Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (440)

Search Parameters:
Keywords = BMSC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2859 KB  
Article
Cells Derived from Concentrated Growth Factor Exhibit a Multilineage Differentiation Capacity
by Laura Giannotti, Nadia Calabriso, Francesco Spedicato, Andrea Palermo, Benedetta Di Chiara Stanca, Christian Demitri, Maria Antonietta De Sangro, Maria Annunziata Carluccio, Fabrizio Damiano, Luisa Siculella and Eleonora Stanca
Int. J. Mol. Sci. 2025, 26(17), 8646; https://doi.org/10.3390/ijms26178646 - 5 Sep 2025
Viewed by 44
Abstract
Concentrated growth factor (CGF) is an autologous blood-derived product widely used in regenerative medicine due to its high concentration of growth factors and platelets. In this study, the ability of primary stem cells isolated from human CGF to differentiate into adipocytes, endothelial cells, [...] Read more.
Concentrated growth factor (CGF) is an autologous blood-derived product widely used in regenerative medicine due to its high concentration of growth factors and platelets. In this study, the ability of primary stem cells isolated from human CGF to differentiate into adipocytes, endothelial cells, and neuronal-like cells was evaluated in vitro. CGF primary cells (CPCs) were obtained from CGF fragments and characterized after one month in culture. These cells were positive for the surface markers CD105, CD45, CD31, and CD14, and also expressed mRNA levels of the stemness markers Nanog and Oct3/4 comparable to human bone marrow mesenchymal stem cells (BMSCs). Results showed that, following appropriate differentiation protocols, CPCs, similarly to BMSCs, were able to differentiate into adipogenic, endothelial, and neuronal lineages, acquiring specific phenotypic and molecular markers. Adipogenic induction resulted in lipid accumulation and the upregulation of key genes, including PLIN2, FABP4, CD36, and FASN. Under pro-endothelial conditions, the cells exhibited increased expression of endothelial markers, eNOS, VEGFR-2, and CD31. Neuronal induction promoted the expression of β-tubulin III, Nestin, and Neurofilament. Overall, this work highlights the remarkable plasticity of CPCs and supports their potential application in multilineage regenerative therapies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

30 pages, 7652 KB  
Article
Advancing Scaffold Architecture for Bone Tissue Engineering: A Comparative Study of 3D-Printed β-TCP Constructs in Dynamic Culture with pBMSC
by Yannick M. Sillmann, Ana M. P. Baggio, Pascal Eber, Benjamin R. Freedman, Cynthia Liu, Youssef Jounaidi, Alexander Schramm, Frank Wilde and Fernando P. S. Guastaldi
J. Funct. Biomater. 2025, 16(9), 327; https://doi.org/10.3390/jfb16090327 - 4 Sep 2025
Viewed by 213
Abstract
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation [...] Read more.
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation of porcine bone marrow-derived mesenchymal stem cells (pBMSCs) cultured in a rotational oxygen-permeable bioreactor system (ROBS). Three-dimensionally (3D) printed beta-tricalcium phosphate (β-TCP) scaffolds with pore sizes of 500 µm and 1000 µm were seeded with pBMSC and cultured for 7 and 14 days under dynamic perfusion conditions. Gene expression analysis revealed significantly higher levels of osteogenic markers (Runx2, BMP-2, ALP, Osx, Col1A1) in the 1000 µm group, particularly at the early time point, with the later-stage marker Osteocalcin (Ocl) rising faster and higher in the 1000 µm group, after a lower expression at 7 days. ALP activity assays corroborated these findings. Despite having lower mechanical strength, the 1000 µm scaffolds supported a homogeneous cell distribution and high viability across all regions. These results suggest that larger pore sizes enhance early osteogenic commitment by improving nutrient transport and fluid flow in dynamic culture. These findings also support the use of larger-pore scaffolds in bioreactor-based preconditioning strategies and underscore the clinical importance of promoting early osteogenic differentiation to reduce in vitro culture time, an essential consideration for the timely preparation of implantable grafts in bone tissue engineering. Full article
Show Figures

Figure 1

15 pages, 4019 KB  
Article
Impact of Acute Myeloid Leukemia Cells on the Metabolic Function of Bone Marrow Mesenchymal Stem Cells
by Helal Ahmed, Pradeep Kumar Patnana, Yahya S. Al-Matary, Maren Fiori, Jan Vorwerk, Marah H. Ahmad, Eva Dazert, Lorenz Oelschläger, Axel Künstner, Bertram Opalka, Nikolas von Bubnoff and Cyrus Khandanpour
Int. J. Mol. Sci. 2025, 26(17), 8301; https://doi.org/10.3390/ijms26178301 - 27 Aug 2025
Viewed by 433
Abstract
Acute myeloid leukemia (AML) proliferation is significantly influenced by the interactions between leukemia blasts and the bone marrow (BM) microenvironment. Specifically, bone marrow mesenchymal stem cells (BMSCs) derived from AML patients (AML-MSCs) are known to support leukemia growth and facilitate disease progression. Studies [...] Read more.
Acute myeloid leukemia (AML) proliferation is significantly influenced by the interactions between leukemia blasts and the bone marrow (BM) microenvironment. Specifically, bone marrow mesenchymal stem cells (BMSCs) derived from AML patients (AML-MSCs) are known to support leukemia growth and facilitate disease progression. Studies have demonstrated that the transfer of mitochondria from MSCs to AML blasts not only aids in disease progression but also contributes to chemotherapy resistance. Furthermore, BM stromal cells can trigger a metabolic shift in malignant cells from mitochondrial respiration to glycolysis, which enhances both growth and chemo-resistance. This study focuses on identifying transcriptional and metabolic alterations in AML-MSCs to uncover potential targeted therapies for AML. We employed RNA sequencing and microarray analysis on MSCs cocultured with leukemic cells (MLL-AF9) and on MSCs isolated from both non-leukemic and MLL-AF9 leukemic mice. The Gene Set Enrichment Analysis (GSEA) indicated a significant downregulation of gene sets associated with oxidative phosphorylation and glycolysis in AML-MSCs. Furthermore, coculture of MSCs from wild-type mice (WT-MSCs) and a healthy donor individual (HD-MSCs) with AML cells demonstrated reduced oxidative phosphorylation and glycolysis. These metabolic changes were consistent in AML-MSCs derived from both leukemic mice and patients. Our results indicate that AML cells diminish the metabolic capacity of MSCs, specifically targeting oxidative phosphorylation and glycolysis. These findings suggest potential metabolic vulnerabilities that could be exploited to develop more effective therapeutic strategies for AML. Full article
(This article belongs to the Special Issue Immunotherapy Versus Immune Modulation of Leukemia)
Show Figures

Figure 1

13 pages, 2141 KB  
Article
Selenium-Containing Nano-Micelles Delay the Cellular Senescence of BMSCs Under Oxidative Environment and Maintain Their Regenerative Capacity
by Zirui He, Fangru Xie, Chuanhao Sun, Xuan Wang, Fan Zhang, Yan Zhang, Changsheng Liu and Yuan Yuan
Bioengineering 2025, 12(9), 920; https://doi.org/10.3390/bioengineering12090920 - 26 Aug 2025
Viewed by 489
Abstract
The cellular senescence and functional decline of stem cells are primary contributors to the reduced regenerative capacity and weakened disease resistance in aged tissues. Among the various factors involved, oxidative stress resulting from the accumulation of reactive oxygen species (ROS) is a key [...] Read more.
The cellular senescence and functional decline of stem cells are primary contributors to the reduced regenerative capacity and weakened disease resistance in aged tissues. Among the various factors involved, oxidative stress resulting from the accumulation of reactive oxygen species (ROS) is a key driver of stem cell senescence. In an oxidative environment, cells continuously generate ROS, which accelerates cellular senescence and leads to functional deterioration. To intervene in the cellular senescence process of stem cells under such conditions, we selected bone marrow mesenchymal stem cells (BMSCs) as the model system and developed ROS-responsive selenium (Se)-containing nano-micelles capable of efficiently scavenging intracellular ROS. The optimal formulation was determined by modulating the selenium content. Analysis of cellular senescence markers and regenerative capacity reveals that nano-micelles containing 8% Se (Wt %), at a concentration of 15 μg/mL, can significantly modulate ROS levels in BMSCs under oxidative stress, thereby effectively delaying cellular senescence and preserving the osteogenic differentiation potential of BMSCs. These findings offer a promising strategy for mitigating stem cell senescence. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Graphical abstract

15 pages, 6599 KB  
Article
Low Expression of Selenoprotein S Modulates Osteogenic Differentiation Through Bidirectional Regulation of the SP7HSP47/COL1A1/SPARC Axis
by Hao Wu, Yun-Shan Zhao, Chun-Shen Li, Jing-Yi Shi, Yi Li, Liang-Qiu-Yue Zhong, Yan Liu and Xi Chen
Curr. Issues Mol. Biol. 2025, 47(9), 677; https://doi.org/10.3390/cimb47090677 - 23 Aug 2025
Viewed by 382
Abstract
Previous studies revealed that low expression of Selenoprotein S (SELS) could enhance osteogenic differentiation, but the underlying mechanisms remain unclear. In this study, we aimed to elucidate the role of SELS and its transcription-factor-based regulatory mechanism during osteogenic differentiation. In comparison with 12-week-old [...] Read more.
Previous studies revealed that low expression of Selenoprotein S (SELS) could enhance osteogenic differentiation, but the underlying mechanisms remain unclear. In this study, we aimed to elucidate the role of SELS and its transcription-factor-based regulatory mechanism during osteogenic differentiation. In comparison with 12-week-old mice, which represent the stage of stable osteogenic differentiation, 3-week-old mice, representing the active ossification stage, showed significantly higher levels of SELS in the mandible. Transcriptomic analysis revealed that SELS is primarily associated with extracellular matrix organization and collagen biosynthesis during mandibular development. In bone marrow mesenchymal stem cells (BMSCs) with SELS knockdown, SP7 levels were elevated after 7 days of osteogenic induction in vitro. Consistently, immunohistochemical and immunofluorescence staining confirmed increased SP7 expression in the mandibles of 7-week-old Sels knockout mice. Dual-luciferase reporter assays and chromatin immunoprecipitation (ChIP) analysis demonstrated that SP7 directly binds to the heat shock protein 47 (HSP47) promoter and negatively regulates its transcription. Consequently, upregulation of SP7 following SELS knockdown led to downregulation of HSP47 and concurrent upregulation of the SP7 downstream targets, collagen type I alpha 1 chain (COL1A1) and Secreted protein acidic and rich in cysteine (SPARC). SELS expression is upregulated during active osteogenesis. Low expression of SELS regulates osteogenic differentiation in a bidirectional and fine-tuned manner through the SP7HSP47/COL1A1/SPARC axis. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

13 pages, 2535 KB  
Article
Effects of Platelet-Rich Fibrin Treated with No-Ozone Cold Plasma on the Alkaline Phosphatase in Rat Bone Marrow Cells: An In Vitro Study
by Byul Bo Ra Choi and Gyoo Cheon Kim
Appl. Sci. 2025, 15(17), 9229; https://doi.org/10.3390/app15179229 - 22 Aug 2025
Viewed by 305
Abstract
Background/Objectives: Herein, we investigated the effect of platelet-rich fibrin (PRF) treatment combined with no-ozone cold plasma (NCP) on growth factor levels, rat bone-marrow stem cell (rBMSC) proliferation, and alkaline phosphatase (ALP) activity in the early stage of differentiation into osteoblasts. Methods: [...] Read more.
Background/Objectives: Herein, we investigated the effect of platelet-rich fibrin (PRF) treatment combined with no-ozone cold plasma (NCP) on growth factor levels, rat bone-marrow stem cell (rBMSC) proliferation, and alkaline phosphatase (ALP) activity in the early stage of differentiation into osteoblasts. Methods: The PRF used in the experiment was prepared by collecting blood from the jugular vein of rats, followed by centrifugation. The obtained PRF was treated with NCP, and the cell culture media were conditioned with the PRF extracts alone or with NCP-treated PRF extracts. Three different experimental groups were defined: no treatment (NT); cell culture media extracted from PRF (PRF); and cell culture media extracted from PRF treated with NCP (PRF + NCP). Enzyme-linked immunosorbent assays were performed to determine the levels of transforming growth factor (TGF)-β and platelet-derived growth factor (PDGF) AB. Water-soluble Tetrazolium-1 assay was performed to measure cell proliferation in rBMSCs. To analyze cell differentiation into osteoblasts, ALP staining and real-time PCR were performed. Results: Growth factor levels increased in response to treatment (TGF-β: p < 0.001, PDGF AB: p < 0.05), and the cell proliferation rate increased with treatment (145.29% and 150.05% for PRF and the PRF + NCP groups, respectively, relative to the NT group, p < 0.001). Evaluation of the ALP staining intensity and mRNA expression levels showed that the ALP activity was highest in the PRF + NCP group (p < 0.001). Conclusions: Our results confirmed that NCP treatment enhanced the release of several different growth factors contained in PRF to the culture media and that treatment with PRF and NCP increased the proliferation of rBMSCs and their differentiation into osteoblasts. Full article
(This article belongs to the Special Issue Oral Diseases and Clinical Dentistry)
Show Figures

Figure 1

25 pages, 22282 KB  
Article
Osteogenesis Activity and Porosity Effect of Biodegradable Mg-Ga Alloys Barrier Membrane for Guided Bone Regeneration: An in Vitro and in Vivo Study in Rabbits
by Qiyue Luo, Kang Gao, Yan Li, Ziyue Zhang, Su Chen and Jian Zhou
Biomedicines 2025, 13(8), 1940; https://doi.org/10.3390/biomedicines13081940 - 8 Aug 2025
Viewed by 321
Abstract
Background/Objectives: Guided bone regeneration (GBR) requires barrier membrane materials that balance biodegradation with mechanical stability. Magnesium (Mg)-based metals have good prospects for use as biodegradable barrier materials due to their elastic modulus, good biocompatibility, and osteogenic properties. In this study, gallium (Ga) [...] Read more.
Background/Objectives: Guided bone regeneration (GBR) requires barrier membrane materials that balance biodegradation with mechanical stability. Magnesium (Mg)-based metals have good prospects for use as biodegradable barrier materials due to their elastic modulus, good biocompatibility, and osteogenic properties. In this study, gallium (Ga) was introduced into Mg to enhance the mechanical strength and optimize the degradation behavior of the alloy, addressing the limitations of conventional magnesium alloys in corrosion control and strength retention. Methods: Mg-xGa alloys (x = 1.0–3.0%, wt.%) were evaluated for biocompatibility, degradation, and osteogenic potential. Corrosion rates were calculated via weight loss, Mg2+ release, and pH changes. Osteogenic effects were assessed using rat bone marrow mesenchymal stem cells (rBMSCs) for alkaline phosphatase (ALP) activity, extracellular matrix (ECM) mineralization, and osteogenic-related gene expression. Optimal alloy was fabricated into barrier membranes with different pore sizes (0.85–1.70 mm) for the rabbit mandibular defect to evaluate the porosity effect on new bone formation. Results: Cytocompatibility tests established a biosafety threshold for Ga content below 3 wt.%. Mg-1Ga demonstrated uniform corrosion with a rate of 1.02 mm/year over 28 days. In vitro, Mg-1Ga enhanced ALP activity, ECM mineralization, and osteogenic gene expression. The 1.70 mm pore size group exhibited superior new bone formation and bone mineral density at 4 and 8 weeks. Conclusions: These results highlight Mg-1Ga’s biocompatibility, controlled degradation, and osteogenic properties. Its optimized pore design bridges the gap between collagen membranes’ poor strength and titanium meshes’ non-degradability, offering a promising solution for GBR applications. Full article
(This article belongs to the Special Issue Biomedicine in Dental and Oral Rehabilitation)
Show Figures

Figure 1

16 pages, 3091 KB  
Article
Fabrication and Evaluation of Screen-Printed Electrodes on Chitosan Films for Cardiac Patch Applications with In Vitro and In Vivo Evaluation
by Yu-Hsin Lin, Yong-Ji Chen, Jen-Tsai Liu, Ching-Shu Yen, Yi-Zhen Lin, Xiu-Wei Zhou, Shu-Ying Chen, Jhe-Lun Hu, Chi-Hsiang Wu, Ching-Jung Chen, Pei-Leun Kang and Shwu-Jen Chang
Polymers 2025, 17(15), 2088; https://doi.org/10.3390/polym17152088 - 30 Jul 2025
Viewed by 514
Abstract
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the [...] Read more.
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the fabrication and evaluation of screen-printed electrodes (SPEs) on chitosan film as a novel platform for cardiac patch applications. Chitosan is a biodegradable and biocompatible natural polymer that provides an ideal substrate for SPEs, providing mechanical stability and promoting cell adhesion. Silver ink was employed to enhance electrochemical performance, and the electrodes exhibited strong adhesion and structural integrity under wet conditions. Mechanical testing and swelling ratio analysis were conducted to assess the patch’s physical robustness and aqueous stability. Silver ink was employed to enhance electrochemical performance, which was evaluated using cyclic voltammetry. In vitro, electrical stimulation through the chitosan–SPE patch significantly increased the expression of cardiac-specific genes (GATA-4, β-MHC, troponin I) in bone marrow mesenchymal stem cells (BMSCs), indicating early cardiogenic differentiation potential. In vivo, the implantation of the chitosan–SPE patch in a rat MI model demonstrated good tissue integration, preserved myocardial structure, and enhanced ventricular wall thickness, indicating that the patch has the potential to serve as a functional cardiac scaffold. These findings support the feasibility of screen-printed electrodes fabricated on chitosan film substrates as a cost-effective and scalable platform for cardiac repair, offering a foundation for future applications in cardiac tissue engineering. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

16 pages, 2767 KB  
Review
Breaking Barriers: The Role of the Bone Marrow Microenvironment in Multiple Myeloma Progression
by Aleksandra Agafonova, Chiara Prinzi, Angela Trovato Salinaro, Caterina Ledda, Alessia Cosentino, Maria Teresa Cambria, Carmelina Daniela Anfuso and Gabriella Lupo
Int. J. Mol. Sci. 2025, 26(15), 7301; https://doi.org/10.3390/ijms26157301 - 28 Jul 2025
Cited by 1 | Viewed by 546
Abstract
Multiple myeloma (MM) is an incurable malignancy characterized by the proliferation of abnormal plasma cells within the bone marrow, followed by potential dissemination to extramedullary sites. The bone marrow barrier (BMB) plays a pivotal role in plasma cell homing and disease progression. Bone [...] Read more.
Multiple myeloma (MM) is an incurable malignancy characterized by the proliferation of abnormal plasma cells within the bone marrow, followed by potential dissemination to extramedullary sites. The bone marrow barrier (BMB) plays a pivotal role in plasma cell homing and disease progression. Bone marrow endothelial cells (BMECs) and bone marrow stromal cells (BMSCs), through their interactions with MM cells, secrete adhesion molecules, angiogenic cytokines, anti-apoptotic factors, and growth-promoting signals that support MM cell survival and proliferation. This review examines the components of the BMB and the major pathways involved in MM pathogenesis. Targeting the interactions between MM cells and the BMB may offer novel therapeutic opportunities. Full article
Show Figures

Figure 1

9 pages, 635 KB  
Article
Osteogenic Potential of Osteolforte: Gene and Protein-Level Evaluation in Human Bone Marrow Stromal Cells
by Da-Sol Kim, Soo-Kyung Bae, Yeon-Ju Kwak, Geum-Joung Youn and Hye-Ock Jang
Curr. Issues Mol. Biol. 2025, 47(8), 588; https://doi.org/10.3390/cimb47080588 - 24 Jul 2025
Viewed by 409
Abstract
Osteolforte, a compound with potential bone-regenerative properties, was investigated for its effects on human bone marrow stromal cells (hBMSCs). This study aimed to evaluate its impact on cell viability, osteogenic differentiation, and both gene and protein expression using a combination of assays, [...] Read more.
Osteolforte, a compound with potential bone-regenerative properties, was investigated for its effects on human bone marrow stromal cells (hBMSCs). This study aimed to evaluate its impact on cell viability, osteogenic differentiation, and both gene and protein expression using a combination of assays, including CCK-8, Alizarin Red S staining, Quantitative Real-Time PCR (qRT-PCR), and Western blot analysis. The results demonstrated that Osteolforte significantly enhanced osteogenic differentiation in hBMSCs. Alizarin Red S staining revealed increased mineralization, indicating elevated calcium deposition. Gene expression analysis showed an upregulation of key osteogenic markers, including runt-related transcription factor-2 (RUNX-2), collagen type I (COL-1), and bone morphogenetic protein-2 (BMP-2), supporting the role of Osteolforte in promoting osteoblastic activity. In particular, the elevated expression of RUNX-2—a master transcription factor in osteoblast differentiation along with COL-1, a major bone matrix component, and BMP-2, a key bone morphogenetic protein—highlights the compound’s osteogenic potential. In conclusion, Osteolforte enhances early-stage osteogenesis and mineralization in hBMSCs and represents a promising candidate for bone regeneration. Full article
Show Figures

Figure 1

20 pages, 4241 KB  
Article
Strontium-Doped Ti3C2Tx MXene Coatings on Titanium Surfaces: Synergistic Osteogenesis Enhancement and Antibacterial Activity Evaluation
by Yancheng Lai and Anchun Mo
Coatings 2025, 15(7), 847; https://doi.org/10.3390/coatings15070847 - 19 Jul 2025
Viewed by 551
Abstract
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations [...] Read more.
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations endow high hydrophilicity and bioactivity. The coating was fabricated via anodic electrophoretic deposition (40 V, 2 min) of Ti3C2Tx nanosheets, followed by SrCl2 immersion to incorporate Sr2+. The coating morphology, phase composition, chemistry, hydrophilicity, mechanical stability, and Sr2+ release were characterized. In vitro bioactivity was assessed with rat bone marrow mesenchymal stem cells (BMSCs)—with respect to viability, proliferation, migration, alkaline phosphatase (ALP) staining, and Alizarin Red S mineralization—while the antibacterial efficacy was evaluated against Staphylococcus aureus (S. aureus) via live/dead staining, colony-forming-unit enumeration, and AlamarBlue assays. The Sr-doped MXene coating formed a uniform lamellar structure, lowered the water-contact angle to ~69°, and sustained Sr2+ release (0.36–1.37 ppm). Compared to undoped MXene, MXene/Sr enhanced BMSC proliferation on day 5, migration by 51%, ALP activity and mineralization by 47%, and reduced S. aureus viability by 49% within 24 h. Greater BMSCs activity accelerates early bone integration, whereas rapid bacterial suppression mitigates peri-implant infection—two critical requirements for implant success. Sr-doped Ti3C2Tx MXene thus offers a simple, dual-function surface-engineering strategy for dental and orthopedic implants. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

15 pages, 2606 KB  
Article
A Collagen Membrane Pretreated with Citrate Promotes Collagen Mineralization and Bone Regeneration
by Qi Zhang, Yewen Zhong, Xinlin He and Sui Mai
J. Funct. Biomater. 2025, 16(7), 261; https://doi.org/10.3390/jfb16070261 - 15 Jul 2025
Cited by 1 | Viewed by 800
Abstract
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone [...] Read more.
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone healing potential. Methods: C-CMC collagen membranes were prepared by lyophilization. The mineral composition and content were tested through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The micromorphology was observed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning probe microscopy (SPM). Physical and mechanical properties, including the swelling rate, porosity, hydrophilicity, tensile strength, Young’s modulus, degradation, and barrier function, were also evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in vitro to observe their behavior. An in vivo critical-size rat calvarial defect model was used to validate the effects of the membrane on bone regeneration. Results: The C-CMC collagen membrane was successfully synthesized as a collagen–hydroxyapatite complex with intrafibrillar mineralization, exhibiting improved mechanical properties and an optimal swelling rate, porosity, hydrophilicity, and degradation rate. Additionally, the C-CMC collagen membrane promoted BMSC proliferation, adhesion, and osteogenesis while preventing epithelial cell infiltration. In vivo experiments indicated that C-CMC collagen membranes significantly stimulated bone regeneration without causing systemic toxicity. Conclusions: Our findings suggest that the C-CMC collagen membrane possesses satisfactory physical and mechanical properties, along with good biocompatibility and efficacy in bone defect regeneration, making it a potential candidate for a bioactive guided bone regeneration membrane in clinical applications. Full article
Show Figures

Figure 1

17 pages, 3961 KB  
Article
Therapeutic Potential of Local Application of Fibroblast Growth Factor-2 to Periodontal Defects in a Preclinical Osteoporosis Model
by Shinta Mori, Sho Mano, Naoki Miyata, Tasuku Murakami, Wataru Yoshida, Kentaro Imamura and Atsushi Saito
Bioengineering 2025, 12(7), 748; https://doi.org/10.3390/bioengineering12070748 - 9 Jul 2025
Viewed by 575
Abstract
This study investigated the effects of local fibroblast growth factor (FGF)-2 application on periodontal healing in an osteoporotic model, both in vivo and in vitro. Wistar rats were divided into the ovariectomy (OVX) and Control groups. Periodontal defects were created 8 weeks post-OVX [...] Read more.
This study investigated the effects of local fibroblast growth factor (FGF)-2 application on periodontal healing in an osteoporotic model, both in vivo and in vitro. Wistar rats were divided into the ovariectomy (OVX) and Control groups. Periodontal defects were created 8 weeks post-OVX and treated with hydroxypropylcellulose (HPC) or FGF-2 + HPC. Healing was evaluated through micro-computed tomography and histological analyses at 2 and 4 weeks. In vitro, bone marrow mesenchymal stromal cells (BMSCs) were cultured with/without FGF-2 and assessed for cell morphology, viability/proliferation, and osteoblastic marker expression. Alkaline phosphatase (ALP) staining was also performed. FGF-2-treated defects in both groups showed significantly greater bone volume fraction, trabecular number, and thickness compared to HPC only. Histologically, FGF-2 enhanced new bone formation, with the greatest levels in the Control group. In vitro, OVX BMSCs showed reduced actin staining versus controls. FGF-2 increased cell viability/proliferation and protrusions in both groups while downregulating Alpl and Bglap expression levels and reducing ALP-positive cells. FGF-2 increased new bone formation in the OVX group, stimulated proliferation of OVX BMSCs, and modulated their differentiation. FGF-2 could enhance periodontal healing even under osteoporotic conditions, albeit to a lesser extent. Full article
(This article belongs to the Special Issue Recent Advances in Periodontal Tissue Engineering)
Show Figures

Graphical abstract

27 pages, 3554 KB  
Article
Impact of Poly(Lactic Acid) and Graphene Oxide Nanocomposite on Cellular Viability and Proliferation
by Karina Torres Pomini, Júlia Carolina Ferreira, Laira Mireli Dias da Silva, Paulo Gabriel Friedrich Totti, Monique Gonçalves Alves, Eliana de Souza Bastos Mazuqueli Pereira, Marcelo Melo Soares, Durvanei Augusto Maria and Rose Eli Grassi Rici
Pharmaceutics 2025, 17(7), 892; https://doi.org/10.3390/pharmaceutics17070892 - 9 Jul 2025
Cited by 1 | Viewed by 556
Abstract
Background/Objectives: Although the nanocomposite of poly(L-lactic acid) with graphene oxide (PLLA-GO) shows promise for tissue engineering, its specific bioactive interactions with diverse cell lineages during early tissue regeneration remain unclear. This study comprehensively investigated the in vitro multifaceted biocompatibility of PLLA-GO using human [...] Read more.
Background/Objectives: Although the nanocomposite of poly(L-lactic acid) with graphene oxide (PLLA-GO) shows promise for tissue engineering, its specific bioactive interactions with diverse cell lineages during early tissue regeneration remain unclear. This study comprehensively investigated the in vitro multifaceted biocompatibility of PLLA-GO using human fibroblasts (FN1 cells), murine mesenchymal stem cells (mBMSCs), and human umbilical vein endothelial cells (HUVECs). Methods: Morphological analyses were performed using optical and scanning electron microscopy, while proliferation dynamics were assessed via CFSE staining. Cell cycle progression was evaluated using flow cytometry, mitochondrial activity was examined through TMRE staining, and inflammatory cytokine profiling was performed via Cytometric Bead Array (CBA). Results: PLLA-GO exhibited primary biocompatibility across all evaluated cell lines, characterized by efficient adhesion and proliferation. However, significant cell-type-dependent modulations were observed. The FN1 cells exhibited proliferative adaptation but induced accelerated scaffold degradation, as evidenced by a substantial increase in cellular debris (5.93% control vs. 34.38% PLLA-GO; p = 0.03). mBMSCs showed a transient initial proliferative response and a significant 21.66% increase in TNF-α production (179.67 pg/mL vs. 147.68 pg/mL in control; p = 0.03). HUVECs demonstrated heightened mitochondrial sensitivity, exhibiting a 32.19% reduction in mitochondrial electrical potential (97.07% control vs. 65.82% PLLA-GO; p ≤ 0.05), alongside reductions in pro-inflammatory cytokines TNF-α (8.73%) and IL-6 (12.47%). Conclusions: The PLLA-GO processing method is crucial for its properties and subsequent cellular interactions. Therefore, rigorous and specific preclinical evaluations—considering both cellular contexts and fabrication—are indispensable to ensure the safety and therapeutic potential of PLLA-GO in tissue engineering and regenerative medicine. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

13 pages, 2740 KB  
Article
PVTF Nanoparticles Coatings with Tunable Microdomain Potential for Enhanced Osteogenic Differentiation
by Yang Yi, Chengwei Wu, Xuzhao He, Wenjian Weng, Weiming Lin and Kui Cheng
Coatings 2025, 15(6), 703; https://doi.org/10.3390/coatings15060703 - 11 Jun 2025
Viewed by 402
Abstract
Poly(vinylidene fluoride-trifluoroethylene) (PVTF) nanoparticles coatings with electrically heterogeneous microdomains were engineered to mimic the natural electromechanical microenvironment of bone tissue, offering a novel strategy to enhance osteogenesis. Through a biphasic solvent phase separation method, PVTF nanoparticles (NPs) were synthesized and spin-coated onto substrates, [...] Read more.
Poly(vinylidene fluoride-trifluoroethylene) (PVTF) nanoparticles coatings with electrically heterogeneous microdomains were engineered to mimic the natural electromechanical microenvironment of bone tissue, offering a novel strategy to enhance osteogenesis. Through a biphasic solvent phase separation method, PVTF nanoparticles (NPs) were synthesized and spin-coated onto substrates, followed by melt-recrystallization to achieve high β-phase crystallinity. The substrates were then subjected to corona poling, a process involving high-voltage corona discharge to electrically polarize and align the molecular dipoles. Structural and electrical characterization revealed tunable microdomain surface potentials and piezoelectric coefficients, correlating with enhanced hydrophilicity. Notably, microdomain potential—produced by controlled polarization—was shown to directly regulate cellular responses. In vitro studies demonstrated that a corona-poled PVTF NP coating significantly improved bone marrow mesenchymal stem cell (BMSC) proliferation and early osteogenic differentiation. This work establishes a surface electropatterning approach and highlights the critical role of electrical heterogeneity in bone regeneration, offering a novel strategy for bioactive biomaterial design. Full article
Show Figures

Figure 1

Back to TopTop