Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = BSS color

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8405 KB  
Article
YOLOv11-BSS: Damaged Region Recognition Based on Spatial and Channel Synergistic Attention and Bi-Deformable Convolution in Sanding Scenarios
by Yinjiang Li, Zhifeng Zhou and Ying Pan
Electronics 2025, 14(7), 1469; https://doi.org/10.3390/electronics14071469 - 5 Apr 2025
Cited by 3 | Viewed by 1204
Abstract
In order to address the problem that the paint surface of the damaged region of the body is similar to the color texture characteristics of the usual paint surface, which leads to the phenomenon of leakage or misdetection in the detection process, an [...] Read more.
In order to address the problem that the paint surface of the damaged region of the body is similar to the color texture characteristics of the usual paint surface, which leads to the phenomenon of leakage or misdetection in the detection process, an algorithm for detecting the damaged region of the body based on the improved YOLOv11 is proposed. Firstly, bi-deformable convolution is proposed to optimize the convolution kernel shape offset direction, which effectively improves the feature representation power of the backbone network; secondly, the C2PSA-SCSA module is designed to construct the coupling between spatial attention and channel attention, which enhances the perceptual power of the backbone network, and makes the model pay better attention to the damaged region features. Then, based on the GSConv module and the DWConv module, we build the slim-neck feature fusion network based on the GSConv module and DWConv module, which effectively fuses local features and global features to improve the saturation of semantic features; finally, the Focaler-CIoU border loss function is designed, which makes use of the principle of Focaler-IoU segmented linear mapping, adjusts the border loss function’s attention to different samples, and improves the model’s convergence of feature learning at various scales. The experimental results show that the enhanced YOLOv11-BSS network improves the precision rate by 7.9%, the recall rate by 1.4%, and the mAP@50 by 3.7% over the baseline network, which effectively reduces the leakage and misdetection of the damaged areas of the car body. Full article
Show Figures

Figure 1

24 pages, 13958 KB  
Article
Mapping of Agate-like Soil Cover Structures Based on a Multitemporal Soil Line Using Neural Network Filtering of Remote Sensing Data
by Dmitry I. Rukhovich, Polina V. Koroleva, Alexey D. Rukhovich and Mikhail A. Komissarov
Geosciences 2025, 15(1), 32; https://doi.org/10.3390/geosciences15010032 - 16 Jan 2025
Viewed by 1006
Abstract
The present study focuses on analysis of the soil cover structure (SCS, SCSs), which is the most detailed level of soil organization in space. The detail in which complex SCS can be studied is often insufficient, since until now it has not been [...] Read more.
The present study focuses on analysis of the soil cover structure (SCS, SCSs), which is the most detailed level of soil organization in space. The detail in which complex SCS can be studied is often insufficient, since until now it has not been possible to map it over large areas at scales larger than 1:10,000. To increase the detail in which SCS can be studied, the methods of identifying the bare soil surface (BSS) and averaging its multitemporal spectral characteristics were used, which opens up new possibilities for mapping complex SCS over large areas. New SCSs of leached chernozems (Luvic Chernic Phaeozem) were discovered, which can produce patterns on satellite images similar to sections of Timan agate—agate-like soil cover structures (ASCS, ASCSs). ASCSs are formed on Quaternary sediments of varying thickness from 0.3 to 6 m, underlain by carbonate and red sediments of the Permian period. The ASCS pattern is formed by ring-shaped stripes (rings) of different colors and brightness, which are determined by the carbonate and red-colored inclusions involved in the arable horizon. Eight soil varieties were identified to describe ASCSs during the study. According to the WRB, there are six main soil types, and according to the classification of Russian soils in 1977, there are four types. ASCSs were identified over large areas and soil maps of ASCSs were constructed using multitemporal spectral characteristics of the BSS in the form of multitemporal soil line coefficients. Neural networks were used to identify BSS on big remote sensing data. ASCSs have contrasting soil properties and contrasting fertility (productivity of agricultural crops). ASCS maps can serve as the basis for task maps of precision farming systems. Perhaps ASCSs are unique objects for the area of chernozem distribution, where in one soil profile there are rocks with an age from the first thousand years (Quaternary) to 250 million years (Permian). Chernozems are fertile, studied, mercilessly exploited, but sometimes they are simply beautiful—agate-like. Full article
Show Figures

Figure 1

34 pages, 1711 KB  
Article
An Analysis of the Mixed IEEE 802.11ax Wireless Networks in the 5 GHz Band
by Marek Natkaniec and Natalia Bieryt
Sensors 2023, 23(10), 4964; https://doi.org/10.3390/s23104964 - 22 May 2023
Cited by 8 | Viewed by 7012
Abstract
This paper presents an analysis of the IEEE 802.11ax networks’ coexistence with legacy stations, namely IEEE 802.11ac, IEEE 802.11n, and IEEE 802.11a. The IEEE 802.11ax standard introduces several new features that can enhance network performance and capacity. The legacy devices that do not [...] Read more.
This paper presents an analysis of the IEEE 802.11ax networks’ coexistence with legacy stations, namely IEEE 802.11ac, IEEE 802.11n, and IEEE 802.11a. The IEEE 802.11ax standard introduces several new features that can enhance network performance and capacity. The legacy devices that do not support these features will continue to coexist with newer devices, creating a mixed network environment. This usually leads to a deterioration in the overall performance of such networks; therefore, in the paper, we want to show how we can reduce the negative impact of legacy devices. In this study, we investigate the performance of mixed networks by applying various parameters to both the MAC and PHY layers. We focus on evaluating the impact of the BSS coloring mechanism introduced to the IEEE 802.11ax standard on network performance. We also examine the impact of A-MPDU and A-MSDU aggregations on network efficiency. Through simulations, we analyze the typical performance metrics such as throughput, mean packet delay, and packet loss of mixed networks with different topologies and configurations. Our findings indicate that implementing the BSS coloring mechanism in dense networks can increase throughput by up to 43%. We also show that the presence of legacy devices in the network disrupts the functioning of this mechanism. To address this, we recommend using an aggregation technique, which can improve throughput by up to 79%. The presented research revealed that it is possible to optimize the performance of mixed IEEE 802.11ax networks. Full article
(This article belongs to the Special Issue Recent Advances in Mobile and Wireless Communication Networks)
Show Figures

Figure 1

18 pages, 3523 KB  
Article
Integrated Metabolomic and Transcriptomic Analyses Reveal the Basis for Carotenoid Biosynthesis in Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots
by Qingming Ren, Xiaoxi Zhen, Huiyu Gao, Yinpei Liang, Hongying Li, Juan Zhao, Meiqiang Yin, Yuanhuai Han and Bin Zhang
Metabolites 2022, 12(11), 1010; https://doi.org/10.3390/metabo12111010 - 23 Oct 2022
Cited by 7 | Viewed by 2562
Abstract
Carotenoids are important compounds of quality and coloration within sweet potato storage roots, but the mechanisms that govern the accumulation of these carotenoids remain poorly understood. In this study, metabolomic and transcriptomic analyses of carotenoids were performed using young storage roots (S2) and [...] Read more.
Carotenoids are important compounds of quality and coloration within sweet potato storage roots, but the mechanisms that govern the accumulation of these carotenoids remain poorly understood. In this study, metabolomic and transcriptomic analyses of carotenoids were performed using young storage roots (S2) and old storage roots (S4) from white-fleshed (variety S19) and yellow-fleshed (variety BS) sweet potato types. S19 storage roots exhibited significantly lower total carotenoid levels relative to BS storage roots, and different numbers of carotenoid types were detected in the BS-S2, BS-S4, S19-S2, and S19-S4 samples. β-cryptoxanthin was identified as a potential key driver of differences in root coloration between the S19 and BS types. Combined transcriptomic and metabolomic analyses revealed significant co-annotation of the carotenoid and abscisic acid (ABA) metabolic pathways, PSY (phytoene synthase), CHYB (β-carotene 3-hydroxylase), ZEP (zeaxanthin epoxidase), NCED3 (9-cis-epoxycarotenoid dioxygenase 3), ABA2 (xanthoxin dehydrogenase), and CYP707A (abscisic acid 8’-hydroxylase) genes were found to be closely associated with carotenoid and ABA content in these sweet potato storage roots. The expression patterns of the transcription factors OFP and FAR1 were associated with the ABA content in these two sweet potato types. Together, these results provide a valuable foundation for understanding the mechanisms governing carotenoid biosynthesis in storage roots, and offer a theoretical basis for sweet potato breeding and management. Full article
(This article belongs to the Special Issue Plant Metabolic Genetic Engineering)
Show Figures

Graphical abstract

16 pages, 873 KB  
Article
Towards Community Rooted Research and Praxis: Reflections on the BSS Safety and Youth Justice Project
by Uriel Serrano, David C. Turner, Gabriel Regalado and Alejandro Banuelos
Soc. Sci. 2022, 11(5), 195; https://doi.org/10.3390/socsci11050195 - 29 Apr 2022
Cited by 12 | Viewed by 3892
Abstract
This article focuses on the Brothers, Sons, Selves (BSS) Safety and Youth Justice project to describe what we refer to as a Community Rooted and Research Praxis (CRRP) approach. BSS is an organizing coalition for boys, young men, and masculine-identifying youth of color [...] Read more.
This article focuses on the Brothers, Sons, Selves (BSS) Safety and Youth Justice project to describe what we refer to as a Community Rooted and Research Praxis (CRRP) approach. BSS is an organizing coalition for boys, young men, and masculine-identifying youth of color that works to decriminalize communities of color. In 2018, BSS developed a survey to capture how safety and justice is experienced by youth of color across multiple contexts and institutions in Los Angeles County. With over 3000 surveys collected, the findings have now been used to promote racial equity and decriminalize youth at the local and state level. Building on a Black Radical Tradition, including abolitionists struggles against the carceral state, in this paper, we name CRRP as a framework to describe BSS’s community engaged scholarship. In other words, we contend that the CRRP approach is a mode of community engaged scholarship that brings together youth, university affiliated adults, and community organizations to engage in youth participatory action, research, political education, and collective struggle. Full article
Show Figures

Figure 1

24 pages, 5115 KB  
Article
Improving Spatial Reuse of Wireless LAN Uplink Using BSS Color and Proximity Information
by Hyerin Kim and Jungmin So
Appl. Sci. 2021, 11(22), 11074; https://doi.org/10.3390/app112211074 - 22 Nov 2021
Cited by 7 | Viewed by 4425
Abstract
With the density of wireless networks increasing rapidly, one of the major goals in next-generation wireless LANs (Local Area Networks) is to support a very dense network with a large number of closely deployed APs (Access Points) and crowded users. However, the CSMA [...] Read more.
With the density of wireless networks increasing rapidly, one of the major goals in next-generation wireless LANs (Local Area Networks) is to support a very dense network with a large number of closely deployed APs (Access Points) and crowded users. However, the CSMA (Carrier-Sense Multiple Access)-based medium access control of current wireless network systems suffers from significantly degraded performance when the network becomes dense. Recent WLAN (Wireless Local Area Networks) standards include measures for increasing spatial reuse such as BSS (Basic Service Set) coloring, but the schemes based on BSS coloring such as OBSS/PD (Overlapping BSS/Preamble Detection) have limitations in improving spatial reuse. In this paper, we propose a spatial reuse method for uplink which can utilize BSS color and proximity information to improve the efficiency of carrier sensing and thus spatial reuse. Specifically, through the BSS color and the proximity information, a node receiving a preamble can figure out how far the receiver of the ongoing traffic is located. This information is used to determine whether the node should aggressively start transmitting or defer its transmission to protect the ongoing transmission. Simulation results show that the proposed method outperforms existing methods in terms of throughput and fairness. Full article
(This article belongs to the Special Issue Next-Generation Wireless Network Protocol Design)
Show Figures

Figure 1

12 pages, 3943 KB  
Article
Fusion Method to Estimate Heart Rate from Facial Videos Based on RPPG and RBCG
by Hyunwoo Lee, Ayoung Cho and Mincheol Whang
Sensors 2021, 21(20), 6764; https://doi.org/10.3390/s21206764 - 12 Oct 2021
Cited by 13 | Viewed by 4626
Abstract
Remote sensing of vital signs has been developed to improve the measurement environment by using a camera without a skin-contact sensor. The camera-based method is based on two concepts, namely color and motion. The color-based method, remote photoplethysmography (RPPG), measures the color variation [...] Read more.
Remote sensing of vital signs has been developed to improve the measurement environment by using a camera without a skin-contact sensor. The camera-based method is based on two concepts, namely color and motion. The color-based method, remote photoplethysmography (RPPG), measures the color variation of the face generated by reflectance of blood, whereas the motion-based method, remote ballistocardiography (RBCG), measures the subtle motion of the head generated by heartbeat. The main challenge of remote sensing is overcoming the noise of illumination variance and motion artifacts. The studies on remote sensing have focused on the blind source separation (BSS) method for RGB colors or motions of multiple facial points to overcome the noise. However, they have still been limited in their real-world applications. This study hypothesized that BSS-based combining of colors and the motions can improve the accuracy and feasibility of remote sensing in daily life. Thus, this study proposed a fusion method to estimate heart rate based on RPPG and RBCG by the BSS methods such as ensemble averaging (EA), principal component analysis (PCA), and independent component analysis (ICA). The proposed method was verified by comparing it with previous RPPG and RBCG from three datasets according to illumination variance and motion artifacts. The three main contributions of this study are as follows: (1) the proposed method based on RPPG and RBCG improved the remote sensing with the benefits of each measurement; (2) the proposed method was demonstrated by comparing it with previous methods; and (3) the proposed method was tested in various measurement conditions for more practical applications. Full article
(This article belongs to the Special Issue Advanced Signal Processing in Wearable Sensors for Health Monitoring)
Show Figures

Figure 1

Back to TopTop