Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = BCoV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 405 KB  
Communication
Major Etiological Agents Isolated from Neonatal Calf Diarrhea Outbreaks in Northern Italy
by Camilla Torreggiani, Giovanni Pupillo, Chiara Anna Garbarino, Gianluca Rugna, Alice Prosperi, Chiara Chiapponi and Andrea Luppi
Pathogens 2025, 14(9), 847; https://doi.org/10.3390/pathogens14090847 - 25 Aug 2025
Viewed by 1408
Abstract
Neonatal calf diarrhea (NCD) represents a major cause of economic loss in dairy cattle herds worldwide. The condition is primarily associated with several key pathogens, including enterotoxigenic Escherichia coli (ETEC), viral agents such as bovine rotavirus (BRV) and bovine coronavirus (BCoV), and the [...] Read more.
Neonatal calf diarrhea (NCD) represents a major cause of economic loss in dairy cattle herds worldwide. The condition is primarily associated with several key pathogens, including enterotoxigenic Escherichia coli (ETEC), viral agents such as bovine rotavirus (BRV) and bovine coronavirus (BCoV), and the protozoan Cryptosporidium parvum. This study aimed to assess the prevalence of NCD-associated pathogens in Italian dairy farms over the period 2020–2022. Among the 598 farms affected by NCD and included in the investigation, ETEC strains were detected in 17.2% of cases. The prevalence of BRV, BCoV, and Cryptosporidium spp. was 22.2%, 20.2%, and 32.3%, respectively. Co-infections were also frequently observed and are considered to significantly exacerbate the clinical severity of the disease. Ongoing surveillance of NCD pathogens is essential to generate reliable and updated epidemiological data, which are critical for guiding effective control and prevention strategies. Full article
Show Figures

Figure 1

20 pages, 7204 KB  
Article
Structural Features and In Vitro Antiviral Activities of Fungal Metabolites Sphaeropsidins A and B Against Bovine Coronavirus
by Luca Del Sorbo, Maria Michela Salvatore, Clementina Acconcia, Rosa Giugliano, Giovanna Fusco, Massimiliano Galdiero, Violetta Iris Vasinioti, Maria Stella Lucente, Paolo Capozza, Annamaria Pratelli, Luigi Russo, Rosa Iacovino, Anna Andolfi and Filomena Fiorito
Int. J. Mol. Sci. 2025, 26(15), 7045; https://doi.org/10.3390/ijms26157045 - 22 Jul 2025
Viewed by 736
Abstract
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member [...] Read more.
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member of the genus β-CoV, represents a valuable virus model to study human β-CoVs, bypassing the risks of handling highly pathogenic and contagious viruses. Pimarane diterpenes are a significant group of secondary metabolites produced by phytopathogenic fungi, including several Diplodia species. Among the members of this class of natural products, sphaeropsidin A (SphA) and its analog sphaeropsidin B (SphB) are well known for their bioactivities, such as antimicrobial, insecticidal, herbicidal, and anticancer. In this study, the antiviral effects of SphA and SphB were evaluated for the first time on bovine (MDBK) cells infected with BCoV. Our findings showed that both sphaeropsidins significantly increased cell viability in infected cells. These substances also caused substantial declines in the virus yield and in the levels of the viral spike S protein. Interestingly, during the treatment, a cellular defense mechanism was detected in the downregulation of the aryl hydrocarbon receptor (AhR) signaling, which is affected by BCoV infection. We also observed that the presence of SphA and SphB determined the deacidification of the lysosomal environment in infected cells, which may be related to their antiviral activities. In addition, in silico investigations have been performed to elucidate the molecular mechanism governing the recognition of bovine AhR (bAhR) by Sphs. Molecular docking studies revealed significant insights into the structural determinants driving the bAhR binding by the examined compounds. Hence, in vitro and in silico results demonstrated that SphA and SphB are promising drug candidates for the development of efficient therapies able to fight a β-CoV-like BCoV during infection. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 3rd Edition)
Show Figures

Figure 1

16 pages, 5856 KB  
Article
Characterization of Gene Expression Suppression by Bovine Coronavirus Non-Structural Protein 1
by Takehiro Ohkami, Ichika Kitashin, Riko Kawashima, Aimi Yoshida, Taizo Saito, Yasuhiro Takashima, Wataru Kamitani and Keisuke Nakagawa
Viruses 2025, 17(7), 978; https://doi.org/10.3390/v17070978 - 13 Jul 2025
Viewed by 599
Abstract
Coronavirus non-structural protein 1 (nsp1) is a pathogenic determinant of Betacoronaviruses. Previous studies demonstrated that the nsp1 of various coronaviruses induces host shutoff through a variety of mechanisms; however, there is little information on the function of bovine coronavirus (BCoV) nsp1. We [...] Read more.
Coronavirus non-structural protein 1 (nsp1) is a pathogenic determinant of Betacoronaviruses. Previous studies demonstrated that the nsp1 of various coronaviruses induces host shutoff through a variety of mechanisms; however, there is little information on the function of bovine coronavirus (BCoV) nsp1. We aimed to characterize the host gene expression suppression function of BCoV nsp1. We first confirmed that the expression of BCoV nsp1 in MAC-T cells, a bovine mammary epithelial cell line, suppressed host and reporter gene expression. Subsequently, lysine and phenylalanine at amino acid positions 232 and 233, respectively, were identified as key residues required for this suppressive effect. Expression levels of housekeeping genes are comparable in cells expressing wild-type BCoV nsp1 and a mutant with alanine substitutions at positions 232 and 233 (BCoV nsp1-KF). Wild-type BCoV nsp1 localized to both the cytoplasm and nucleus; however, BCoV nsp1-KF exhibited prominent nuclear accumulation with dot-like structures. Using confocal microscopy and co-sedimentation analysis, we identified an association between wild-type BCoV nsp1, but not BCoV nsp1-KF, and ribosomes, suggesting that ribosome binding is required for BCoV nsp1-mediated suppression of host gene expression. This is the first study of the characterization of host gene expression suppression by BCoV nsp1. Full article
Show Figures

Figure 1

19 pages, 3179 KB  
Article
Development of a Multiplex Real-Time PCR Assay for the Detection of Eight Pathogens Associated with Bovine Respiratory Disease Complex from Clinical Samples
by Fuxing Hao, Chunhao Tao, Ruilong Xiao, Ying Huang, Weifeng Yuan, Zhen Wang and Hong Jia
Microorganisms 2025, 13(7), 1629; https://doi.org/10.3390/microorganisms13071629 - 10 Jul 2025
Viewed by 854
Abstract
Bovine respiratory disease complex (BRDC) is one of the primary causes of morbidity, mortality, and economic loss in cattle worldwide. Accurate and rapid identification of causative pathogenic agents is essential for effective disease management and control. In this study, a novel multiplex fluorescence-based [...] Read more.
Bovine respiratory disease complex (BRDC) is one of the primary causes of morbidity, mortality, and economic loss in cattle worldwide. Accurate and rapid identification of causative pathogenic agents is essential for effective disease management and control. In this study, a novel multiplex fluorescence-based quantitative polymerase chain reaction (qPCR) assay was developed for the simultaneous detection of eight major pathogens associated with BRDC. The targeted pathogens included the following: bovine viral diarrhea virus (BVDV), bovine parainfluenza virus type 3 (BPIV3), bovine respiratory syncytial virus (BRSV), bovine coronavirus (BcoV), Mycoplasma bovis (M.bovis), Pasteurella multocida (PM), Mannheimia haemolytica (MH), and infectious bovine rhinotracheitis virus (IBRV). The assay was rigorously optimized to ensure high specificity with no cross-reactivity among targets. The limit of detection (LOD) was determined to be as low as 5 copies per reaction for all target pathogens. The coefficient of variation (CVs) for both intra-assay and inter-assay measurements were consistently below 2%, demonstrating excellent reproducibility. To validate the clinical utility of the assay, a total of 1012 field samples were tested, including 504 nasal swabs from Farm A and 508 from Farm B in Jiangsu Province. BVDV, BcoV, PM, and MH were detected from Farm A, with a BVDV-positive rate of 21.63% (109/504), BcoV-positive rate of 26.79% (135/504), PM-positive rate of 28.77% (145/504), and MH-positive rate of 15.08% (76/504). Also, BcoV, PM, MH, and IBRV were detected from Farm B, with a BcoV-positive rate of 2.36% (12/508), PM-positive rate of 1.38% (7/508), MH-positive rate of 14.76% (75/508), and IBRV-positive rate of 5.51% (28/508). Notably, a significant proportion of samples showed evidence of mixed infections, underscoring the complexity of BRDC etiology and the importance of a multiplex diagnostic approach. In conclusion, the developed multiplex qPCR assay provides a reliable, rapid, and cost-effective tool for simultaneous detection of multiple BRDC-associated pathogens, which will hold great promise for enhancing disease surveillance, early diagnosis, and targeted intervention strategies, ultimately contributing to improved BRDC management and cattle health outcomes. Full article
(This article belongs to the Special Issue Animal Viral Infectious Diseases)
Show Figures

Figure 1

14 pages, 694 KB  
Article
In Vitro Antiviral Activity of the Fungal Metabolite 6-Pentyl-α-Pyrone Against Bovine Coronavirus: A Translational Study to SARS-CoV-2
by Violetta Iris Vasinioti, Amienwanlen Eugene Odigie, Maria Stella Lucente, Luca Del Sorbo, Cristiana Catella, Elisabetta Casalino, Maria Michela Salvatore, Alessia Staropoli, Francesco Vinale, Maria Tempesta, Filomena Fiorito, Anna Andolfi, Alessio Buonavoglia, Annamaria Pratelli and Paolo Capozza
Vet. Sci. 2025, 12(7), 634; https://doi.org/10.3390/vetsci12070634 - 2 Jul 2025
Viewed by 948
Abstract
The recent COVID-19 pandemic has prompted the scientific community to prioritize the discovery of preventive methods and new therapeutics, including the investigation of natural compounds with antiviral potential. Fungal secondary metabolites (SMs) represent a promising source of antiviral drugs due to their structural [...] Read more.
The recent COVID-19 pandemic has prompted the scientific community to prioritize the discovery of preventive methods and new therapeutics, including the investigation of natural compounds with antiviral potential. Fungal secondary metabolites (SMs) represent a promising source of antiviral drugs due to their structural diversity and intrinsic biocompatibility. Herein, the antiviral activity of 6-pentyl-α-pyrone (6PP) against bovine coronavirus (BCoV) has been evaluated in vitro. Considering that BCoV and SARS-CoV-2 are both members of the Betacoronavirus genus and share several key features, BCoV represents a valuable reference model for human coronavirus research. A non-cytotoxic dose of 6PP was used on MDBK cells to evaluate its antiviral activity against BCoV. Different experimental conditions were employed to examine cell monolayer protection both pre- and post-infection, as well as the potential inhibition of viral internalization. Overall, post-infection 6PP treatment reduced viral load and decreased viral internalization. Results were analyzed using viral titration and quantitative PCR, while data interpretation was performed by statistical software tools. This study presents a novel fluorescence quantification approach with high confidence demonstrated by its significant concordance with RT-qPCR results. These data suggest that 6PP could be an effective antiviral agent for BCoV, warranting further investigation of its role in coronavirus inhibition. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Graphical abstract

35 pages, 10583 KB  
Article
Leveraging Artificial Intelligence and Gene Expression Analysis to Identify Some Potential Bovine Coronavirus (BCoV) Receptors and Host Cell Enzymes Potentially Involved in the Viral Replication and Tissue Tropism
by Mohd Yasir Khan, Abid Ullah Shah, Nithyadevi Duraisamy, Reda Nacif ElAlaoui, Mohammed Cherkaoui and Maged Gomaa Hemida
Int. J. Mol. Sci. 2025, 26(3), 1328; https://doi.org/10.3390/ijms26031328 - 4 Feb 2025
Cited by 1 | Viewed by 1527
Abstract
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. [...] Read more.
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. Similarly, the roles of host proteases such as Furin, TMPRSS2, and Cathepsin-L (CTS-L), known to assist in the replication of other coronaviruses, have not been extensively explored for BCoV. This study aims to identify novel BCoV receptors and host proteases that modulate viral replication and tissue tropism. Bovine cell lines were infected with BCoV isolates from enteric and respiratory origins, and the host cell gene expression profiles post-infection were analyzed using next-generation sequencing (NGS). Differentially expressed genes encoding potential receptors and proteases were further assessed using in-silico prediction and molecular docking analysis. These analyses focused on known coronavirus receptors, including ACE2, NRP1, DPP4, APN, AXL, and CEACAM1, to identify their potential roles in BCoV infection. Validation of these findings was performed using the qRT-PCR assays targeting individual genes. We confirmed the gene expression profiles of these receptors and enzymes in some BCoV (+/−) lung tissues. Results revealed high binding affinities of 9-O-acetylated sialic acid and NRP1 to BCoV spike (S) and hemagglutinin-esterase (HE) proteins compared to ACE2, DPP4, and CEACAM1. Additionally, Furin and TMPRSS2 were predicted to interact with the BCoV-S polybasic cleavage site (RRSRR|A), suggesting their roles in S glycoprotein activation. This is the first study to explore the interactions of BCoV with multiple host receptors and proteases. Functional studies are recommended to confirm their roles in BCoV infection and replication. Full article
(This article belongs to the Special Issue Molecular Design of Artificial Receptors Using Virtual Approaches)
Show Figures

Figure 1

17 pages, 6227 KB  
Article
A Novel Vaccine for Bovine Diarrhea Complex Utilizing Recombinant Enterotoxigenic Escherichia coli and Salmonella Expressing Surface-Displayed Chimeric Antigens from Enterohemorrhagic Escherichia coli O157:H7
by Hernán Ramírez, Daniel A. Vilte, Daniela Hozbor, Eugenia Zurita, Daniela Bottero, María C. Casabonne, Ángel A. Cataldi, Andrés Wigdorovitz and Mariano Larzábal
Vaccines 2025, 13(2), 124; https://doi.org/10.3390/vaccines13020124 - 25 Jan 2025
Viewed by 1706
Abstract
Background/Objectives: Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a zoonotic pathogen primarily found in cattle, causes Hemolytic Uremic Syndrome (HUS) in humans, often through contaminated food. Its Type Three Secretion System (T3SS) facilitates gut colonization. In contrast, neonatal calf diarrhea (NCD) is mainly caused by [...] Read more.
Background/Objectives: Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a zoonotic pathogen primarily found in cattle, causes Hemolytic Uremic Syndrome (HUS) in humans, often through contaminated food. Its Type Three Secretion System (T3SS) facilitates gut colonization. In contrast, neonatal calf diarrhea (NCD) is mainly caused by pathogens like enterotoxigenic Escherichia coli (ETEC), Salmonella spp., Bovine Coronavirus (BCoV), and Bovine Rotavirus type A (BRoVA). This study engineered a chimeric protein combining EspB and Int280γ, two T3SS components, expressed in the membranes of Salmonella Dublin and ETEC. Methods: Immune responses in vaccinated mice and guinea pigs were assessed through ELISA assays. Results: Successful membrane anchorage and stability of the chimera were confirmed. Immune evaluations showed no enhancement from combining recombinant bacteria, indicating either bacterium suffices in a single formulation. Chimeric expression yielded immunogenicity equivalent to 10 µg of recombinant protein, with similar antibody titers. IgG1/IgG2a levels and Th1, Th2, and Th17 markers indicated a mixed immune response, providing broad humoral and cellular protection. Responses to BCoV, BRoVA, ETEC, and Salmonella antigens remained strong and did not interfere with chimera-specific responses, potentially boosting NCD vaccine efficacy. Conclusions: The chimera demonstrated robust immunogenicity, supporting its potential as a viable vaccine candidate against EHEC O157:H7. This approach could enhance NCD vaccine valency by offering broader protection against calf diarrhea while reducing HUS transmission risks to humans. Full article
(This article belongs to the Special Issue Vaccines and Passive Immune Strategies in Veterinary Medicine)
Show Figures

Figure 1

18 pages, 2792 KB  
Article
Genome-Wide Genomic Analysis and Evolutionary Insights into Bovine Coronavirus Strains in Southwest China
by Qingqing Li, Huili Bai, Yan Pan, Yuying Liao, Zhe Pei, Cuilan Wu, Chunxia Ma, Zhongwei Chen, Changting Li, Yu Gong, Jing Liu, Yangyan Yin, Ling Teng, Leping Wang, Ezhen Zhang, Tianchao Wei and Hao Peng
Vet. Sci. 2025, 12(1), 9; https://doi.org/10.3390/vetsci12010009 - 29 Dec 2024
Viewed by 1477
Abstract
The global epidemic of bovine coronavirus (BCoV) has caused enormous economic losses. The characterisation and genetic composition of endemic strains in Southwest China remain elusive. This study aimed to fill this gap by isolating three BCoV strains from this region and sequencing their [...] Read more.
The global epidemic of bovine coronavirus (BCoV) has caused enormous economic losses. The characterisation and genetic composition of endemic strains in Southwest China remain elusive. This study aimed to fill this gap by isolating three BCoV strains from this region and sequencing their whole genomes. To elucidate the genetic evolution and characterisation of the prevalent strains, the results of BCoV sequences were compared in GenBank, with a focus on genetic evolution, mutation, and recombination patterns. The results showed close homology between strains NN190313 and NN230328, while strain NN221214 showed less similarity to these two strains but clustered with the French strain of the European branch. Intriguingly, NN190313 and NN230328 were grouped with goat-derived BCoV strains from Jiangsu Province in Eastern China in the Asian–American branch. In addition, recombination analyses revealed significant signals between NN230328 and either a Chinese goat-derived strain (XJCJ2301G) or a Shandong strain (ShX310). This study highlights the importance of monitoring cross-species transmission between cattle and goats, especially in the mountainous areas of Southwest China where mixed farming occurs, and thus, the monitoring of cross-species transmission between cattle and goats is important for preventing new public health challenges, providing important insights for research on cross-species transmission, early prevention, and control measures, with potential applications in vaccine development. Full article
(This article belongs to the Section Veterinary Food Safety and Zoonosis)
Show Figures

Figure 1

15 pages, 4709 KB  
Review
Comparative Insights into Acute Gastroenteritis in Cattle Caused by Bovine Rotavirus A and Bovine Coronavirus
by Vjekoslava Kostanić, Valentina Kunić, Marina Prišlin Šimac, Marica Lolić, Tomislav Sukalić and Dragan Brnić
Vet. Sci. 2024, 11(12), 671; https://doi.org/10.3390/vetsci11120671 - 21 Dec 2024
Cited by 3 | Viewed by 4586
Abstract
Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine Rotavirus A (BoRVA) and bovine coronavirus (BCoV) are [...] Read more.
Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine Rotavirus A (BoRVA) and bovine coronavirus (BCoV) are among the most important enteric RNA viruses causing AGE in cattle. These viruses infect intestinal enterocytes, leading to cell damage and consequently to malabsorption and diarrhea. BoRVA primarily affects calves under 14 days old with gastrointestinal clinical signs, while BCoV affects all ages, causing gastrointestinal and respiratory distress. The economic impact of BoRVA and BCoV, along with their interspecies transmission potential, warrants attention. This concise review discusses the molecular structure, epidemiology, pathogenesis, clinical signs, diagnosis, treatment, and preventive measures of BoRVA and BCoV while providing a comparative analysis. By offering practical guidance on managing such viral infections in cattle, these comparative insights may prove valuable for veterinarians in clinical practice. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

10 pages, 1122 KB  
Article
Establishment of a Real-Time Reverse Transcription Recombinase-Aided Isothermal Amplification (qRT-RAA) Assay for the Rapid Detection of Bovine Respiratory Syncytial Virus
by Guanxin Hou, Siping Zhu, Hong Li, Chihuan Li, Xiaochen Liu, Chao Ren, Xintong Zhu, Qiumei Shi and Zhiqiang Zhang
Vet. Sci. 2024, 11(12), 589; https://doi.org/10.3390/vetsci11120589 - 24 Nov 2024
Cited by 1 | Viewed by 1311
Abstract
Background: Bovine respiratory syncytial virus (BRSV) is a significant cause of bovine respiratory disease, resulting in significant losses to the cattle industry. For rapid detection of BRSV, a real-time recombinase-aided isothermal amplification assay (qRT-RAA) based on the F gene of BRSV was developed [...] Read more.
Background: Bovine respiratory syncytial virus (BRSV) is a significant cause of bovine respiratory disease, resulting in significant losses to the cattle industry. For rapid detection of BRSV, a real-time recombinase-aided isothermal amplification assay (qRT-RAA) based on the F gene of BRSV was developed in this study. Results: The developed qRT-RAA assay showed good exponential amplification of the target fragment in 20 min at a constant temperature of 39 °C. And this assay displayed a high specificity for BRSV, without cross-reactions with Infectious Bovine Rhinotracheitis Virus (IBRV), Bovine Parainfluenza Virus Type 3 (BPIV3), Bovine Viral Diarrhea Virus (BVDV), and Bovine Coronavirus (BCoV). With the standard RNA of BRSV serving as a template, the limit of detection for qRT-RAA was 102 copies/μL. We examined ninety-seven clinical samples from cattle with respiratory disease using this method and determined a positive rate of 7.2% (7/97), consistent with results using the classical PCR method reported previously. Conclusions: A qRT-RAA assay for BRSV detection was established in this study. The method is specific and sensitive and can be completed within 20 min at 39 °C. These works demonstrate that the generated qRT-RAA assay is an effective diagnostic tool for rapidly detecting BRSV in resource-limited settings, which may be applied for the clinical detection of BRSV. Full article
Show Figures

Figure 1

16 pages, 13284 KB  
Article
Recovering Bathymetry Using BP Neural Network Combined with Modified Gravity–Geologic Method: A Case Study in the South China Sea
by Xiaodong Chen, Min Zhong, Mingzhi Sun, Dechao An, Wei Feng and Meng Yang
Remote Sens. 2024, 16(21), 4023; https://doi.org/10.3390/rs16214023 - 29 Oct 2024
Cited by 2 | Viewed by 1754
Abstract
The gravity–geologic method (GGM) is widely used for bathymetric predictions. However, the conventional GGM cannot be applied in regions without actual bathymetric data. The modified gravity–geologic method (MGGM) enhances the accuracy of bathymetric models by supplementing short-wavelength gravity anomalies with an a priori [...] Read more.
The gravity–geologic method (GGM) is widely used for bathymetric predictions. However, the conventional GGM cannot be applied in regions without actual bathymetric data. The modified gravity–geologic method (MGGM) enhances the accuracy of bathymetric models by supplementing short-wavelength gravity anomalies with an a priori bathymetric model, but it overlooks the significance of actual bathymetric data in the prediction process. In this study, we used the BP neural network (BPNN), incorporating shipborne depth soundings and coastline data as zero-depth estimates combined with the MGGM to produce a bathymetric model (BPGGM_BAT) for the South China Sea (105°E–122°E, 0°N–26°N). The results indicate that the BPGGM_BAT model decreases the root-mean-square (RMS) of bathymetry differences from 154.33 m to approximately 140.43 m relative to multibeam depth data. Additionally, the RMS differences between the BPGGM_BAT model and multibeam depth data show further improvements of 19.63%, 20.10%, and 19.54% when compared with the recently released SRTM15_V2.6, GEBCO_2022, and topo_V27.1 models, respectively. The precision of the BPGGM_BAT model is comparable to that of the SDUST2023BCO model, as verified using multibeam depth data in open sea regions. The BPGGM_BAT model outperforms existing models with RMS differences of 8.54% to 32.66%, as verified using Electronic Navigational Chart (ENC) bathymetric data in the regions around the Zhongsha and Nansha Islands. A power density analysis suggests that the BPGGM_BAT model is superior to the MGGM_BAT model for predicting seafloor topography within wavelengths shorter than 15 km, and its performance is closely consistent with that of the topo_V27.1 and SDUST2023BCO models. Overall, this integrated method demonstrates significant potential for improving the accuracy of bathymetric predictions. Full article
Show Figures

Graphical abstract

15 pages, 2356 KB  
Article
Bovine Coronavirus Prevalence and Risk Factors in Calves on Dairy Farms in Europe
by Anna Catharina Berge and Geert Vertenten
Animals 2024, 14(18), 2744; https://doi.org/10.3390/ani14182744 - 23 Sep 2024
Cited by 4 | Viewed by 2436
Abstract
This study evaluated prevalence and risk factors in health, management, and biosecurity of bovine coronavirus (BCoV) in neonatal and weaned dairy calves on 125 dairy farms in Europe. Nasal and fecal swabs from neonatal calves, weaned calves, and fresh cows were analyzed for [...] Read more.
This study evaluated prevalence and risk factors in health, management, and biosecurity of bovine coronavirus (BCoV) in neonatal and weaned dairy calves on 125 dairy farms in Europe. Nasal and fecal swabs from neonatal calves, weaned calves, and fresh cows were analyzed for BCoV using RT-PCR, and blood and bulk milk samples were collected for BCoV antibody levels using ELISA. Multiple logistic regression models with random effects of herds were used to evaluate the herd health status, husbandry, management, and biosecurity associated with BCoV shedding (nasal and/or fecal PCR positive samples) in neonatal and weaned calves. BCoV was detected in 80% of herds and in 24% of neonatal calves, 23% of weaned calves, and 5% of fresh cows. The biosecurity scored on 109 dairies with Biocheck.Ugent was, on average, 60% (external score 71%, internal score 47%), and there was no clear association between various biosecurity measures on BCoV shedding in calves. Dry cow vaccination against BCoV reduced shedding in neonatal calves, whereas it was linked to increased shedding in weaned calves in these farms. Several husbandry factors, including nutrition (transition milk feeding and milk feeding levels) and management (group housing and weaning age), were associated with BCoV shedding in calves. Full article
(This article belongs to the Special Issue Biosecuring Animal Populations)
Show Figures

Figure 1

20 pages, 1713 KB  
Article
Exploring the Influence of Contextual Factors and the Caregiving Process on Caregiver Burden and Quality of Life Outcomes of Heart Failure (HF) Dyads after a Hospital Discharge: A Mixed-Methods Study
by Tamara L. Oliver, Breanna Hetland, Myra Schmaderer, Ronald Zolty, Christopher Wichman and Bunny Pozehl
J. Clin. Med. 2024, 13(16), 4797; https://doi.org/10.3390/jcm13164797 - 15 Aug 2024
Viewed by 2361
Abstract
Background: This study explores heart failure (HF) dyadic contextual factors and caregiver burden during acute exacerbation hospitalization and discharge. Methods: It employed a mixed-methods approach, with HF dyads completing questionnaires and semi-structured interviews at a one-week post-discharge outpatient visit. Quantitative tools [...] Read more.
Background: This study explores heart failure (HF) dyadic contextual factors and caregiver burden during acute exacerbation hospitalization and discharge. Methods: It employed a mixed-methods approach, with HF dyads completing questionnaires and semi-structured interviews at a one-week post-discharge outpatient visit. Quantitative tools included the SF-12 Quality of Life, Zarit Burden Interview (ZBI), Bakas Caregiving Outcomes Scale (BCOS), and Self-Care of Heart Failure Index v. 6 (SCHFI). Thematic analysis was conducted on interview data to assess caregiver burden, disease trajectory, comorbidities, caregiving time, and employment status. Results: Twelve HF dyads participated, with caregivers (six female, six male) averaging 65.76 years. The ZBI indicated a low caregiver burden (median score of 15), but qualitative data revealed a higher perceived burden related to social isolation, future fears, and caregiver dependence. Male caregivers reported a lower burden than females. Positive goal congruence was noted in caregiving hours and HF management compliance. HF patients had a 10-year survival prediction of 22.75% per the Charlson Comorbidity Index, with 69% in NYHA class III and an average ejection fraction of 37.7%. Caregivers working full-time and caring for higher NYHA-class patients showed higher ZBI and BCOS scores. Conclusions: The study highlights the need for mixed methods and longitudinal research to understand HF disease trajectory and caregiver burden, emphasizing the importance of including caregivers in HF education and screening for perceived burden to improve outcomes and reduce re-hospitalizations. Full article
Show Figures

Figure 1

26 pages, 1057 KB  
Review
Advances in Laboratory Diagnosis of Coronavirus Infections in Cattle
by Shaun van den Hurk, Girija Regmi, Hemant K. Naikare and Binu T. Velayudhan
Pathogens 2024, 13(7), 524; https://doi.org/10.3390/pathogens13070524 - 21 Jun 2024
Cited by 4 | Viewed by 3072
Abstract
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the [...] Read more.
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry. Full article
(This article belongs to the Special Issue Diagnostics of Emerging and Re-Emerging Pathogens)
Show Figures

Figure 1

13 pages, 1607 KB  
Article
Humoral Immune Response in Immunized Sheep with Bovine Coronavirus Glycoproteins Delivered via an Adenoviral Vector
by Annamaria Pratelli, Paolo Capozza, Sergio Minesso, Maria Stella Lucente, Francesco Pellegrini, Maria Tempesta, Valentina Franceschi, Canio Buonavoglia and Gaetano Donofrio
Pathogens 2024, 13(7), 523; https://doi.org/10.3390/pathogens13070523 - 21 Jun 2024
Cited by 6 | Viewed by 1626
Abstract
Bovine coronavirus (BCoV) is distributed globally and mainly causes different clinical manifestations: enteric diarrhea in calves, winter dysentery in adults, and respiratory symptoms in cattle of all ages. Low mortality and high morbidity are the hallmarks of BCoV infection, usually associated with substantial [...] Read more.
Bovine coronavirus (BCoV) is distributed globally and mainly causes different clinical manifestations: enteric diarrhea in calves, winter dysentery in adults, and respiratory symptoms in cattle of all ages. Low mortality and high morbidity are the hallmarks of BCoV infection, usually associated with substantial economic losses for the livestock industry. Vaccination, combined with the implementation of biosecurity measures, is the key strategy for the prevention of infections. This pilot study evaluates the immunogenicity of a recombinant vaccine containing two BCoV antigens (S and M) in sheep, compared to vaccines containing only the M or S protein. Three groups of sheep were inoculated intramuscularly at day 0 and day 21 with recombinant adenoviruses expressing BCoV S protein (AdV-BCoV-S), BCoV M protein (AdV-BCoV-M), or both proteins (AdV-BCoV-S + M). Serum antibodies were evaluated using immunofluorescence (IF) and serum neutralization (SN) tests. Moderate seroconversion was observed by day 21, but serum antibodies detected via SN increased from 1:27.5 (day 21) to 1:90 (day 28) in sheep inoculated with the recombinant AdV expressing both the S- and M-BCoV proteins. Based on the SN results, a repeated-measures ANOVA test indicated a more significant difference in immune response between the three groups (F = 20.47; p < 0.001). The experimental investigation produced satisfactory results, highlighting that the S + M recombinant vaccine was immunogenic, stimulating a valid immune response. Despite some inherent limitations, including a small sample size and the absence of challenge tests, the study demonstrated the efficacy of the immune response induced via the recombinant vaccine containing both S and M proteins compared to that induced via the individual proteins S or M. Full article
(This article belongs to the Section Vaccines and Therapeutic Developments)
Show Figures

Figure 1

Back to TopTop