Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Brasenia schreberi polysaccharide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7699 KB  
Article
Structural Characterization, Rheology, Texture, and Potential Hypoglycemic Effect of Polysaccharides from Brasenia schreberi
by Zhangli Jia, Yin Chen, Chunyu Niu, Yan Xu and Yan Chen
Foods 2025, 14(10), 1836; https://doi.org/10.3390/foods14101836 - 21 May 2025
Viewed by 609
Abstract
Brasenia schreberi (BS) is a perennial aquatic plant of the water lily family, of which the recognition as a functional food is on the rise. Polysaccharides from BS have been found to possess antihyperglycemic and antihyperlipidemic activities. This study aimed to partially clarify [...] Read more.
Brasenia schreberi (BS) is a perennial aquatic plant of the water lily family, of which the recognition as a functional food is on the rise. Polysaccharides from BS have been found to possess antihyperglycemic and antihyperlipidemic activities. This study aimed to partially clarify the structural and evaluate the hypoglycemic potentials of Brasenia schreberi polysaccharide (BSP). In this study, BSP was isolated from the mucilage covering the surface of Brasenia schreberi (BS). SEM and AFM results verified that BSP molecules were tightly connected and formed a ring-shaped network structure. Further structural analysis showed that BSP was an acidic heteropolysaccharide with a molecular weight of 2.47 × 104 Da. It had 1,2,3-linked α-D-Galp, 1,2-linked α-D-Manp, and 1,4-linked β-GlcA residues as the main chain, with 1,3-linked α-Galp, 1,3-linked α-Fucp, 1,3-linked α-Xylp, T-Araf, and T-Rhap as side chains. The rheological results indicated that the BSP solution was a pseudoplastic fluid and exhibited shear-thinning properties. Moreover, the gel strength and texture properties of BSP tended to be higher as the BSP and Ca2+ concentration increased. More importantly, BSP exhibited good inhibitory activity against α-amylase and α-glucosidase, indicating that it may be a good candidate for a hypoglycemic functional food. Full article
Show Figures

Graphical abstract

16 pages, 4722 KB  
Article
Proteomics Analysis Reveals the Underlying Factors of Mucilage Disappearance in Brasenia schreberi and Its Influence on Nutrient Accumulation
by Tingyang Ai, Hong Liu, Jiawei Wan, Bojie Lu, Xiujuan Yu, Jiao Liu, Aidiya Yimamu, Saimire Aishan, Caixiang Liu and Rui Qin
Foods 2024, 13(4), 518; https://doi.org/10.3390/foods13040518 - 7 Feb 2024
Cited by 2 | Viewed by 1840
Abstract
Brasenia schreberi J.F. Gmel (BS) is rich in mucilage, which has diverse biological activities, and is utilized in the food and pharmaceutical industries due to its nutritional value. Proteomics analysis was employed to investigate the cause of mucilage disappearance in BS and its [...] Read more.
Brasenia schreberi J.F. Gmel (BS) is rich in mucilage, which has diverse biological activities, and is utilized in the food and pharmaceutical industries due to its nutritional value. Proteomics analysis was employed to investigate the cause of mucilage disappearance in BS and its effect on nutrient accumulation. Among the 2892 proteins identified, 840 differentially expressed proteins (DEPs) were found to be involved in mucilage development. By comparing the expression patterns and functions and pathway enrichment, the DEPs mainly contributed to carbon and energy metabolism, polysaccharide metabolism, and photosynthesis. Our study also revealed positive correlations between mucilage accumulation and tryptophan metabolism, with high levels of indole-3-acetic (IAA) contributing to mucilage accumulation. Furthermore, environmental changes and particularly excessive nutrients were found to be detrimental to mucilage synthesis. Overall, in the absence of various stimuli in the growing environment, BS accumulates more nutrients within the plant itself instead of producing mucilage. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

26 pages, 5408 KB  
Article
Polysaccharides from Brasenia schreberi with Great Antioxidant Ability and the Potential Application in Yogurt
by Yujie Wang, Yue Zou, Qiong Fang, Ruizhang Feng, Jihong Zhang, Wanhai Zhou and Qin Wei
Molecules 2024, 29(1), 150; https://doi.org/10.3390/molecules29010150 - 26 Dec 2023
Cited by 12 | Viewed by 2454
Abstract
Brasenia schreberi is a widely consumed aquatic plant, yet the knowledge regarding its bioactive components, particularly polysaccharides, remains limited. Therefore, this study aimed to optimize the extraction process of polysaccharides from B. schreberi using the response surface method (RSM). Additionally, we characterized the [...] Read more.
Brasenia schreberi is a widely consumed aquatic plant, yet the knowledge regarding its bioactive components, particularly polysaccharides, remains limited. Therefore, this study aimed to optimize the extraction process of polysaccharides from B. schreberi using the response surface method (RSM). Additionally, we characterized the polysaccharides using various methods and assessed their antioxidant capabilities both in vitro and in vivo, employing cell cultures and Caenorhabditis elegans. Furthermore, these polysaccharides were incorporated into a unique yogurt formulation. Our findings demonstrated that hot water extraction was the most suitable method for extracting polysaccharides from B. schreberi, yielding samples with high sugar content, significant antioxidant capacity, and a well-defined spatial structure. Moreover, pectinase was employed for polysaccharide digestion, achieving an enzymolysis rate of 10.02% under optimized conditions using RSM. Notably, the results indicated that these polysaccharides could protect cells from oxidative stress by reducing apoptosis. Surprisingly, at a concentration of 250 μg/mL, the polysaccharides significantly increased the survival rate of C. elegans from 31.05% to 82.3%. Further qPCR results revealed that the polysaccharides protected C. elegans by up-regulating the daf-16 gene and down-regulating mTOR and insulin pathways, demonstrating remarkable antioxidant abilities. Upon addition to the yogurt, the polysaccharides significantly enhanced the water retention, viscosity, and viability of lactic acid bacteria. These outcomes underscore the potential of polysaccharides from B. schreberi as a valuable addition to novel yogurt formulations, thereby providing additional theoretical support for the utilization of B. schreberi. Full article
Show Figures

Graphical abstract

14 pages, 1941 KB  
Article
Optimizing the Extraction and Encapsulation of Mucilage from Brasenia Schreberi
by Qingying Luo, Min Wu, Yanan Sun, Junxia Lv, Yu Zhang, Hongfu Cao, Dingtao Wu, Derong Lin, Qing Zhang, Yuntao Liu, Wen Qin and Hong Chen
Polymers 2019, 11(5), 822; https://doi.org/10.3390/polym11050822 - 7 May 2019
Cited by 7 | Viewed by 4137
Abstract
The mucilage from Brasenia schreberi (BS) exhibits various biological activities, including antialgal, antibacterial, soluble-fiber properties, and excellent lubricating behavior. Thus, the extraction and wide use of mucilage in the food industry are crucial. In this study, the high-speed shear-assisted extraction of mucilage from [...] Read more.
The mucilage from Brasenia schreberi (BS) exhibits various biological activities, including antialgal, antibacterial, soluble-fiber properties, and excellent lubricating behavior. Thus, the extraction and wide use of mucilage in the food industry are crucial. In this study, the high-speed shear-assisted extraction of mucilage from BS was optimized by using response surface methodology (RSM). The optimal extraction conditions were as follows: Extraction temperature of 82 °C, extraction time of 113 min, liquid–solid ratio of 47 mL/g, and shear speed of 10,000 rpm. Under these conditions, the actual yield of BS mucilage was 71.67%, which highly matched the yield (73.44%) predicted by the regression model. Then, the BS mucilage extract was powdered to prepare the capsule, and the excipients of the capsule were screened using a single-factor test to improve the disintegration property and flowability. The final capsule formulation, which consisted of: 39% BS mucilage powder (60 meshes); 50% microcrystalline cellulose (60 meshes) as the filler; both 10% sodium starch glycolate and PVPP XL-10 (3:1, 60 meshes) as the disintegrant; both 1% colloidal silicon dioxide and sodium stearyl fumarate (1:1, 100 meshes) as the glidant by weight; were used for preparing the weights of a 320 mg/grain of capsule with 154.7 ± 0.95 mg/g polysaccharide content. Overall, the optimized extraction process had a high extraction rate for BS mucilage and the capsule formulation was designed reasonably. Full article
Show Figures

Figure 1

Back to TopTop