Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,577)

Search Parameters:
Keywords = B2 protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 12490 KB  
Article
Joint Transcriptomic Analysis of the Effect of Iron Concentration on Piglet Liver and Functional Validation of Iron Regulatory Genes
by Haiming Qian, Ping Wang, Tengchuan Li, Chunyong Zhang, Jintao Li, Qingliang Wang, Haiyang Ren, Fanyu Jin, Jie Huang, Jun Yao, Hongbin Pan, Rongfu Guo and Qingcong An
Curr. Issues Mol. Biol. 2025, 47(10), 843; https://doi.org/10.3390/cimb47100843 (registering DOI) - 14 Oct 2025
Abstract
Iron plays a key role in oxygen transport, hematopoiesis, and hypoxia adaptation. This study aimed to explore the dynamic response mechanism of the iron regulatory network and key genes in Duroc piglets. Eighteen weaned piglets were randomly divided into three dietary intervention groups: [...] Read more.
Iron plays a key role in oxygen transport, hematopoiesis, and hypoxia adaptation. This study aimed to explore the dynamic response mechanism of the iron regulatory network and key genes in Duroc piglets. Eighteen weaned piglets were randomly divided into three dietary intervention groups: low iron (0 mg/kg), conventional (100 mg/kg), and high iron (200 mg/kg). Transcriptomics technology was used to screen key liver iron regulatory genes under the influence of different dietary iron concentrations, and the expression of related genes was verified using primary pig liver cells. Fasting serum iron metabolism parameters were detected and iron content in organs was quantified. The results show, enrichment analysis highlighted immune–metabolic signaling, including NF-κB, PI3K-Akt, and TGF-β, and a total of 14 candidate genes (such as FGF21, SAA2/3, FNDC1, ETNPPL, TFR1) were identified. The study observed that these genes showed obvious dosage differentiation and nonlinear patterns. However, findings reflect mRNA-level changes and GO/KEGG over-representation, protein-level validation is planned in follow-up studies. Through the integration of in vitro and in vivo data, this study discovered new liver genes that may be related to pig iron homeostasis function, providing a theoretical basis for analyzing the regulatory mechanism of piglet iron response. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

20 pages, 2862 KB  
Article
Nutrient Analysis of Raw and Sensory Evaluation of Cooked Red Tilapia Filets (Oreochromis sp.): A Comparison Between Aquaculture (Red Kenyir™) and Wild Conditions
by Aswir Abd Rashed, Nurliayana Ibrahim, Nurul Izzah Ahmad, Mariam Marip, Mohd Fairulnizal Md Noh and Mohammad Adi Mohammad Fadzil
Fishes 2025, 10(10), 523; https://doi.org/10.3390/fishes10100523 (registering DOI) - 14 Oct 2025
Abstract
The tilapia sector is advancing due to breakthroughs in aquaculture techniques and genetic enhancements. Comprehending sensory qualities is crucial for producers striving to meet market demands efficiently. As consumer preferences play a significant role in shaping the market, enhancing the sensory attributes of [...] Read more.
The tilapia sector is advancing due to breakthroughs in aquaculture techniques and genetic enhancements. Comprehending sensory qualities is crucial for producers striving to meet market demands efficiently. As consumer preferences play a significant role in shaping the market, enhancing the sensory attributes of both farmed and wild red tilapia will be key to ensuring their success in the competitive aquaculture industry. One of Malaysia’s most prominent aquaculture projects is the Como River Aquaculture Project located in Kenyir Lake, where tilapia fish farming, trademarked as Red Kenyir™, is conducted. Thus, this study aimed to evaluate the nutrient analysis of raw and five sensory attributes (appearance, texture, smell, taste, overall quality) of filets from Red Kenyir™ and wild red tilapia (Oreochromis sp.). Red Kenyir™ were fed three different commercial diets (A, B, and C) from fingerling to adulthood, while wild tilapia (W) was sourced from the market. Proximate and nutritional analyses were conducted based on the standard food analysis protocol by AOAC/AOCS. To the best of our knowledge, this is the first study to comprehensively document the nutrient analysis of raw and consumer sensory perception of cooked Red Kenyir™ aquaculture tilapia in direct comparison with wild red tilapia. The sensory evaluation was conducted using a consumer preference test. Statistical analysis was performed using SPSS. Nutrient analysis showed that Red Kenyir™ tilapia had lower fat (0.25–1.37 g/100 g vs. 4.30 g/100 g) and lower energy (77.38–113.46 kcal/100 g vs. 132.79 kcal/100 g) levels. Protein levels varied across groups (19–26.54 g/100 g vs. 22.95 g/100 g). The tryptophan content of the Red Kenyir™ tilapia samples ranged between 0.13 and 0.23 g/100 g, while the wild tilapia contained 0.19 mg/100 g. Sensory evaluation with 36 panelists revealed no significant differences in appearance, texture, or smell (p > 0.05). However, wild tilapia scored slightly higher in taste (4.14) than Red Kenyir™ (3.54–3.71) for steamed preparation (p < 0.05). In conclusion, these findings suggest that variations in the nutritional composition of Red Kenyir™ do not affect the sensory experience for consumer acceptance, making it a sustainable alternative for customers. Full article
(This article belongs to the Special Issue Seafood Products: Nutrients, Safety, and Sustainability)
24 pages, 10351 KB  
Article
Marf- and Opa1-Dependent Formation of Mitochondrial Network Structure Is Required for Cell Growth and Subsequent Meiosis in Drosophila Males
by Tatsuru Matsuo, Mitsuki Yamanaka and Yoshihiro H. Inoue
Int. J. Mol. Sci. 2025, 26(20), 9991; https://doi.org/10.3390/ijms26209991 (registering DOI) - 14 Oct 2025
Abstract
Mitochondria are dynamic organelles that undergo repeated fusion and fission. We studied how the distribution and shape of mitochondria change during Drosophila spermatogenesis and whether factors that regulate their dynamics are necessary for these changes. Unlike the shortened mitochondria seen in mitosis, an [...] Read more.
Mitochondria are dynamic organelles that undergo repeated fusion and fission. We studied how the distribution and shape of mitochondria change during Drosophila spermatogenesis and whether factors that regulate their dynamics are necessary for these changes. Unlike the shortened mitochondria seen in mitosis, an interconnected network of elongated mitochondria forms before meiosis and is maintained during meiotic divisions. Mitochondria are evenly divided into daughter cells, relying on microtubules and F-actin. To explore the role of mitochondrial network structure in cell growth and meiosis, we depleted the mitochondrial fusion factors Opa1 and Marf and the morphology proteins Letm1 and EndoB in spermatocytes. This knockdown led to inhibited cell growth and failed meiosis. As a result, the spermatocytes differentiated into spermatids without completing meiosis. The knockdown also inhibited the cytoplasmic and nuclear accumulation of Cyclin B before meiosis, and Cdk1 was not fully activated at the onset of meiosis. Notably, ectopic overexpression of Cyclin B partially rescued the failure of meiosis. Many spermatids from the spermatocytes subjected to the knockdowns contained multiple smaller nuclei and abnormally shaped Nebenkerns. These findings suggest that mitochondrial network structure, maintained by fusion and morphology factors, is essential for meiosis progression and Nebenkern formation in Drosophila spermatogenesis. Full article
(This article belongs to the Special Issue Drosophila: A Versatile Model in Biology and Medicine—2nd Edition)
Show Figures

Graphical abstract

14 pages, 729 KB  
Article
Role of the Inflammasome Pathway According to the Expression of Proteins and Genetic Polymorphisms in COVID-19 Patients
by Thiago Rodrigues dos Santos, Lucas Baena Carstens, Leonardo Vinícius Barbosa, Mariana Collete, Natan de Araujo, Caroline Busatta Vaz de Paula, Marina Luise Viola Azevedo, Ana Clara de Almeida, Seigo Nagashima, Lucia de Noronha and Cleber Machado-Souza
Int. J. Mol. Sci. 2025, 26(20), 9993; https://doi.org/10.3390/ijms26209993 (registering DOI) - 14 Oct 2025
Abstract
COVID-19 severity is frequently linked to exacerbated inflammation, with the inflammasome pathway playing a key role in activating inflammatory interleukins. This observational post-mortem study evaluated the expression of inflammasome-associated molecules in patients who died from COVID-19 during the second wave. Minimally invasive autopsies [...] Read more.
COVID-19 severity is frequently linked to exacerbated inflammation, with the inflammasome pathway playing a key role in activating inflammatory interleukins. This observational post-mortem study evaluated the expression of inflammasome-associated molecules in patients who died from COVID-19 during the second wave. Minimally invasive autopsies were performed on patients from the first (n = 24) and second (n = 18) waves. Lung tissue samples underwent immunohistochemical staining for ACE-2, TLR-4, NF-κB, TNF-α, NOX4, NLRP3, ASC, CASPASE-1, IL-1β, IL-18, GSDMD, and CASPASE-9. Additionally, genetic polymorphisms within inflammasome-related genes were assessed via real-time polymerase chain reaction. Lung tissue expressions of TLR-4, NLRP3, and IL-18 were significantly higher in patients from the second wave compared to those from the first, with expression levels of 26.3 versus 12.1, 13.9 versus 6.4, and 25.6 versus 3.8, respectively. The A allele at rs4648090 of NFKB1 and the T allele at rs317155 of NOX4 were associated with increased corresponding protein expression by factors of 5.1 and 8.9, respectively. Notably, IL-18 demonstrated substantial immunological relevance, correlating strongly with elevated expression linked to these genetic variants in second wave cases. These findings suggest that the inflammasome pathway harbors biologically meaningful molecules implicated in severe COVID-19, meriting further investigation for their potential as diagnostic or therapeutic targets. Full article
(This article belongs to the Special Issue Immune Regulation in Lung Diseases)
Show Figures

Figure 1

17 pages, 4126 KB  
Article
Mechanistic Insights into the Protective Effects of Cryptotanshinone Against CCl4-Induced Acute Liver Injury in Mice via Network Pharmacology and Transcriptomics
by Xin Zhang, Qiulin Luo, Yanting Hu, Puyang Gong, Yunsong Zhang and Li Zhang
Biomolecules 2025, 15(10), 1449; https://doi.org/10.3390/biom15101449 - 14 Oct 2025
Abstract
Cryptotanshinone (CPT), the main active compound of Salvia miltiorrhiza, is known for its anti-inflammatory, antioxidative, and antifibrotic effects. In this study, the hepatoprotective effect and mechanisms of CPT were explored using transcriptome and network pharmacology. A carbon tetrachloride-induced acute liver injury (ALI) [...] Read more.
Cryptotanshinone (CPT), the main active compound of Salvia miltiorrhiza, is known for its anti-inflammatory, antioxidative, and antifibrotic effects. In this study, the hepatoprotective effect and mechanisms of CPT were explored using transcriptome and network pharmacology. A carbon tetrachloride-induced acute liver injury (ALI) mouse model was established. The anti-ALI effects of different doses of CPT were evaluated by analysis of biochemical indicators, histopathological staining, and immunohistochemical analysis. Combining network pharmacology with transcriptomic analysis revealed therapeutic targets, which were subsequently validated through polymerase chain reaction and Western blotting. CPT (40 mg/kg) treatment significantly reduced the levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, tumor necrosis factor-α, interleukin-6, and interleukin-1β in model mice and regulated oxidative stress indicators, including malonaldehyde, superoxide dismutase, glutathione, and catalase. MCP-1 protein expression in the liver was inhibited by treatment with CPT. Network pharmacology revealed 72 core targets involved in the treatment of ALI by CPT. By combining transcriptomic data from liver tissue, three key targets—TNF-α, TLR9, and ADORA2B—were identified, along with the TLR, IL-17, and TNF signaling pathways. Furthermore, PCR and Western blot assays revealed that CPT significantly decreased TNF-α, TLR9, and ADORA2B expression levels in the livers of ALI mice. In conclusion, the hepatoprotective effects of CPT may be related to the suppression of TNF-α-, TLR9-, and ADORA2B-mediated inflammation, oxidative stress, and apoptosis. These results provide a foundation for the development of CPT as a potential therapeutic agent for ALI. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

21 pages, 3293 KB  
Article
Characterization of Corneal Defects in ATG7-Deficient Mice
by Thomas Volatier, Andreas Mourier, Johanna Mann, Berbang Meshko, Karina Hadrian, Claus Cursiefen and Maria Notara
Int. J. Mol. Sci. 2025, 26(20), 9989; https://doi.org/10.3390/ijms26209989 (registering DOI) - 14 Oct 2025
Abstract
Regulated proteolysis via autophagy is essential for cellular homeostasis, yet the specific role of autophagy-related gene 7 (ATG7) in corneal epithelial maintenance remains unclear. Using a conditional knockout mouse model (Atg7f/f K14Cre+/−), we investigated the impact of ATG7 [...] Read more.
Regulated proteolysis via autophagy is essential for cellular homeostasis, yet the specific role of autophagy-related gene 7 (ATG7) in corneal epithelial maintenance remains unclear. Using a conditional knockout mouse model (Atg7f/f K14Cre+/−), we investigated the impact of ATG7 deficiency on corneal epithelial autophagy, morphology, and vascular dynamics. Loss of ATG7 disrupted autophagosome formation, evidenced by increased LC3B expression but reduced LC3B-positive puncta and absence of autophagosomes ultrastructurally. Although gross corneal morphology was preserved, ATG7 deficiency led to thickened epithelium and increased peripheral lymphatic vessel sprouting, indicating a pro-inflammatory and pro-lymphangiogenic microenvironment. Proteomic analysis revealed upregulation of RAB8, TM9S3, and RETR3, suggesting activation of compensatory pathways such as exophagy, reticulophagy, and Golgiphagy. Inflammatory and angiogenic components were downregulated, suggesting a moderate loss of inhibitory capacity based on the lymphatic phenotypes observed. At the same time, while these two compensatory changes occur, other proteins that positively regulate lysosome formation are reduced, resulting in a phenotype linked to deficient autophagy. These findings demonstrate that ATG7-mediated autophagy maintains corneal epithelial homeostasis and immune privilege, with implications for understanding corneal inflammation and lymphangiogenesis in ocular surface diseases. Full article
Show Figures

Figure 1

28 pages, 1285 KB  
Review
Mucopolysaccharidoses—What Clinicians Need to Know: A Clinical, Biochemical, and Molecular Overview
by Patryk Lipiński, Agnieszka Różdżyńska-Świątkowska, Karolina Wiśniewska, Joanna Rusecka, Agnieszka Ługowska, Zbigniew Żuber, Aleksandra Jezela-Stanek, Zuzanna Cyske, Lidia Gaffke, Karolina Pierzynowska, Grzegorz Węgrzyn and Anna Tylki-Szymańska
Biomolecules 2025, 15(10), 1448; https://doi.org/10.3390/biom15101448 - 14 Oct 2025
Abstract
The classification of mucopolysaccharidoses (MPSs) includes the classical types (I; II; III with subtypes A, B, C, and D; IV with subtypes A and B; VI; VII; IX; X), associated with impaired lysosomal degradation of mucopolysaccharides, also known as glycosaminoglycans (GAGs), as a [...] Read more.
The classification of mucopolysaccharidoses (MPSs) includes the classical types (I; II; III with subtypes A, B, C, and D; IV with subtypes A and B; VI; VII; IX; X), associated with impaired lysosomal degradation of mucopolysaccharides, also known as glycosaminoglycans (GAGs), as a result of deficiency in the specific enzymes responsible for GAG degradation (MPS IIIE has so far been identified only in animal models) and MPS-plus syndrome (MPSPS), which is characterized by an accumulation of undegraded GAGs, arising from impaired endosomal trafficking and inefficient delivery of these compounds to lysosomes (due to the VPS33A protein deficiency with normal GAG-degrading enzyme activities assessed in vitro). The aim of this comprehensive review is to provide physicians with a clinical, biochemical, and molecular overview of MPS manifestation. A brief summary of available and emerging therapies is also presented. Full article
(This article belongs to the Special Issue Updates on Molecular Mechanisms of Lysosomal Storage Disease)
Show Figures

Figure 1

14 pages, 3692 KB  
Article
B7 Family Molecule VSIG4 Regulates Pulmonary Anti-Influenza Immune Responses via C-Type Lectin Signal Pathway
by Jianxin Zhu, Dan Lu, Liangyan Zhang, Zhili He, Tianxinyu Ma, Yakun Sun, Wenjing Yu, Xiaolan Yang, Yeqing Tu, Yitai Fang, Deyu Li, Rui Zheng, Tao Li, Jin Zhao and Hui Wang
Vaccines 2025, 13(10), 1053; https://doi.org/10.3390/vaccines13101053 - 14 Oct 2025
Abstract
Background: As the member of the B7 family, V-set and immunoglobulin domain-containing 4 (VSIG4) plays an essential role in regulating immune responses against bacterial infection, autoimmune disease, and chronic viral infection. However, the role of VSIG4 in acute viral infections remains largely [...] Read more.
Background: As the member of the B7 family, V-set and immunoglobulin domain-containing 4 (VSIG4) plays an essential role in regulating immune responses against bacterial infection, autoimmune disease, and chronic viral infection. However, the role of VSIG4 in acute viral infections remains largely unclear. Methods: Here, we constructed a gene-targeted VSIG4-deficient mouse model and then infected it with influenza to explore the detailed VSIG4-involved mechanism. Results: Our results demonstrated that the gene-deficient mice exhibited reduced survival rates, ranging from 25% to 50%, after being infected with different influenza virus strains. At the sites of infection, an increased number of CD8+ T cells, along with heightened expression of pro-inflammatory cytokines, e.g., Il-6 and TNFα, may have contributed to tissue damage. The recombinant VSIG4 protein slightly improved protection from the influenza challenge, suggesting regulatory functions of VSIG4 during infection. Using in vitro cell models, we show that the type C lectin receptor pathway member DC-SIGNR1 (CD209) is an essential factor during acute virus infection. The affinity and CO-IP tests indicated an interaction between CD209 and VSIG4, but not through protein modification. Conclusions: Therefore, VSIG4 functionally protected mice by regulating the type C lectin receptor pathway to inhibit excessive Th1 immune responses and inflammation. Our findings highlight the importance of considering immune homeostasis in the development of therapies for severe infections. Full article
(This article belongs to the Section Pathogens-Host Immune Boundaries)
Show Figures

Figure 1

19 pages, 2639 KB  
Article
Estradiol Triggers Cerebellar MLI-PC LTP via ERβ/Protein Kinase C Signaling Cascades in Mice In Vivo
by Zhao-Yi Zhang, Li Chen, Ming-Ze Sun, Chao-Yue Chen, Chun-Yan Wang, Yuki Todo, Zheng Tang, Yan-Cong Lv, Qin-Yong Zou, Chun-Ping Chu, Yin-Hua Xu and De-Lai Qiu
Int. J. Mol. Sci. 2025, 26(20), 9973; https://doi.org/10.3390/ijms26209973 (registering DOI) - 14 Oct 2025
Abstract
17β-estradiol (E2) enhances the cerebellar molecular layer interneurons (MLIs)—Purkinje cells (PCs) synaptic transmission via activation of the Erβ in vivo in mice. Whether E2 regulates cerebellar MLI-PC synaptic plasticity is unknown. To investigate the mechanism of E2, we evaluated the modulation of facial [...] Read more.
17β-estradiol (E2) enhances the cerebellar molecular layer interneurons (MLIs)—Purkinje cells (PCs) synaptic transmission via activation of the Erβ in vivo in mice. Whether E2 regulates cerebellar MLI-PC synaptic plasticity is unknown. To investigate the mechanism of E2, we evaluated the modulation of facial stimulation-evoked MLI-PC long-term plasticity in mice. Cell-attached recordings from PCs of Crus II were performed using an Axopatch-700B patch-clamp amplifier. The MLI-PC synaptic transmission was evoked by facial stimulation. Immunohistochemistry was used to detect the expression of ERβ. Under control conditions, 1 Hz facial stimuli induced long-term depression (LTD) at MLI-PC synapses, characterized by a sustained reduction in P1 amplitude and a simple spike (SS) pause. The facial stimulus-induced MLI-PC LTD was completely prevented by E2, but this effect was reversed by a selective ERα/ERβ antagonist, ICI182780. Blockade of cannabinoid receptor 1 (CB1R) eliminated the MLI-PC LTD under control conditions, but revealed an E2-triggered long-term potentiation (LTP). The E2-triggered MLI-PC LTP persisted in the presence of an ERα antagonist but was absent in the presence of an ERβ antagonist PHTPP. The E2-triggered MLI-PC LTP remained unaffected by protein kinase A inhibition but was abolished by inhibition of protein kinase C (PKC) and intracellular Ca2+ depletion. Moreover, ERβ immunoreactivity was abundantly distributed around dendrites and somas of PCs in the Crus II region of the mouse cerebellar cortex. The present results suggest that E2 activates ERβ, thereby triggering facial stimulation-induced MLI-PC LTP via the PKC signaling cascade, which occludes CB1R-dependent MLI-PC LTD in the cerebellar cortex of mice in vivo. Full article
(This article belongs to the Special Issue Brain Plasticity in Health and Disease)
Show Figures

Figure 1

34 pages, 8250 KB  
Review
From Cytokines to Biomarkers: Mapping the Immunopathology of Inflammatory Bowel Disease
by Sarah Baum, Kamron Hamedi, Caroline Loftus, Gannett Loftus, Emily-Rose Zhou and Sergio Arce
Cells 2025, 14(20), 1589; https://doi.org/10.3390/cells14201589 - 13 Oct 2025
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition of the gastrointestinal tract, characterized by dysregulated inflammatory responses throughout the gastrointestinal tract. It includes two major phenotypes, Crohn’s disease (CD) and ulcerative colitis (UC), which present with varying gastrointestinal and systemic symptoms. The [...] Read more.
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition of the gastrointestinal tract, characterized by dysregulated inflammatory responses throughout the gastrointestinal tract. It includes two major phenotypes, Crohn’s disease (CD) and ulcerative colitis (UC), which present with varying gastrointestinal and systemic symptoms. The pathophysiology of IBD is multifactorial including genetic predisposition, mucosal and epithelial dysfunction, environmental injury, and both innate and adaptive immune response abnormalities. Several predisposing genetic factors have been associated with IBD explaining the strong hereditary risk for both CD and UC. For example, Caspase Recruitment Domain 9 (CARD9) variant rs10781499 increases risk for IBD, while other variants are specific to either CD or UC. CD is related to loss-of-function mutations in the nucleotide oligomerization domain containing the protein 2 (NOD2) gene and Autophagy-Related 16-like 1 (ATG16L1) gene. UC risk is increased particularly in Chinese populations by the A-1661G polymorphism of the Cytotoxic T-lymphocyte antigen 4 (CTLA-4) gene. This abnormal CTLA-4 interferes with B- and T-cell responses causing predisposition to autoimmune conditions. Previous studies suggested that IBD results from breakdown of the adaptive immune system, primarily of T-cells. However, new evidence suggests that a primary breakdown of the innate immune system in both CD and UC increases susceptibility to invasion by viruses and bacteria, with a compensatory overactivation of the adaptive immune system as a result. When this viral and microbial invasion continues, further damage is incurred, resulting in a downward cycle of further cytokine activation and epithelial damage. Released biomarkers also affect the permeability of the epithelial membrane, including lactoferrin, nitric oxide (NO), myeloperoxidase (MPO) and its activation of hypochlorous acid, matrix metalloproteinases (MMPs), especially MMP-9, omentin-1, and others. Increased macrophage and dendritic cell dysfunction, increased neutrophil activity, increased numbers of innate lymphoid cells, increased T-cells with decreased regulatory T-cells (Tregs), and changes in B-cell populations and immunoglobulin (Ig) functions are all associated with IBD. Finally, treatment of IBD has typically consisted of medical management (e.g., aminosalicylates and corticosteroids) and lifestyle modification, and surgical intervention in extreme cases. New classes of medications with more favorable side effect profiles include anti-integrin antibodies, vedolizumab, etrolizumab, and carotegrast methyl. Additionally, fecal microbiota transplant (FMT) is a newer area of research for treatment of IBD along with TNF-blockers, JAK inhibitors, and S1PR modulators. However, expense and long preparation time have limited the usefulness of FMT. Full article
Show Figures

Figure 1

16 pages, 5190 KB  
Article
Terminalia chebula Fruit Extract Ameliorates Peripheral Edema by Inhibiting NF-κB and MAPK Signaling Pathways
by Sang-Hyup Lee, Sang-Yoon Kim, Yun-Gu Gwon, Su-Ha Lee, Ji-Soo Jeong, Je-Won Ko, Tae-Won Kim and Bong-Keun Choi
Int. J. Mol. Sci. 2025, 26(20), 9965; https://doi.org/10.3390/ijms26209965 (registering DOI) - 13 Oct 2025
Abstract
Peripheral edema is a pathological condition caused by abnormal fluid accumulation in the interstitial space due to elevated vascular permeability and inflammation. This study evaluated the therapeutic efficacy of Terminalia chebula fruit extract (TCE) in inflammation-induced peripheral edema and clarified its molecular mechanisms. [...] Read more.
Peripheral edema is a pathological condition caused by abnormal fluid accumulation in the interstitial space due to elevated vascular permeability and inflammation. This study evaluated the therapeutic efficacy of Terminalia chebula fruit extract (TCE) in inflammation-induced peripheral edema and clarified its molecular mechanisms. Using hydrogen peroxide (H2O2)-stimulated human umbilical vein endothelial cells (HUVECs), TCE was tested for effects on cell viability, inflammatory gene expression, intracellular reactive oxygen species, endothelial barrier integrity, and vascular endothelial growth factor (VEGF)-induced migration. Its influence on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling was examined. In vivo, TCE was assessed in acetic acid-induced peritoneal vascular permeability and carrageenan-induced paw edema models, followed by histological analysis and serum tumor necrosis factor-α (TNF-α) measurement. TCE restored cell viability (76.2% to 94.8%), reduced TNF, IL6, and PTGS2 mRNA expression, and decreased reactive oxygen species by 27.2%. It enhanced barrier integrity, increased transendothelial electrical resistance, and inhibited VEGF-induced migration. TCE suppressed NF-κB and MAPK activation. In vivo, TCE reduced Evans blue extravasation by 41.6% and paw edema by 67.5%. Histology showed reduced dermal thickening and inflammatory infiltration, and serum TNF-α levels were lowered. TCE attenuates peripheral edema by preserving endothelial barrier function and suppressing inflammatory signaling, supporting its potential as a therapeutic agent for inflammation-associated vascular dysfunction and edema. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 2230 KB  
Article
Therapeutic Efficacy of an Anti-P116-661 Polyclonal Antibody Against Mycoplasma pneumoniae Infection
by Yiting Zhang, Xinqi Geng, Yan Liu, Wenli Li, Feng Shao, Mengmeng Jin, Jinzhi Wang and Linding Wang
Pathogens 2025, 14(10), 1038; https://doi.org/10.3390/pathogens14101038 - 13 Oct 2025
Abstract
The aim of this study was to investigate the therapeutic potential of a polyclonal antibody against the Mycoplasma pneumoniae (MP) P116-661 protein. A polyclonal antibody against the P116-661 protein was obtained by immunizing New Zealand white rabbits, and its therapeutic effects were systematically [...] Read more.
The aim of this study was to investigate the therapeutic potential of a polyclonal antibody against the Mycoplasma pneumoniae (MP) P116-661 protein. A polyclonal antibody against the P116-661 protein was obtained by immunizing New Zealand white rabbits, and its therapeutic effects were systematically evaluated by various experimental methods. An immunofluorescence assay was used to detect the inhibitory effect of the P116-661 polyclonal antibody on the adhesion of MP cells to A549 cells. ELISAs and Western blotting were used to analyze the expression levels of inflammatory factors, such as IL-6 and TNF-α, in Beas-2b cells and model mice after MP infection. HE staining was used to observe pathological changes in the lung tissue of the infected mice. The results showed that the P116-661 polyclonal antibody effectively inhibited the adhesion of MP cells to A549 cells. It significantly reduced the secretion levels of inflammatory factors, such as IL-6 and TNF-α, in Beas-2b cells and mice after MP infection. Moreover, the antibody significantly improved the pathological damage to the lungs that was caused by MP infection in mice. This study confirms that the P116-661 polyclonal antibody has good therapeutic effects in vitro and in vivo, providing a new experimental basis for immunotherapy against MP infection. Full article
Show Figures

Figure 1

21 pages, 6718 KB  
Article
Polyporusterone B Alleviates Inflammatory Injury via Suppression of Pro-Inflammatory Cytokine Production
by Dan Song, Yanru Zhang, Jialu Yuan, Xiaohua Hao, Shizhuo Chen, Xinjie Zhao and Yaomeng Yang
Int. J. Mol. Sci. 2025, 26(20), 9957; https://doi.org/10.3390/ijms26209957 (registering DOI) - 13 Oct 2025
Abstract
Polyporusterone B, a triterpene carboxylic acid isolated from Polyporus umbellatus Fries, exhibits anti-cancer and anti-hemolytic activities; however, its anti-inflammatory properties and underlying mechanisms remain unelucidated. We studied the anti-inflammatory effects of Polyporusterone B using lipopolysaccharide (LPS)-stimulated Raw264.7 murine macrophages (in vitro) and LPS-induced [...] Read more.
Polyporusterone B, a triterpene carboxylic acid isolated from Polyporus umbellatus Fries, exhibits anti-cancer and anti-hemolytic activities; however, its anti-inflammatory properties and underlying mechanisms remain unelucidated. We studied the anti-inflammatory effects of Polyporusterone B using lipopolysaccharide (LPS)-stimulated Raw264.7 murine macrophages (in vitro) and LPS-induced endotoxin shock in C57BL/6 mice (in vivo). Results showed that Polyporusterone B (1, 5, and 10 μM) had no cytotoxicity toward Raw264.7 cells, but significantly inhibited LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines (tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6)) in a concentration- and time-dependent manner, as demonstrated by Griess assay, qPCR, and ELISA. Western blot analysis revealed that Polyporusterone B suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (ERK, P38, and NK) and reduced phosphorylation-mediated degradation of inhibitor of κBα (IκBα). Immunofluorescence and immunohistochemical staining further confirmed that Polyporusterone B blocked nuclear translocation of nuclear factor kappa-B (NF-κB)/Rel A in both Raw264.7 cells and mouse tissues. In the in vivo model, Polyporusterone B pretreatment significantly mitigated LPS-induced multi-organ pathological damage (e.g., lung edema, hepatic inflammation, renal hemorrhage) and downregulated tissue levels of TNF-α, IL-1β, and IL-6. These findings suggest that Polyporusterone B exerts anti-inflammatory effects by inhibiting the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways, suggesting its potential as a therapeutic candidate for inflammatory diseases. Full article
(This article belongs to the Special Issue Cytokines in Inflammation and Health)
Show Figures

Figure 1

25 pages, 4160 KB  
Article
Regulation of Antioxidant Expression in the Liver Tissue of Obese Rats Treated with Coriander Seed Ethanolic Extract: In Silico and In Vivo Studies
by Kartika Diana Pertiwi, Novi Silvia Hardiany, Syarifah Dewi and Bimo Ario Tejo
Biologics 2025, 5(4), 32; https://doi.org/10.3390/biologics5040032 - 13 Oct 2025
Abstract
Background/Objectives: Obesity increases reactive oxygen species (ROS), thereby triggering oxidative stress. Coriander seeds contain polyphenolic compounds that act as natural antioxidants to reduce oxidative stress. Coriander seed ethanolic extract has been proven to decrease malondialdehyde and increase catalase activity in the liver of [...] Read more.
Background/Objectives: Obesity increases reactive oxygen species (ROS), thereby triggering oxidative stress. Coriander seeds contain polyphenolic compounds that act as natural antioxidants to reduce oxidative stress. Coriander seed ethanolic extract has been proven to decrease malondialdehyde and increase catalase activity in the liver of high-fat-diet-fed rats. Thus, coriander seeds are thought to protect against obesity-induced oxidative liver damage; however, their molecular mechanism has not been revealed. Nuclear factor erythroid 2-related factor 2 (Nrf2) and Forkhead Box O3 (FOXO3) are transcription factors involved in cellular antioxidant regulation (e.g., superoxide dismutase/SOD, glutathione peroxidase/GPx expression, and reduced glutathione/GSH) that are negatively regulated by Kelch-like ECH-associated Protein 1 (Keap1) and 14-3-3 protein to maintain cellular homeostasis. This study aimed to analyze the regulation of antioxidant expression through in silico and in vivo experiments. Methods: The in silico study assessed the potential of coriander seed ethanolic extract to inhibit Keap1 and 14-3-3 using molecular docking. Then, the drug-likeness, pharmacokinetics, and toxicity of the top three compounds were analyzed. Meanwhile, the in vivo study investigated how the coriander seed ethanolic extract impacted the level of Nrf2, FOXO3, and their downstream effectors (T-SOD, MnSOD, GPx, and GSH). The in vivo study involved five groups of rats with obesity induced by a high-fat diet that were fed with 100 mg/kgBW coriander seed ethanolic extract for 12 weeks. Results: The in silico tests revealed that shionoside b had the highest potential to inhibit Keap1 (ΔG = −8.90 kcal/mol; Ki = 298.01 nM) and 14-3-3 protein (ΔG = −6.85 kcal/mol; Ki = 9.46 µM). The in vivo tests showed that the Nrf2, FOXO3, MnSOD, and GPx mRNA expression was significantly different between the groups (p < 0.05). Meanwhile, T-SOD, MnSOD, GPx, and GSH activity were not significantly different between the groups (p > 0.05). Nrf2 was significantly correlated with FOXO3 as well as the T-SOD, MnSOD, and GPx activity, and FOXO3 was significantly correlated with the T-SOD, MnSOD, GPx, and GSH activity. Conclusions: In obese rats, coriander seeds tend to increase Nrf2 and FOXO3 expression, which is positively correlated with their downstream enzymatic and nonenzymatic antioxidant activity. This is possibly due to the interaction between the coriander seed phytoconstituents and protein inhibitors (Keap1 and 14-3-3), which contribute to the stability and nuclear mobilization of Nrf2 and FOXO3. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

22 pages, 1877 KB  
Article
Bifidobacterium Longum subsp. infantis and Lacticaseibacillus Rhamnosus GG Protect Intestinal Epithelium Against Inflammation-Mediated Damage in an Immunocompetent In-Vitro Model
by Ilia Belotserkovsky, Cecile Vernochet, Maroussia Roelens, Benoît Beitz, Bouthaina Ben Abdallah, Sophiane Poissonnier, Samuel Bellais, Amy Hesketh, Jazmin Meza Torres, Manal Mouharib, Justine Sunshine, Mike Shaffer, Janie Parrino, Jared Silverman, COSIPOP Study Group, Romain Daillère and Christophe Vedrine
Appl. Microbiol. 2025, 5(4), 110; https://doi.org/10.3390/applmicrobiol5040110 - 13 Oct 2025
Abstract
Impairment of the intestinal epithelial barrier, accompanied by local and systemic inflammation, underlies numerous human pathologies, including inflammatory bowel diseases, celiac disease, sepsis, as well as severe acute malnutrition. Bifidobacterium longum subsp. infantis and Lacticaseibacillus rhamnosus GG (LGG®) have been shown [...] Read more.
Impairment of the intestinal epithelial barrier, accompanied by local and systemic inflammation, underlies numerous human pathologies, including inflammatory bowel diseases, celiac disease, sepsis, as well as severe acute malnutrition. Bifidobacterium longum subsp. infantis and Lacticaseibacillus rhamnosus GG (LGG®) have been shown in preclinical studies to strengthen the gut epithelial barrier and attenuate inflammation. This study aimed to compare the ability of four commercial strains of B. infantis, LGG, and their combination to mitigate inflammation-mediated epithelial damage using an in vitro immunocompetent intestinal model. A microfluidic mid-throughput platform OrganoPlate® was used to co-culture intestinal epithelial cells (Caco-2) with peripheral blood mononuclear cells (PBMCs). Epithelial damage was induced by stimulating PBMCs with lipopolysaccharide (LPS), and probiotic-conditioned media were applied to the apical side of Caco-2 cells to assess effects on barrier integrity, cytokine secretion, and gene transcription. All tested probiotics significantly protected the epithelium by modulating tight junction protein expression and promoting transcription of homeostatic cytokines, resulting in a “leak-tight” phenotype. These findings indicate that metabolites produced by B. infantis and/or LGG can protect the intestinal epithelium in vitro, warranting further in vivo studies to evaluate the translational relevance of this effect. Full article
Show Figures

Graphical abstract

Back to TopTop