Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Bosten Lake Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10754 KB  
Article
Accounting of Grassland Ecosystem Assets and Assessment of Sustainable Development Potential in the Bosten Lake Basin
by Zhichao Zhang, Zhoukang Li, Zhen Zhu and Yang Wang
Sustainability 2025, 17(8), 3460; https://doi.org/10.3390/su17083460 - 13 Apr 2025
Viewed by 479
Abstract
Assessing the ecosystem service value (ESV) of grasslands is crucial for sustainable resource management and environmental conservation. This study evaluates the spatiotemporal changes in grassland ecosystem services in the Bosten Lake Basin using long-term land use data (2000–2022). Employing the Patch-generating Land Use [...] Read more.
Assessing the ecosystem service value (ESV) of grasslands is crucial for sustainable resource management and environmental conservation. This study evaluates the spatiotemporal changes in grassland ecosystem services in the Bosten Lake Basin using long-term land use data (2000–2022). Employing the Patch-generating Land Use Simulation (PLUS) model, we develop three future scenarios—natural development, ecological protection, and economic priority—to predict grassland utilization trends. The findings reveal a continuous decline in grassland area and ecosystem service values, driven by climate change and human activities. Compared with 2022, all three scenarios indicate further degradation, but ecological protection measures significantly mitigate ESV loss. This study provides scientific insights for sustainable land management and policy-making, contributing to ecological restoration strategies under climate change impacts. The findings reveal the following: (1) Over the 22-year period, the grassland area in the Bosten Lake Basin has experienced an overall decline. Notably, the area of plain desert steppe grassland expanded from 626,179.41 ha to 1,223,506.62 ha, whereas plain meadow grassland reduced from 556,784.64 ha to 118,948.23 ha. (2) The total ecosystem service value of grasslands in the basin exhibited a marginally insignificant decrease, amounting to a reduction of 5.73422 billion CNY. The values for mountain desert, mountain desert steppe, mountain typical steppe, and mountain meadow grasslands were relatively low and showed minimal change. (3) In comparison to 2022, the projected areas of grassland under the three scenarios for 2000 show a substantial reduction, particularly in plain desert and hilly desert grasslands. The ecosystem service values across all scenarios are expected to decline in tandem with varying degrees of grassland degradation. This research underscores the impact of global warming and human activities on the shrinking grassland area and the diminishing ecosystem service values in the Bosten Lake Basin. The current state of grassland resources in the study area is under threat, highlighting the urgent need for strategic planning and conservation efforts to ensure sustainable development and ecological integrity. Full article
Show Figures

Figure 1

23 pages, 18483 KB  
Article
Characterization and Multi-Scenario Prediction of Habitat Quality Evolution in the Bosten Lake Watershed Based on the InVEST and PLUS Models
by Yang Wang, Ziyi Sheng, Haowei Wang, Xuan Xue, Jiaxin Hu and Yuhai Yang
Sustainability 2024, 16(10), 4202; https://doi.org/10.3390/su16104202 - 16 May 2024
Cited by 7 | Viewed by 1750
Abstract
Habitat quality is an important basis for human well-being and the achievement of sustainable development. Based on land-use data for the Bosten Lake Basin in 2000, 2005, 2010, 2015, and 2022, the PLUS and InVEST models are applied in this study to predict [...] Read more.
Habitat quality is an important basis for human well-being and the achievement of sustainable development. Based on land-use data for the Bosten Lake Basin in 2000, 2005, 2010, 2015, and 2022, the PLUS and InVEST models are applied in this study to predict and analyze land-use changes and explore the spatial and temporal evolution characteristics of the region’s habitat quality. Additionally, we use a geographic detector model to reveal the drivers of spatial variation in habitat quality. The results show that: (1) Land use in Bosten Lake Basin is dominated by grassland and bare land, with an area share of 93.21%. Habitat quality shows a trend of degradation followed by improvement, with a spatial pattern of high in the northwest and low in the southeast. (2) Habitat quality in 2030 increased from 2022 in all cases, with a mean of 0.354 for the natural development scenario, a maximum of 0.355 for the ecological development scenario, and a minimum of 0.353 for the economic development scenario. (3) The main drivers affecting habitat quality in the Bosten Lake watershed are DEM, mean annual precipitation (MAP), and GDP per capita. X1∩X4 (0.50) and X4∩X10 (0.51) are the interaction factors with the largest dominant effect in 2000, 2010 and 2020, respectively. Full article
Show Figures

Figure 1

18 pages, 11537 KB  
Article
A Study on the Spatial and Temporal Variation of Summer Surface Temperature in the Bosten Lake Basin and Its Influencing Factors
by Miyesier Jumai, Alimujiang Kasimu, Hongwu Liang, Lina Tang, Yimuranzi Aizizi and Xueling Zhang
Land 2023, 12(6), 1185; https://doi.org/10.3390/land12061185 - 6 Jun 2023
Cited by 6 | Viewed by 1643
Abstract
The land surface temperature (LST) is an important indicator reflecting the ecological environment condition. As a sensitive area to climate change, mastering the spatial and temporal changes of summer LST in the Bosten Lake basin (BLB) helps gain insight into the evolution of [...] Read more.
The land surface temperature (LST) is an important indicator reflecting the ecological environment condition. As a sensitive area to climate change, mastering the spatial and temporal changes of summer LST in the Bosten Lake basin (BLB) helps gain insight into the evolution of the thermal environment in the Bosten Lake basin and for long-term monitoring of the basic ecological changes in the basin. Based on MOD11A1 data from 2005 to 2020, this paper investigates the diurnal LST spatiotemporal series variation and its influencing factors in the Bosten Lake basin by using surface temperature class classification, trending analysis, the Hurst index, and geographic probes. The results show that (1) the wetland grasslands in and around the Bayinbruck steppe in the northwestern part of the study area exhibit a heat island effect during the day, while the opposite is true at night. In terms of temporal changes, LST changes in the BLB fluctuate widely, having a general rising and then decreasing trend. (2) The decreasing trend of LST from 2005 to 2020 is significant during the daytime and vice versa at night, and the change at night is greater than during the day. The areas with significantly higher diurnal LST in the future have all expanded compared to the area occupied by them now, with an overall trend of a steady increase. (3) The dominant factor of LST variation has the strongest explanatory power when altitude and NDVI are combined during the daytime and the strongest explanatory power when NPP and temperature are combined at night. Full article
Show Figures

Figure 1

17 pages, 4007 KB  
Article
Total Streamflow Variation for the Upper Catchment of Bosten Lake Basin in China Inferred from Tree-Ring Width Records
by Kexiang Liu, Tongwen Zhang, Huaming Shang, Yuting Fan, Shulong Yu, Shengxia Jiang, Weiyi Mao and Xinchun Liu
Forests 2023, 14(3), 622; https://doi.org/10.3390/f14030622 - 20 Mar 2023
Cited by 3 | Viewed by 1864
Abstract
Bosten Lake Basin not only is a major source of drinking water for the residents of the surrounding area, but also maintains the ecological balance of the region. However, with the influence of climate change and human activities, the water level of Bosten [...] Read more.
Bosten Lake Basin not only is a major source of drinking water for the residents of the surrounding area, but also maintains the ecological balance of the region. However, with the influence of climate change and human activities, the water level of Bosten Lake fluctuates sharply and has a great impact on the surrounding ecological environment. Therefore, the study of its historical water flow changes as a reference has become a focus of research. In this study, the radial growth of Schrenk spruces (Picea schrenkiana Fisch. et Mey.) significantly correlated with the tributary streamflow coming from the mountainous region near Bosten Lake Basin. On the basis of this good coherence, the tree-ring chronologies were used to reconstruct the streamflow for Huangshuigou River from the previous August to the present July (r = 0.766, p < 0.0001, n = 50). The reconstructed streamflow series matched observations well, explaining 63.3% of the variation in the observed streamflow of 1956–2005. Then, the sum of the streamflow reconstruction of Huangshuigou River and another two tree-ring-based streamflow reconstructions (Kaidu River and Qingshui River) was used to represent the hydrological variation of the upper catchment of Bosten Lake Basin, and the reconstruction sequence was 306 years. The 10.7, 5.5, and 2.1 year cycles of the power spectrum and wavelet analysis revealed that the runoff series reconstructed from tree-ring hydrometeorology was related to solar activity. Some dry and wet years in the reconstructed streamflow series of the upper catchment of Bosten Lake Basin corresponded to the historical record. During the wet years, the Indian Ocean was probably the main source of precipitation. Full article
(This article belongs to the Special Issue Response of Tree Rings to Climate Change and Climate Extremes)
Show Figures

Figure 1

17 pages, 8195 KB  
Article
Comparison of Typical Alpine Lake Surface Elevation Variations and Different Driving Forces by Remote Sensing Altimetry Method
by Yaming Pan, Weibing Du, Dandan Ma, Xiaoxuan Lyu and Chaoying Cheng
Int. J. Environ. Res. Public Health 2022, 19(24), 17090; https://doi.org/10.3390/ijerph192417090 - 19 Dec 2022
Cited by 2 | Viewed by 2232
Abstract
Alpine lakes play a significant role in improving watershed ecology, adjusting water storage, and managing regional water resources. They are also a valuable freshwater reservoir, flood storage, and species gene pool in Central Asia. This article validated the accuracy of the CryoSat-2 footprints [...] Read more.
Alpine lakes play a significant role in improving watershed ecology, adjusting water storage, and managing regional water resources. They are also a valuable freshwater reservoir, flood storage, and species gene pool in Central Asia. This article validated the accuracy of the CryoSat-2 footprints altimetry dataset for the Lake Bosten and Lake Issyk-Kul ranges. The time series for the surface elevations of the Central Asian alpine lakes Karakul and Chatyrkul were established, based on footprints altimetry data. The lake hydrological drivers were analyzed using remote sensing meteorological reanalysis data of the lake basins. The following main conclusions were reached. The CryoSat-2 footprints altimetry dataset has high confidence in lake surface elevation monitoring. Compared with Hydroweb monitoring results, the agreement between the monitoring results in the range between Lake Bosten and Lake Issyk-Kul are 0.96 and 0.84. The surface elevation of Lake Karakul shows an overall increasing trend with a variation rate of +7.7 cm/yr from 2010 to 2020, which has a positive correlation with the temperature in the basin. This indicates that the increased temperature, which results in the increased snow and ice meltwater in the basin, is the main driving force of the increased lake evolution. The lake surface elevation of Lake Chatyrkul shows an overall decreasing trend, with a variation rate of −9.9 cm/yr from 2010 to 2020, which has a negative correlation with the temperature in the basin. This suggests that Lake Chatyrkul is poorly recharged by snow and ice meltwater. The main driving force of its evolution is the increased evaporative output of the lake due to the increase in temperature. These conclusions prove that temperature and alpine glacial variability within the lake basin play an important role in lake surface elevation variations in alpine regions of Central Asia. Full article
Show Figures

Figure 1

13 pages, 4697 KB  
Article
Effects of Dynamic Changes of Soil Moisture and Salinity on Plant Community in the Bosten Lake Basin
by Jiawen Hou and Mao Ye
Sustainability 2022, 14(21), 14081; https://doi.org/10.3390/su142114081 - 28 Oct 2022
Cited by 2 | Viewed by 2201
Abstract
To estimate the potential risks of plant diversity reduction and soil salinization in the Bosten Lake Basin, the dynamic changes in the plant community and species diversity affected by soil moisture and salinity were analyzed from 2000 to 2020 based on remote sensing [...] Read more.
To estimate the potential risks of plant diversity reduction and soil salinization in the Bosten Lake Basin, the dynamic changes in the plant community and species diversity affected by soil moisture and salinity were analyzed from 2000 to 2020 based on remote sensing technology and field experiments. A model for simulating soil moisture, salinity, and the productivity of the plant communities was proposed. The results demonstrated that: (1) The soil moisture index (SMI) increased but the soil salinity index (SSI) decreased from 2000 to 2020 in the study areas. Accordingly, the plant community productivity indices, including the vegetation index (NDVI), enhanced vegetation index (EVI), and ratio vegetation index (RVI), exhibited an increasing trend. It was found that the Alpine meadow, Alpine steppe, and temperate steppe desert were the main types of plant communities in the study areas, accounting for 69% of its total area. (2) With increasing SMI or decreasing SSI, the vegetation productivity such as NDVI, RVI, and EVI all exhibited an increasing trend. With the increment of SMI, the species diversity indices of the Simpson, Shannon–Wiener, and Margalef exhibited a distinctly increasing trend. However, the indices of the Simpson, Shannon–Wiener, and Alatalo increased with the decreasing SSI. (3) The study discovered from the SVM model that the species diversity index was optimal when the soil salinity was 0–15 g/kg and the soil moisture was 12–30% in the study areas. It was found that soil moisture, not soil salinity, controls the plant species diversity change in the study areas. (4) A multiple linear regression model was established for simulating the effect of soil water-salinity on the vegetation productivity index at the watershed scale. The model indicated that higher salinity would reduce vegetation productivity and higher soil moisture would promote vegetation growth (except for RVI). The SSI had a higher impact on NDVI and EVI than the SMI in the study areas. This study would support decision-making on grassland ecosystem restoration and management in the other arid areas. Full article
(This article belongs to the Special Issue Landscape and Ecosystem Services Change in Arid Regions)
Show Figures

Figure 1

18 pages, 31116 KB  
Article
Hydrological Connectivity Improves the Water-Related Environment in a Typical Arid Inland River Basin in Xinjiang, China
by Chuanxiu Liu, Yaning Chen, Gonghuan Fang, Honghua Zhou, Wenjing Huang, Yongchang Liu, Xuanxuan Wang and Zhi Li
Remote Sens. 2022, 14(19), 4977; https://doi.org/10.3390/rs14194977 - 6 Oct 2022
Cited by 13 | Viewed by 4651
Abstract
Hydrological connectivity directly affects aquatic ecological processes, water environment and wetland ecological security, which is essential to the stability of arid ecosystems. However, the mechanism between hydrological connectivity and water-related environment has not been revealed completely. To address these issues, we use a [...] Read more.
Hydrological connectivity directly affects aquatic ecological processes, water environment and wetland ecological security, which is essential to the stability of arid ecosystems. However, the mechanism between hydrological connectivity and water-related environment has not been revealed completely. To address these issues, we use a landscape connectivity approach to assess the connectivity of water patches for analyzing the hydrological connectivity of the Bosten Lake Basin (BLB), as well as its response to human activities and climate change, based on the Joint Research Centre (JRC) global surface water dataset. It shows that the integral index of connectivity (IIC) of the BLB is low (ranging from 0 to 0.2) from 1990 to 2019, with an increasing interannual trend. The connectivity is higher in wet periods and in oases compared with dry periods and high-altitude mountain regions. Correlation and regression analyses indicate that hydrological connectivity has a strong correlation (r > 0.5, p ≤ 0.05) with water area and water level. The interannual and seasonal trends of eight hydrochemical indices in the Bosten Lake have been investigated to systematically elaborate the complex relationships between hydrological connectivity and water quality in the BLB. Results indicated that better hydrological connectivity can improve water quality, and the minimum of pollutants were observed in high hydrological connectivity period, covering approximately 75% of the high-water quality period. These findings could provide scientific support for the water management in the BLB. Full article
(This article belongs to the Topic Hydrology and Water Resources in Agriculture and Ecology)
Show Figures

Figure 1

17 pages, 8612 KB  
Article
High Precision Extraction of Surface Water from Complex Terrain in Bosten Lake Basin Based on Water Index and Slope Mask Data
by Xingyou Li, Fei Zhang, Ngai Weng Chan, Jinchao Shi, Changjiang Liu and Daosheng Chen
Water 2022, 14(18), 2809; https://doi.org/10.3390/w14182809 - 9 Sep 2022
Cited by 13 | Viewed by 10713
Abstract
The surface water extraction algorithm based on satellite remote sensing images is advantageous as it is able to obtain surface water information in a relatively short time. However, when it is used to extract information on surface water in large-scale, long-time series and [...] Read more.
The surface water extraction algorithm based on satellite remote sensing images is advantageous as it is able to obtain surface water information in a relatively short time. However, when it is used to extract information on surface water in large-scale, long-time series and complex terrain areas, there will be a large number of misclassified pixels, and a large amount of image preprocessing work is required. The accuracy verification is time-consuming and laborious, and the results may not be accurate. The complex climatic and topographic conditions in Bosten Lake Basin make it more difficult to monitor and control surface water bodies. Therefore, based on the GEE (Google Earth Engine) cloud platform, and the studies of the effect of nine kinds of water indexes on the surface water extraction in Bosten Lake Basin, this paper adds a slope mask to remove misclassified pixels and finds the best extraction method of surface water extraction in the basin by means of accuracy verification and visual discrimination through continuous iteration of index threshold and slope mask threshold. The results show that when the threshold value is −0.25 and the slope mask is 8 degrees, the index WI2019 has the best effect on the surface water information extraction of Bosten Lake Basin, effectively eliminating the interference of shadow and snow. The effect of water extraction in the long-time series is discussed and it was found that the precision of water extraction in the long-time series is also better than other indexes. The effects of various indexes on surface water extraction under complex terrain are compared. It can quickly and accurately realize the long-time series of surface water extraction under large-area complex terrain and provides useful guiding significance for water resources management and allocation as well as a water resources ecological assessment of Bosten Lake Basin. Full article
Show Figures

Figure 1

16 pages, 10169 KB  
Article
Assessment of Soil Salinization Risk by Remote Sensing-Based Ecological Index (RSEI) in the Bosten Lake Watershed, Xinjiang in Northwest China
by Jiawen Hou and Yusufujiang Rusuli
Sustainability 2022, 14(12), 7118; https://doi.org/10.3390/su14127118 - 10 Jun 2022
Cited by 11 | Viewed by 2634
Abstract
Accurate real-time information about the spatial and temporal dynamics of soil salinization is crucial for preventing the aggravation of salinization and achieving sustainable development of the ecological environment. With the Bosten Lake watershed as the study area, in this study, the regional risk [...] Read more.
Accurate real-time information about the spatial and temporal dynamics of soil salinization is crucial for preventing the aggravation of salinization and achieving sustainable development of the ecological environment. With the Bosten Lake watershed as the study area, in this study, the regional risk factors of soil salinization were identified, the salinization information was extracted, and the remote sensing-based ecological index (RSEI) of soil salinization was assessed through the combined use of remote sensing (RS) and geographic information system (GIS) techniques and measurements of soils samples collected from various field sites. The results revealed that (1) a four period (1990, 2000, 2010, and 2020) RS dataset on soil salinization allowed for the accurate classification of the land use/land cover types, with an overall classification accuracy of greater than 90% and kappa values of >0.90, and the salt index (SI), an RS-derived risk factor of soil salinization, was significantly correlated with the actual measured salt content of the surface soils. (2) The RS-derived elevation and normalized difference vegetation index (NDVI) were significantly correlated with the SI-T. (3) An integrated risk assessment model was constructed for the soil salinization risk in the Bosten Lake watershed, which calculated the integrated risk index values and classified them into four risk levels: low risk, medium risk, high risk, and extremely high risk. (4) Due to the combined effect of the surface water area and terrain, the soil salinization risk gradually decreased from the lake to the surrounding areas, while the corresponding spatial range increased in order of decreasing risk. The areas with different levels of soil salinization risk in the study area during the last 30 years were ranked in decreasing order of medium risk > high risk > extremely high risk > low risk. These findings provide theoretical support for preventing and controlling soil salinization and promoting agricultural production in the study area. Full article
(This article belongs to the Special Issue Land Use Change, Air Quality and Environmental Pollution Government)
Show Figures

Figure 1

17 pages, 6094 KB  
Article
Assessment of Future Water Yield and Water Purification Services in Data Scarce Region of Northwest China
by Xu Yang, Ruishan Chen, Guangxing Ji, Chao Wang, Yuanda Yang and Jianhua Xu
Int. J. Environ. Res. Public Health 2021, 18(17), 8960; https://doi.org/10.3390/ijerph18178960 - 25 Aug 2021
Cited by 10 | Viewed by 2917
Abstract
Water shortage and pollution have become prominent in the arid regions of northwest China, seriously affecting human survival and sustainable development. The Bosten Lake basin has been considered as an example of an arid region in northwest China, and the Integrated Valuation of [...] Read more.
Water shortage and pollution have become prominent in the arid regions of northwest China, seriously affecting human survival and sustainable development. The Bosten Lake basin has been considered as an example of an arid region in northwest China, and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model has been used to quantitatively evaluate the future water yield and water purification services for four representative concentration pathways (RCP) scenarios. The results show that for the four RCP scenarios, the annual average precipitation in 2020–2050 decreases compared to that in 1985–2015; the area of cultivated land and unused land decreases, and the area of other land-use types increases from 2015 to 2050. The water yield service reduces, while the water purification service increases from 2015 to 2050 in the Bosten Lake basin. In 2050, the water yield and water purification services are the best for the RCP6.0 scenario, and are the worse for the RCP4.5 scenario and RCP8.5 scenario, respectively. The distribution of the water yield and water purification services show a gradual decline from northwest to southeast. Full article
(This article belongs to the Special Issue Water Quality and Ecosystem Monitoring, Analysis, and Management)
Show Figures

Figure 1

24 pages, 5477 KB  
Article
Satellite-Based Precipitation Datasets Evaluation Using Gauge Observation and Hydrological Modeling in a Typical Arid Land Watershed of Central Asia
by Jiabin Peng, Tie Liu, Yue Huang, Yunan Ling, Zhengyang Li, Anming Bao, Xi Chen, Alishir Kurban and Philippe De Maeyer
Remote Sens. 2021, 13(2), 221; https://doi.org/10.3390/rs13020221 - 11 Jan 2021
Cited by 32 | Viewed by 5101
Abstract
Hydrological modeling has always been a challenge in the data-scarce watershed, especially in the areas with complex terrain conditions like the inland river basin in Central Asia. Taking Bosten Lake Basin in Northwest China as an example, the accuracy and the hydrological applicability [...] Read more.
Hydrological modeling has always been a challenge in the data-scarce watershed, especially in the areas with complex terrain conditions like the inland river basin in Central Asia. Taking Bosten Lake Basin in Northwest China as an example, the accuracy and the hydrological applicability of satellite-based precipitation datasets were evaluated. The gauge-adjusted version of six widely used datasets was adopted; namely, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (CDR), Climate Hazards Group Infrared Precipitation with Stations (CHIRPS), Global Precipitation Measurement Ground Validation National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) Morphing Technique (CMORPH), Integrated Multi-Satellite Retrievals for GPM (GPM), Global Satellite Mapping of Precipitation (GSMaP), the Tropical Rainfall Measuring Mission (TRMM) and Multi-satellite Precipitation Analysis (TMPA). Seven evaluation indexes were used to compare the station data and satellite datasets, the soil and water assessment tool (SWAT) model, and four indexes were used to evaluate the hydrological performance. The main results were as follows: 1) The GPM and CDR were the best datasets for the daily scale and monthly scale rainfall accuracy evaluations, respectively. 2) The performance of CDR and GPM was more stable than others at different locations in a watershed, and all datasets tended to perform better in the humid regions. 3) All datasets tended to perform better in the summer of a year, while the CDR and CHIRPS performed well in winter compare to other datasets. 4) The raw data of CDR and CMORPH performed better than others in monthly runoff simulations, especially CDR. 5) Integrating the hydrological performance of the uncorrected and corrected data, all datasets have the potential to provide valuable input data in hydrological modeling. This study is expected to provide a reference for the hydrological and meteorological application of satellite precipitation datasets in Central Asia or even the whole temperate zone. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrology and Water Resources Management)
Show Figures

Graphical abstract

18 pages, 6177 KB  
Article
Distributions, Relationship and Assessment of Major Ions and Potentially Toxic Elements in Waters of Bosten Lake, the Former Largest Inland and Freshwater Lake of China
by Wen Liu, Long Ma, Jilili Abuduwaili and Lin Lin
Water 2020, 12(10), 2859; https://doi.org/10.3390/w12102859 - 14 Oct 2020
Cited by 5 | Viewed by 2559
Abstract
As one of the important water sources of the desert ecosystem in the Tarim Basin, the largest fishery base in Xinjiang, and the former largest inland and freshwater lake of China, the water quality of Bosten Lake is worthy of government and public [...] Read more.
As one of the important water sources of the desert ecosystem in the Tarim Basin, the largest fishery base in Xinjiang, and the former largest inland and freshwater lake of China, the water quality of Bosten Lake is worthy of government and public attention. To determine the water’s hydrochemical composition and the water quality of Bosten Lake, analyses of the spatial distribution, water pollution status and irrigation suitability were conducted with statistical methods, including redundancy and factor analyses, inverse distance weighted interpolation, and water quality assessment and saturation index simulation of minerals in the water from a survey done in 2018. The results suggested that the average total dissolved solids (TDS) of Bosten Lake in 2018 was 1.32 g/L, and the lake is alkaline with a pH of 8.47. The strength of the water exchange capacity affected the spatial distribution of TDS. The spatial distribution of TDS and its value can be significantly changed by restoring the water supply of seasonal rivers in the northwest. The water of Bosten Lake contains sulfate and sodium groups, which are mainly affected by lake evaporation. As the pH increases, the content of carbonate ions increases, while the content of bicarbonate ions decreases. The spatial distributions of other major ions are consistent with that of the TDS. The spatial distribution of potentially toxic elements is more complicated than that of major ions. In general, the spatial distribution of Cu and As is more consistent with the spatial distribution of electrical conductivity or TDS. The spatial distributions of the Zn, Se and pH values are more consistent with respect to other variables. Although the water of Bosten Lake is still at a permissible level for water irrigation, the lake is moderately polluted, and the local site almost has a highly polluted status. The research results are of great significance for lake environmental protection and management as well as watershed ecological restoration. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 2448 KB  
Article
Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China
by Yang Wang, Shuai Zhang and Xueer Chang
Sustainability 2020, 12(18), 7293; https://doi.org/10.3390/su12187293 - 5 Sep 2020
Cited by 10 | Viewed by 3095
Abstract
Evapotranspiration (ET) is an important part of both water balance and energy balance. Accordingly, the estimation of ET plays a key role in research related to regional water resources and energy balance. Using the largest inland freshwater lake in China—Bosten Lake Basin—as a [...] Read more.
Evapotranspiration (ET) is an important part of both water balance and energy balance. Accordingly, the estimation of ET plays a key role in research related to regional water resources and energy balance. Using the largest inland freshwater lake in China—Bosten Lake Basin—as a target area, this study employs the SEBAL model combined with actual surface ET from the 2013 MODIS ET data to estimate ET in the Bosten Lake Basin from a time and space perspective. The findings include the following: (1) Evapotranspiration in the Bosten Lake Basin shows a unimodal distribution in terms of time distribution, with the highest ET occurring in July and August. In terms of spatial distribution, the overall trend is more apparent in the northwest portion of the basin than the southeast portion, as there are more mountains in the northwest as well as fewer desert areas. (2) Grassland and unused land were the main types of land cover, and ET exhibited a clear relationship to vegetation coverage and water supply. The distribution of land use types from northwest to southeast ET show a significant downward trend. (3) During the growing season, the average daily ET level of land use/cover type was the greatest over water bodies (5.61 mm/d), followed by grassland (4.6 mm/d) and snow/ice (4.29 mm/d), with unused land giving the smallest amounts of ET. Full article
Show Figures

Figure 1

23 pages, 5217 KB  
Article
The Dynamic Change of Bosten Lake Area in Response to Climate in the Past 30 Years
by Xiaoai Dai, Xingping Yang, Meilian Wang, Yu Gao, Senhao Liu and Junmin Zhang
Water 2020, 12(1), 4; https://doi.org/10.3390/w12010004 - 18 Dec 2019
Cited by 26 | Viewed by 4041
Abstract
The widely distributed lakes, as one of the major components of the inland water system, are the primary available freshwater resources on the earth and are sensitive to accelerated climate change and extensive human activities. Lakes play an important role in the terrestrial [...] Read more.
The widely distributed lakes, as one of the major components of the inland water system, are the primary available freshwater resources on the earth and are sensitive to accelerated climate change and extensive human activities. Lakes play an important role in the terrestrial water cycle and biogeochemical cycle and substantially influence the health of humans living in the surrounding areas. Given the importance of lakes in the ecosystem, long-term monitoring of dynamic changes has important theoretical and practical significance. Here, we extracted water body information and monitored the long-term dynamics of Bosten Lake, which is the largest inland lake in China. We quantified the meteorological factors of the study area from the observation data of meteorological stations between 1988 and 2018. The characteristics of climate change and its correlation with the change of area in the Bosten Lake Basin in the past 30 years were analyzed. The major contributions of this study are as follows: (1) The initial water body was segmented based on the water index model Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) with a pre-assigned threshold value. The results were evaluated with the area extracted through artificial visual interpretation. Then we conducted mathematical morphology operators, opening and closing operations, and median filter to eliminate noise to ensure the accuracy of water body information extraction from the Bosten Lake. A long-term water surface area database of the Bosten Lake was established from high-resolution remote sensing images during 1988–2018. (2) Due to the seasonal difference of snow, ice content, and other objects on images, the areadynamics of Bosten Lake in the recent 30 years were analyzed separately in dry season and rainy season. The water surface area of Bosten Lake showed large inter-annual variations between 1988–2018. (3) Based on the assumption that climatic change has more direct effects on lake than human activities, six meteorological factors were selected to analyze the impacts of climate change on the annual mean lake surface area. The result indicated that in the past 30 years, climate conditions in the Bosten Lake Basin fluctuated greatly. We conducted correlations analysis between the areal dynamics of the Bosten Lake and the meteorological factors. Here, the annual average evaporation had the highest correlation with the areal dynamics of Bosten Lake followed by air temperature, precipitation, sunshine hours, and relative humidity, while the annual average wind speed had the weakest correlation. Full article
(This article belongs to the Special Issue Hydrology of Rivers and Lakes under Climate Change)
Show Figures

Figure 1

13 pages, 3117 KB  
Article
Spatial Distribution and Health Risk Assessment of Potentially Toxic Elements in Surface Soils of Bosten Lake Basin, Central Asia
by Long Ma, Jilili Abuduwaili and Wen Liu
Int. J. Environ. Res. Public Health 2019, 16(19), 3741; https://doi.org/10.3390/ijerph16193741 - 4 Oct 2019
Cited by 13 | Viewed by 3844
Abstract
A geographically weighted regression and classical linear model were applied to quantitatively reveal the factors influencing the spatial distribution of potentially toxic elements of forty-eight surface soils from Bosten Lake basin in Central Asia. At the basin scale, the spatial distribution of the [...] Read more.
A geographically weighted regression and classical linear model were applied to quantitatively reveal the factors influencing the spatial distribution of potentially toxic elements of forty-eight surface soils from Bosten Lake basin in Central Asia. At the basin scale, the spatial distribution of the majority of potentially toxic elements, including: cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), thallium (Tl), vanadium (V), and zinc (Zn), had been significantly influenced by the geochemical characteristics of the soil parent material. However, the arsenic (As), cadmium (Cd), antimony (Sb), and mercury (Hg) have been influenced by the total organic matter in soils. Compared with the results of the classical linear model, the geographically weighted regression can significantly increase the level of simulation at the basin spatial scale. The fitting coefficients of the predicted values and the actual measured values significantly increased from the classical linear model (Hg: r2 = 0.31; Sb: r2 = 0.64; Cd: r2 = 0.81; and As: r2 = 0.68) to the geographically weighted regression (Hg: r2 = 0.56; Sb: r2 = 0.74; Cd: r2 = 0.89; and As: r2 = 0.85). Based on the results of the geographically weighted regression, the average values of the total organic matter for As (28.7%), Cd (39.2%), Hg (46.5%), and Sb (26.6%) were higher than those for the other potentially toxic elements: Cr (0.1%), Co (4.0%), Ni (5.3%), V (0.7%), Cu (18.0%), Pb (7.8%), Tl (14.4%), and Zn (21.4%). There were no significant non-carcinogenic risks to human health, however, the results suggested that the spatial distribution of potentially toxic elements had significant differences. Full article
(This article belongs to the Collection Environmental Risk Assessment)
Show Figures

Figure 1

Back to TopTop