Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Au/Fe3+ nanoclusters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5518 KiB  
Article
Au-Based Bimetallic Catalysts for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Base-Free Reaction Conditions
by Juan Su, Zongyang Liu, Yuan Tan, Yan Xiao, Nannan Zhan and Yunjie Ding
Molecules 2024, 29(12), 2724; https://doi.org/10.3390/molecules29122724 - 7 Jun 2024
Cited by 5 | Viewed by 1352
Abstract
The aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) plays a pivotal role in the synthesis of renewable, biodegradable plastics and sustainable chemicals. Although supported gold nanoclusters (NCs) exhibit significant potential in this process, they often suffer from low selectivity. To address [...] Read more.
The aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) plays a pivotal role in the synthesis of renewable, biodegradable plastics and sustainable chemicals. Although supported gold nanoclusters (NCs) exhibit significant potential in this process, they often suffer from low selectivity. To address this challenge, a series of gold-M (M means Ni, Fe, Cu, and Pd) bimetallic NCs catalysts were designed and synthesized to facilitate the selective oxidation of HMF to FDCA. Our findings indicate that the introduction of doped metals, particularly Ni and Pd, not only improves the reaction rates for HMF tandem oxidation but also promotes high yields of FDCA. Various characterizations techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), in situ diffuse reflectance infrared Fourier transform spectroscopy of CO adsorption (CO-DRIFTS), and temperature-programmed desorption of oxygen (O2-TPD), were employed to scrutinize the structural and electronic properties of the prepared catalysts. Notably, an electronic effect was observed across the Au-based bimetallic catalysts, facilitating the activation of reactant molecules and enhancing the catalytic performance. This study provides valuable insights into the alloy effects, aiding in the development of highly efficient Au-based bimetallic catalysts for biomass conversions. Full article
(This article belongs to the Special Issue Design, Synthesis and Application of Heterogeneous Catalysts)
Show Figures

Figure 1

14 pages, 3468 KiB  
Article
Tripeptide-Assisted Gold Nanocluster Formation for Fe3+ and Cu2+ Sensing
by Jonghae Youn, Peiyuan Kang, Justin Crowe, Caleb Thornsbury, Peter Kim, Zhenpeng Qin and Jiyong Lee
Molecules 2024, 29(11), 2416; https://doi.org/10.3390/molecules29112416 - 21 May 2024
Cited by 1 | Viewed by 1192
Abstract
Fluorescent gold nanoclusters (AuNCs) have shown promise as metal ion sensors. Further research into surface ligands is crucial for developing sensors that are both selective and sensitive. Here, we designed simple tripeptides to form fluorescent AuNCs, capitalizing on tyrosine’s reduction capability under alkaline [...] Read more.
Fluorescent gold nanoclusters (AuNCs) have shown promise as metal ion sensors. Further research into surface ligands is crucial for developing sensors that are both selective and sensitive. Here, we designed simple tripeptides to form fluorescent AuNCs, capitalizing on tyrosine’s reduction capability under alkaline conditions. We investigated tyrosine’s role in both forming AuNCs and sensing metal ions. Two tripeptides, tyrosine–cysteine–tyrosine (YCY) and serine–cysteine–tyrosine (SCY), were used to form AuNCs. YCY peptides produced AuNCs with blue and red fluorescence, while SCY peptides produced blue-emitting AuNCs. The blue fluorescence of YCY- and SCY-AuNCs was selectively quenched by Fe3+ and Cu2+, whereas red-emitting YCY-AuNC fluorescence remained stable with 13 different metal ions. The number of tyrosine residues influenced the sensor response. DLS measurements revealed different aggregation propensities in the presence of various metal ions, indicating that chelation between the peptide and target ions led to aggregation and fluorescence quenching. Highlighting the innovation of our approach, our study demonstrates the feasibility of the rational design of peptides for the formation of fluorescent AuNCs that serve as highly selective and sensitive surface ligands for metal ion sensing. This method marks an advancement over existing methods due to its dual capability in both synthesizing gold nanoclusters and detecting analytes, specifically Fe3+ and Cu2+. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Biomedical Applications)
Show Figures

Graphical abstract

15 pages, 3212 KiB  
Article
Tryptophanhydroxamic Acid-Stabilized Ultrasmall Gold Nanoclusters: Tuning the Selectivity for Metal Ion Sensing
by Gyöngyi Gombár, Ditta Ungor, István Szatmári, Ádám Juhász and Edit Csapó
Nanomaterials 2024, 14(5), 434; https://doi.org/10.3390/nano14050434 - 27 Feb 2024
Cited by 1 | Viewed by 1591
Abstract
Sub-nanometer-sized gold nanoclusters (Au NCs) were prepared via the spontaneous reduction of [AuCl4]- ions with a hydroxamate derivative of L-tryptophan (Trp) natural amino acid (TrpHA). The prepared TrpHA-Au NCs possess intense blue emission (λem = 470 nm; [...] Read more.
Sub-nanometer-sized gold nanoclusters (Au NCs) were prepared via the spontaneous reduction of [AuCl4]- ions with a hydroxamate derivative of L-tryptophan (Trp) natural amino acid (TrpHA). The prepared TrpHA-Au NCs possess intense blue emission (λem = 470 nm; λex = 380 nm) with a 2.13% absolute quantum yield and 1.47 ns average lifetime. The Trp-stabilized noble metal NCs are excellent metal ion sensors for Fe3+, but in this work, we highlighted that the incorporation of the hydroxamate functional group with an excellent metal ion binding capability can tune the selectivity and sensitivity of these NCs, which is a promising way to design novel strategies for the detection of other metal ions as well. Moreover, their simultaneous identification can also be realized. By decreasing the sensitivity of our nano-sensor for Fe3+ (limit of detection (LOD) ~11 µM), it was clearly demonstrated that the selectivity for Cu2+-ions can be significantly increased (LOD = 3.16 µM) in an acidic (pH = 3–4) condition. The surface-bounded TrpHA molecules can coordinate the Cu2+ confirmed by thermodynamic data, which strongly generates the linking of the NCs via the Cu2+ ions in acidic pH, and a parallel fluorescence quenching occurs. In the case of Fe3+, the degree of quenching strongly depends on the metal ion concentration, and it only occurs when the NCs are not able to bind more Fe3+ (~10 µM) on the surface, causing the NCs’ aggregation. Full article
(This article belongs to the Special Issue Noble Metal-Based Nanostructures: Optical Properties and Applications)
Show Figures

Graphical abstract

16 pages, 2031 KiB  
Article
Multifunctional Nanoparticles with Superparamagnetic Mn(II) Ferrite and Luminescent Gold Nanoclusters for Multimodal Imaging
by Bárbara Casteleiro, Mariana Rocha, Ana R. Sousa, André M. Pereira, José M. G. Martinho, Clara Pereira and José P. S. Farinha
Polymers 2023, 15(22), 4392; https://doi.org/10.3390/polym15224392 - 13 Nov 2023
Cited by 2 | Viewed by 1626
Abstract
Gold nanoclusters (AuNCs) with fluorescence in the Near Infrared (NIR) by both one- and two-photon electronic excitation were incorporated in mesoporous silica nanoparticles (MSNs) using a novel one-pot synthesis procedure where the condensation polymerization of alkoxysilane monomers in the presence of the AuNCs [...] Read more.
Gold nanoclusters (AuNCs) with fluorescence in the Near Infrared (NIR) by both one- and two-photon electronic excitation were incorporated in mesoporous silica nanoparticles (MSNs) using a novel one-pot synthesis procedure where the condensation polymerization of alkoxysilane monomers in the presence of the AuNCs and a surfactant produced hybrid MSNs of 49 nm diameter. This method was further developed to prepare 30 nm diameter nanocomposite particles with simultaneous NIR fluorescence and superparamagnetic properties, with a core composed of superparamagnetic manganese (II) ferrite nanoparticles (MnFe2O4) coated with a thin silica layer, and a shell of mesoporous silica decorated with AuNCs. The nanocomposite particles feature NIR-photoluminescence with 0.6% quantum yield and large Stokes shift (290 nm), and superparamagnetic response at 300 K, with a saturation magnetization of 13.4 emu g−1. The conjugation of NIR photoluminescence and superparamagnetic properties in the biocompatible nanocomposite has high potential for application in multimodal bioimaging. Full article
Show Figures

Figure 1

15 pages, 2770 KiB  
Article
Facile One-Pot Green Synthesis of Magneto-Luminescent Bimetallic Nanocomposites with Potential as Dual Imaging Agent
by Radek Ostruszka, Denisa Půlpánová, Tomáš Pluháček, Ondřej Tomanec, Petr Novák, Daniel Jirák and Karolína Šišková
Nanomaterials 2023, 13(6), 1027; https://doi.org/10.3390/nano13061027 - 13 Mar 2023
Cited by 9 | Viewed by 2130
Abstract
Nanocomposites serving as dual (bimodal) probes have great potential in the field of bio-imaging. Here, we developed a simple one-pot synthesis for the reproducible generation of new luminescent and magnetically active bimetallic nanocomposites. The developed one-pot synthesis was performed in a sequential manner [...] Read more.
Nanocomposites serving as dual (bimodal) probes have great potential in the field of bio-imaging. Here, we developed a simple one-pot synthesis for the reproducible generation of new luminescent and magnetically active bimetallic nanocomposites. The developed one-pot synthesis was performed in a sequential manner and obeys the principles of green chemistry. Briefly, bovine serum albumin (BSA) was exploited to uptake Au (III) and Fe (II)/Fe (III) ions simultaneously. Then, Au (III) ions were transformed to luminescent Au nanoclusters embedded in BSA (AuNCs-BSA) and majority of Fe ions were bio-embedded into superparamagnetic iron oxide nanoparticles (SPIONs) by the alkalization of the reaction medium. The resulting nanocomposites, AuNCs-BSA-SPIONs, represent a bimodal nanoprobe. Scanning transmission electron microscopy (STEM) imaging visualized nanostructures with sizes in units of nanometres that were arranged into aggregates. Mössbauer spectroscopy gave direct evidence regarding SPION presence. The potential applicability of these bimodal nanoprobes was verified by the measurement of their luminescent features as well as magnetic resonance (MR) imaging and relaxometry. It appears that these magneto-luminescent nanocomposites were able to compete with commercial MRI contrast agents as MR displays the beneficial property of bright luminescence of around 656 nm (fluorescence quantum yield of 6.2 ± 0.2%). The biocompatibility of the AuNCs-BSA-SPIONs nanocomposite has been tested and its long-term stability validated. Full article
Show Figures

Graphical abstract

11 pages, 1381 KiB  
Article
Photoluminescent Histidine-Stabilized Gold Nanoclusters as Efficient Sensors for Fast and Easy Visual Detection of Fe Ions in Water Using Paper-Based Portable Platform
by Alexandru-Milentie Hada, Markus Zetes, Monica Focsan, Simion Astilean and Ana-Maria Craciun
Int. J. Mol. Sci. 2022, 23(20), 12410; https://doi.org/10.3390/ijms232012410 - 17 Oct 2022
Cited by 5 | Viewed by 2402
Abstract
Herein is presented a novel and efficient portable paper-based sensing platform using paper-incorporated histidine stabilized gold nanoclusters (His-AuNCs), for the sensitive and selective detection of Fe ions from low-volume real water samples based on photoluminescence (PL) quenching. Highly photoluminescent colloidal His-AuNCs are obtained [...] Read more.
Herein is presented a novel and efficient portable paper-based sensing platform using paper-incorporated histidine stabilized gold nanoclusters (His-AuNCs), for the sensitive and selective detection of Fe ions from low-volume real water samples based on photoluminescence (PL) quenching. Highly photoluminescent colloidal His-AuNCs are obtained via a novel microwave-assisted method. The His-AuNCs-based sensor reveals a limit of detection (LOD) as low as 0.2 μM and a good selectivity towards Fe ions, in solution. Further, the fabricated portable sensing device based on paper impregnated with His-AuNCs proves to be suitable for the easy detection of hazardous Fe levels from real water samples, under UV light exposure, through evaluating the level of PL quenching on paper. Photographic images are thereafter captured with a smartphone camera and the average blue intensity ratio (I/I0) of the His-AuNCs-paper spots is plotted against [Fe2+] revealing a LOD of 3.2 μM. Moreover, selectivity and competitivity assays performed on paper-based sensor prove that the proposed platform presents high selectivity and accuracy for the detection of Fe ions from water samples. To validate the platform, sensing assays are performed on real water samples from local sources, spiked with 35 μM Fe ions (i.e., Fe2+). The obtained recoveries prove the high sensitivity and accuracy of the proposed His-AuNCs-paper-based sensor pointing towards its applicability as an easy-to-use, fast, quantitative and qualitative sensor suitable for on-site detection of toxic levels of Fe ions in low-volume real water samples. Full article
Show Figures

Graphical abstract

13 pages, 4272 KiB  
Article
Bio-Specific Au/Fe3+ Porous Spongy Nanoclusters for Sensitive SERS Detection of Escherichia coli O157:H7
by Yuzhi Li, Fei Gao, Chang Lu, Marie-Laure Fauconnier and Jinkai Zheng
Biosensors 2021, 11(10), 354; https://doi.org/10.3390/bios11100354 - 24 Sep 2021
Cited by 15 | Viewed by 3176
Abstract
For sensitive and fast detection of Escherichia coli O157:H7, organic and inorganic hybrid Au/Fe3+ nanoclusters (NCs) were synthesized for the first time using gold nanoparticles (GNPs), bovine serum albumin, ferric chloride, phosphate-buffered saline, and antibodies. The Au/Fe3+ porous spongy NCs with [...] Read more.
For sensitive and fast detection of Escherichia coli O157:H7, organic and inorganic hybrid Au/Fe3+ nanoclusters (NCs) were synthesized for the first time using gold nanoparticles (GNPs), bovine serum albumin, ferric chloride, phosphate-buffered saline, and antibodies. The Au/Fe3+ porous spongy NCs with large surface area showed excellent bio-specific capability for E. coli O157:H7. GNPs in Au/Fe3+ NCs functioned as signal enhancers, significantly increasing the Raman signal via the metathesis reaction product of Prussian blue and obviously improving the detection sensitivity. We combined the novel Au/Fe3+ NCs with antibody-modified magnetic nanoparticles to create a biosensor capable of sensitive detection of E. coli O157:H7, which showed a good linear response (101 to 106 cfu/mL), high detection sensitivity (2 cfu/mL), and good recovery rate (93.60–97.50%) in spiked food samples. These results make the biosensor well-suited for food safety monitoring. This strategy achieves the goal of sensitive and quantitative detection of E. coli O157:H7. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Food Analysis)
Show Figures

Figure 1

18 pages, 36096 KiB  
Article
Hybrid Nanoparticles Based on Cobalt Ferrite and Gold: Preparation and Characterization
by Svetlana Saikova, Alexander Pavlikov, Tatyana Trofimova, Yuri Mikhlin, Denis Karpov, Anastasiya Asanova, Yuri Grigoriev, Mikhail Volochaev, Alexander Samoilo, Sergey Zharkov and Dmitry Velikanov
Metals 2021, 11(5), 705; https://doi.org/10.3390/met11050705 - 25 Apr 2021
Cited by 18 | Viewed by 4160
Abstract
During the past few decades, hybrid nanoparticles (HNPs) based on a magnetic material and gold have attracted interest for applications in catalysis, diagnostics and nanomedicine. In this paper, magnetic CoFe2O4/Au HNPs with an average particle size of 20 nm, [...] Read more.
During the past few decades, hybrid nanoparticles (HNPs) based on a magnetic material and gold have attracted interest for applications in catalysis, diagnostics and nanomedicine. In this paper, magnetic CoFe2O4/Au HNPs with an average particle size of 20 nm, decorated with 2 nm gold clusters, were prepared using methionine as a reducer and an anchor between CoFe2O4 and gold. The methionine was used to grow the Au clusters to a solid gold shell (up to 10 gold deposition cycles). The obtained nanoparticles (NPs) were studied by X-Ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, X-Ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy techniques. The TEM images of the obtained HNPs showed that the surface of cobalt ferrite was covered with gold nanoclusters, the size of which slightly increased with an increase in the number of gold deposition cycles (from 2.12 ± 0.15 nm after 1 cycle to 2.46 ± 0.13 nm after 10 cycles). The density of the Au clusters on the cobalt ferrite surface insignificantly decreased during repeated stages of gold deposition: 21.4 ± 2.7 Au NPs/CoFe2O4 NP after 1 cycle, 19.0 ± 1.2 after 6 cycles and 18.0 ± 1.4 after 10 cycles. The magnetic measurements showed that the obtained HNPs possessed typical ferrimagnetic behavior, which corresponds to that of CoFe2O4 nanoparticles. The toxicity evaluation of the synthesized HNPs on Chlorella vulgaris indicated that they can be applied to biomedical applications such as magnetic hyperthermia, photothermal therapy, drug delivery, bioimaging and biosensing. Full article
(This article belongs to the Special Issue Metal-Containing Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

16 pages, 4639 KiB  
Article
A Facile One-Pot Synthesis of Water-Soluble, Patchy Fe3O4-Au Nanoparticles for Application in Radiation Therapy
by Stefanie Klein, Jakob Hübner, Christina Menter, Luitpold V. R. Distel, Winfried Neuhuber and Carola Kryschi
Appl. Sci. 2019, 9(1), 15; https://doi.org/10.3390/app9010015 - 21 Dec 2018
Cited by 15 | Viewed by 4285
Abstract
A facile one-pot synthesis route for the preparation of water-soluble, biocompatible patchy Fe3O4-Au nanoparticles (Fe3O4-Au pNPs) was developed. Biocompatibility was attained through surface functionalization with 1-methyl-3-(dodecylphosphonic acid) imidazolium bromide. The morphology, composition, crystal structure and [...] Read more.
A facile one-pot synthesis route for the preparation of water-soluble, biocompatible patchy Fe3O4-Au nanoparticles (Fe3O4-Au pNPs) was developed. Biocompatibility was attained through surface functionalization with 1-methyl-3-(dodecylphosphonic acid) imidazolium bromide. The morphology, composition, crystal structure and magnetic properties of the Fe3O4-Au pNPs were investigated by conducting experiments with transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and superconducting quantum interference device, respectively. Internalization of the Fe3O4-Au pNPs by MCF-7 cells occurred via endocytosis. The performance of the Fe3O4-Au pNPs as X-ray radiosensitizer in tumor cells was compared with that of gold nanocluster and Fe3O4 NPs. For this reason, MCF-7, A549 and MCF-10A cells were loaded with the respective kind of nanoparticles and treated with X-rays at doses of 1, 2 or 3 Gy. The nanoparticle-induced changes of the concentration of the reactive oxygen species (ROS) were detected using specific assays, and the cell survival under X-ray exposure was assessed employing the clonogenic assay. In comparison with the gold nanocluster and Fe3O4 NPs, the Fe3O4-Au pNPs exhibited the highest catalytic capacity for ROS generation in MCF-7 and A549 cells, whereas in the X-ray-induced ROS formation in healthy MCF-10A cells was hardly enhanced by the Fe3O4 NPs and Fe3O4-Au pNPs. Moreover, the excellent performance of Fe3O4-Au pNPs as X-ray radiosensitizers was verified by the quickly decaying radiation dose survival curve of the nanoparticle-loaded MCF-7 and A549 cells and corroborated by the small values of the associated dose-modifying factors. Full article
(This article belongs to the Special Issue Magnetic Nanomaterials for Drug Delivery and Therapy)
Show Figures

Figure 1

28 pages, 5460 KiB  
Review
Trends and Advances in Electrochemiluminescence Nanobiosensors
by Mohammad Rizwan, Noor Faizah Mohd-Naim and Minhaz Uddin Ahmed
Sensors 2018, 18(1), 166; https://doi.org/10.3390/s18010166 - 9 Jan 2018
Cited by 93 | Viewed by 11101
Abstract
The rapid and increasing use of the nanomaterials (NMs), nanostructured materials (NSMs), metal nanoclusters (MNCs) or nanocomposites (NCs) in the development of electrochemiluminescence (ECL) nanobiosensors is a significant area of study for its massive potential in the practical application of nanobiosensor fabrication. Recently, [...] Read more.
The rapid and increasing use of the nanomaterials (NMs), nanostructured materials (NSMs), metal nanoclusters (MNCs) or nanocomposites (NCs) in the development of electrochemiluminescence (ECL) nanobiosensors is a significant area of study for its massive potential in the practical application of nanobiosensor fabrication. Recently, NMs or NSMs (such as AuNPs, AgNPs, Fe3O4, CdS QDs, OMCs, graphene, CNTs and fullerenes) or MNCs (such as Au, Ag, and Pt) or NCs of both metallic and non-metallic origin are being employed for various purposes in the construction of biosensors. In this review, we have selected recently published articles (from 2014–2017) on the current development and prospects of label-free or direct ECL nanobiosensors that incorporate NCs, NMs, NSMs or MNCs. Full article
Show Figures

Graphical abstract

Back to TopTop