantraniliprole were classified as slightly harmful to A. vladimiri adults. As such, all pesticides had a significant impact on the survival of exposed T. evanescens adults. The highest percentages of adult T. evanescens mortality were obtained in the flupyradifurone, acetamiprid, and spiroxamine treatments, with the fungicide spiroxamine resulting in significantly higher mortality percentages than either flupyradifurone or acetamiprid, while the lowest mortality percentages were found in the lambda-cyhalothrin and cyantraniliprole treatments. Therefore, applying the insecticides acetamiprid and/or flupyradifurone and the fungicide spiroxamine should be avoided when A. vladimiri and/or T. evanescens are naturally present or released in grapes. The insights gained from these two easy-to-rear parasitoid species allow analogous conclusions to be drawn for closely related species in vineyards belonging to either family Encyrtidae or Trichogrammatidae, which are not easy to rear. Interestingly, using the safer insecticides lambda-cyhalothrin and/or cyantraniliprole could be compatible with both parasitoid species, which could be sustainably exploited in either conservation or augmentative biological control in vineyards. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

20 pages, 5447 KB  
Article
The Antennal Sensory Structures of Female Anagyrus vladimiri (Hymenoptera: Encyrtidae)
by Milos Sevarika, Paolo Giannotti, Andrea Lucchi and Roberto Romani
Insects 2022, 13(12), 1138; https://doi.org/10.3390/insects13121138 - 10 Dec 2022
Cited by 8 | Viewed by 2846
Abstract
The Encyrtidae (Hymenoptera) encompasses a large group of parasitic wasps widely used in biocontrol programs of scale insects (Hemiptera: Coccoidea). Anagyrus vladimiri is a solitary parasitoid that attacks and develops on several mealybugs of economic importance. Thus, this species is widely used as [...] Read more.
The Encyrtidae (Hymenoptera) encompasses a large group of parasitic wasps widely used in biocontrol programs of scale insects (Hemiptera: Coccoidea). Anagyrus vladimiri is a solitary parasitoid that attacks and develops on several mealybugs of economic importance. Thus, this species is widely used as a biocontrol agent of Planococcus spp. and Pseudococcus spp. A. vladimiri males and females show sexual dimorphism with regard to the antennal organization, in terms of shape and the development of antennomeres. Ultrastructural investigations of female antennae, carried out with scanning (SEM) and transmission (TEM) electron microscopy, revealed the presence of nine distinct antennomeres. The scape was enlarged and paddle-like, compared to the other antennomeres. The club (the apical antennomere) was mono-segmented and housed the highest number of sensilla. Eight morphologically different types of sensilla were described; sensilla trichoidea I, trichoidea II, chaetica I, chaetica II, grooved peg sensilla, campaniform sensilla, multiporous plate sensilla and multiporous basiconic sensilla. Ultrastructural investigations allowed for us to assign a specific function to each type of sensilla. The most abundant type of sensilla were sensilla trichoidea I and multiporous plate sensilla. We also found two types of sensilla (multiporous basiconic sensilla and sensilla chaetica II) that were present only on the females. Full article
(This article belongs to the Special Issue Novel Findings in Insect Functional Morphology and Anatomy)
Show Figures

Figure 1

16 pages, 2054 KB  
Article
Use of Sugar Dispensers to Disrupt Ant Attendance and Improve Biological Control of Mealybugs in Vineyard
by Martina Parrilli, Marco Profeta, Luca Casoli, Fabio Gambirasio, Antonio Masetti and Giovanni Burgio
Insects 2021, 12(4), 330; https://doi.org/10.3390/insects12040330 - 7 Apr 2021
Cited by 13 | Viewed by 3736
Abstract
Planococcus ficus (Signoret) and Pseudococcus comstocki (Kuwana) (Hemiptera: Pseudococcidae) are economically important pests occurring in vineyards, causing severe economic losses for growers and compromising bunch production. The partial effectiveness of insecticides used in controlling mealybug infestations as well as their high impact on [...] Read more.
Planococcus ficus (Signoret) and Pseudococcus comstocki (Kuwana) (Hemiptera: Pseudococcidae) are economically important pests occurring in vineyards, causing severe economic losses for growers and compromising bunch production. The partial effectiveness of insecticides used in controlling mealybug infestations as well as their high impact on the environment and on human health have led to the research of alternative and sustainable control methods, including biological control. Several natural enemies are reported to be effective against mealybugs, but their activity may be hindered by tending ants. These social insects are known to exhibit a mutualistic relationship with mealybugs, resulting in extremely aggressive behavior against beneficial insects. Consequently, this study explored a method to mitigate ant attendance by means of sugar dispensers in order to improve ecosystem services, as well as decrease mealybug infestation in vineyards. Field trials were carried out in four commercial vineyards of Northern Italy infested by mealybugs, in which Anagyrus vladimiri Triapitsyn (Hymenoptera: Encyrtidae) and Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) were released as biological control agents. Our results showed that sugar dispensers reduced ant activity and mealybug infestation, leading to a significant enhancement of ecosystem services. The technique showed a great potential in boosting biological control against mealybugs in field conditions, though the field application seemed to be labour intensive and needs to be replicated for a multi-year evaluation. Full article
(This article belongs to the Special Issue Improving Functional Biodiversity in Vineyards)
Show Figures

Figure 1

14 pages, 3559 KB  
Article
Old Parasitoids for New Mealybugs: Host Location Behavior and Parasitization Efficacy of Anagyrus vladimiri on Pseudococcus comstocki
by Renato Ricciardi, Valeria Zeni, Davide Michelotti, Filippo Di Giovanni, Francesca Cosci, Angelo Canale, Lian-Sheng Zang, Andrea Lucchi and Giovanni Benelli
Insects 2021, 12(3), 257; https://doi.org/10.3390/insects12030257 - 18 Mar 2021
Cited by 6 | Viewed by 4562
Abstract
The Comstock mealybug, Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a primary pest of orchards in the North and Northwest of China. This pest appeared recently in Europe, including Italy, where it is infesting mainly vineyards as well as apple and pear orchards. The present [...] Read more.
The Comstock mealybug, Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a primary pest of orchards in the North and Northwest of China. This pest appeared recently in Europe, including Italy, where it is infesting mainly vineyards as well as apple and pear orchards. The present study investigated the efficacy of Anagyrus vladimiri, a known biological control agent (BCA) of Planococcus ficus, on P. comstocki to evaluate a potential use for the management of this new pest. No-choice tests were conducted to quantify the parasitoid behavior against P. ficus and P. comstocki. The parasitoid successfully parasitized both species (parasitization rate: 51% and 67% on P. comstocki and P. ficus, respectively). The A.vladimiri developmental time (19.67 ± 1.12 vs. 19.70 ± 1.07 days), sex ratio (1.16 ± 1.12 vs. 1.58 ± 1.07) and hind tibia length of the progeny showed no differences when P. comstocki and P. ficus, respectively, were exploited as hosts. Two-choice tests, conducted by providing the parasitoid with a mixed population of P. ficus and P. comstocki, showed no host preference for either of the two mealybug species (23 vs. 27 first choices on P. comstocki and P. ficus, respectively). The parasitization rate (61.5% and 64.5% in P. comstocki and P. ficus, respectively) did not differ between the two hosts. Overall, our study adds basic knowledge on parasitoid behavior and host preferences and confirms the use of this economically important encyrtid species as an effective BCA against the invasive Comstock mealybug. Full article
(This article belongs to the Special Issue Organic Pest Management in Vineyards)
Show Figures

Figure 1

Back to TopTop