Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (336)

Search Parameters:
Keywords = C-C bond cleavage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2202 KB  
Article
On the Hydrolytic Depolymerization of Polyurethane Foam Wastes by Ionic Liquids
by Rebeca Salas, Rocio Villa, Francisco Velasco, Maria Macia, Virtudes Navarro, Jairton Dupont, Eduardo Garcia-Verdugo and Pedro Lozano
Molecules 2025, 30(17), 3523; https://doi.org/10.3390/molecules30173523 - 28 Aug 2025
Abstract
Flexible polyurethane foams (PUFs) are widely used materials whose crosslinked chemical structure hinders conventional recycling, leading to significant environmental challenges. This study presents a selective and scalable depolymerization strategy for polyurethane foam waste (PUFW), utilizing a combination of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) as water-miscible [...] Read more.
Flexible polyurethane foams (PUFs) are widely used materials whose crosslinked chemical structure hinders conventional recycling, leading to significant environmental challenges. This study presents a selective and scalable depolymerization strategy for polyurethane foam waste (PUFW), utilizing a combination of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) as water-miscible ionic liquid (IL) and a strong organic base to enable hydrolytic cleavage of urethane bonds under mild reaction conditions (98 °C, atmospheric pressure). The approach was evaluated across different PUFW formulations and successfully scaled up to a 1 kg reaction mass, maintaining high efficiency in both the depolymerization and separation steps. The recovered polyols exhibited high purity and structural fidelity, comparable to those of virgin polyols. The recycled products were integrated into a new foam formulation, resulting in a PUF with mechanical and morphological properties, as revelated by scanning electron microscopy (SEM), which closely resemble those of virgin polyol-based references and surpass those of foams produced using commercially recycled polyols. These findings support the feasibility of closed-loop polyurethane recycling and represent the transition towards circular polymer economy strategies. Full article
18 pages, 3781 KB  
Article
Identification and Characterization of a Novel Di-(2-ethylhexyl) Phthalate Hydrolase from a Marine Bacterial Strain Mycolicibacterium phocaicum RL-HY01
by Lei Ren, Caiyu Kuang, Hongle Wang, John L. Zhou, Min Shi, Danting Xu, Hanqiao Hu and Yanyan Wang
Int. J. Mol. Sci. 2025, 26(17), 8141; https://doi.org/10.3390/ijms26178141 - 22 Aug 2025
Viewed by 125
Abstract
Phthalic acid esters (PAEs), ubiquitously employed as a plasticizer, have been classified as priority environmental pollutants because of their persistence, bioaccumulation, and endocrine-disrupting properties. As a characterized PAE-degrading strain of marine origin, Mycolicibacterium phocaicum RL-HY01 utilizes di-(2-ethylhexyl) phthalate (DEHP) as its sole carbon [...] Read more.
Phthalic acid esters (PAEs), ubiquitously employed as a plasticizer, have been classified as priority environmental pollutants because of their persistence, bioaccumulation, and endocrine-disrupting properties. As a characterized PAE-degrading strain of marine origin, Mycolicibacterium phocaicum RL-HY01 utilizes di-(2-ethylhexyl) phthalate (DEHP) as its sole carbon and energy source. Genome sequencing and RT-qPCR analysis revealed a previously uncharacterized hydrolase gene (dehpH) in strain RL-HY01, which catalyzes ester bond cleavage in PAEs. Subsequently, recombinant expression of the cloned dehpH gene from strain RL-HY01 was established in Escherichia coli BL21(DE3). The purified recombinant DehpH exhibited optimal activity at 30 °C and pH 8.0. Its activity was enhanced by Co2+ and tolerant to most metal ions but strongly inhibited by EDTA, SDS, and PMSF. Organic solvents (Tween-80, Triton X-100, methanol, ethanol, isopropanol, acetone, acetonitrile, ethyl acetate, and n-hexane) showed minimal impact. Substrate specificity assay indicated that DehpH could efficiently degrade the short and long side-chain PAEs but failed to hydrolyze the cyclic side-chain PAE (DCHP). The kinetics parameters for the hydrolysis of DEHP were determined under the optimized conditions, and DehpH had a Vmax of 0.047 ± 0.002 μmol/L/min, Km of 462 ± 50 μmol/L, and kcat of 3.07 s−1. Computational prediction through structural modeling and docking identified the active site, with mutagenesis studies confirming Ser228, Asp324, and His354 as functionally indispensable residues forming the catalytic triad. The identification and characterization of DehpH provided novel insights into the mechanism of DEHP biodegradation and might promote the application of the target enzyme. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

20 pages, 1733 KB  
Article
Molecular Structure, Matrix-Isolation IR Spectrum and UV-Induced Transformations of 2-Amino-5-(4-Methoxyphenyl)-1,3,4-Oxadiazole
by İsa Sıdır, Susy Lopes, Rui Fausto and A. J. Lopes Jesus
Molecules 2025, 30(16), 3444; https://doi.org/10.3390/molecules30163444 - 21 Aug 2025
Viewed by 402
Abstract
The photochemistry of 1,3,4-oxadiazoles remains poorly understood, despite their recognized importance in medicinal chemistry and materials science. In this work, we report a detailed matrix-isolation study of 2-amino-5-(4-methoxyphenyl)-1,3,4-oxadiazole, combining low-temperature infrared spectroscopy with broadband UV photolysis and quantum chemical calculations. Theoretical analysis predicts [...] Read more.
The photochemistry of 1,3,4-oxadiazoles remains poorly understood, despite their recognized importance in medicinal chemistry and materials science. In this work, we report a detailed matrix-isolation study of 2-amino-5-(4-methoxyphenyl)-1,3,4-oxadiazole, combining low-temperature infrared spectroscopy with broadband UV photolysis and quantum chemical calculations. Theoretical analysis predicts the gas-phase molecule to exist exclusively as the amino tautomer, populating two nearly isoenergetic conformers (anti and syn) defined by the relative orientation of the amino and methoxy groups. Experimental IR spectra of the compound isolated in Ar and Xe matrices at 15 K confirm sole trapping of the amino tautomer. Annealing of the Xe matrix to the highest achievable temperature induced no detectable spectral changes, consistent with the predicted isoenergetic character of the conformers. Upon broadband UV irradiation (λ > 200 nm), the compound undergoes ring opening through N−N and C−O bond cleavages, paralleling the behavior of unsubstituted 1,3,4-oxadiazole system. Isocyanates emerge as the predominant photoproducts from these photochemical pathways. Additionally, spectroscopic evidence supports an alternative reaction pathway involving early-stage amino−imino tautomerization, followed by ring-opening of the imino tautomer through isocyanic acid extrusion, leading to the formation of a nitrilimine intermediate. This reactive species subsequently photorearranges into a carbodiimide via a diazirine-mediated pathway. All photoproducts were unambiguously identified through their distinct IR signatures, supported by quantum chemical calculations and reference data from structurally related systems. These findings provide unprecedented insight into the photochemical behavior of substituted 1,3,4-oxadiazoles and unveil new reaction pathways modulated by substituent effects, expanding the understanding of their photoreactivity. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

13 pages, 3182 KB  
Article
Improved Electrochemical Performance Using Transition Metal Doped ZnNi/Carbon Nanotubes as Conductive Additive in Li/CFx Battery
by Fangmin Wang, Jiayin Li, Yuxin Zheng, Xue Dong, Yuzhen Zhao, Zemin He, Manni Li, Lei Lin, Danyang He, Zongcheng Miao, Haibo Zhang, Hua Tan and Jianfeng Huang
Catalysts 2025, 15(8), 758; https://doi.org/10.3390/catal15080758 - 8 Aug 2025
Viewed by 444
Abstract
Lithium/carbon fluoride (Li/CFx) batteries are promising for specialized applications due to their high theoretical capacity (>865 mAh·g−1) and energy density. However, their practical deployment is hindered by the intrinsically low conductivity of CFx and sluggish reaction kinetics. While [...] Read more.
Lithium/carbon fluoride (Li/CFx) batteries are promising for specialized applications due to their high theoretical capacity (>865 mAh·g−1) and energy density. However, their practical deployment is hindered by the intrinsically low conductivity of CFx and sluggish reaction kinetics. While conventional conductive additives improve electron transport, their physical mixing with active materials yields weak interfacial contacts and fails to catalytically facilitate C–F bond cleavage. To address these dual limitations, this study proposes a dual-functional conductive-catalytic additive strategy. We engineered zinc-nickel/carbon nanotube (ZnNi/CNT) composites modified with transition metal dopants (Fe, W, Cu) to integrate conductive networks with nanoscale-dispersed catalytic sites. Fe-doped ZnNi/CNT (ZnFeNiC) emerged as the optimal system, delivering a discharge plateau of 2.45 V and a specific capacity of 810.3 mAh·g−1 at 0.1 C. This performance is attributed to Fe-doping accelerates Li+ diffusion, and promotes reversible Ni redox transitions (Ni2+↔Ni0) that catalyze C–F bond dissociation. This work establishes a design paradigm for high-performance Li/CFx batteries, bridging the gap between conductive enhancement and catalytic activation. Full article
Show Figures

Figure 1

30 pages, 703 KB  
Review
Fungal Lytic Polysaccharide Monooxygenases (LPMOs): Functional Adaptation and Biotechnological Perspectives
by Alex Graça Contato and Carlos Adam Conte-Junior
Eng 2025, 6(8), 177; https://doi.org/10.3390/eng6080177 - 1 Aug 2025
Viewed by 550
Abstract
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation [...] Read more.
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation of molecular oxygen (O2) or hydrogen peroxide (H2O2). Their catalytic versatility is intricately modulated by structural features, including the histidine brace active site, surface-binding loops, and, in some cases, appended carbohydrate-binding modules (CBMs). The oxidation pattern, whether at the C1, C4, or both positions, is dictated by subtle variations in loop architecture, amino acid microenvironments, and substrate interactions. LPMOs are embedded in a highly synergistic fungal enzymatic system, working alongside cellulases, hemicellulases, lignin-modifying enzymes, and oxidoreductases to enable efficient lignocellulose decomposition. Industrial applications of fungal LPMOs are rapidly expanding, with key roles in second-generation biofuels, biorefineries, textile processing, food and feed industries, and the development of sustainable biomaterials. Recent advances in genome mining, protein engineering, and heterologous expression are accelerating the discovery of novel LPMOs with improved functionalities. Understanding the balance between O2- and H2O2-driven mechanisms remains critical for optimizing their catalytic efficiency while mitigating oxidative inactivation. As the demand for sustainable biotechnological solutions grows, this narrative review highlights how fungal LPMOs function as indispensable biocatalysts for the future of the Circular Bioeconomy and green industrial processes. Full article
Show Figures

Figure 1

10 pages, 780 KB  
Article
Facile Synthesis of Polysubstituted Pyridines via Metal-Free [3+3] Annulation Between Enamines and β,β-Dichloromethyl Peroxides
by Yangyang Ma, Hua Zhang, Zhonghao Zhou, Chenyang Yang, Wenxiao Chang, Mohan Li, Yapei Zheng, Weizhuang Zhang, Huan Yue, Changdong Chen, Ming La and Yongjun Han
Int. J. Mol. Sci. 2025, 26(15), 7105; https://doi.org/10.3390/ijms26157105 - 23 Jul 2025
Viewed by 439
Abstract
Our work introduces a facile and efficient metal-free [3+3] annulation approach for the synthesis of polysubstituted pyridines via the reaction between β-enaminonitriles and β,β-dichloromethyl peroxides. This strategy operates under mild conditions, demonstrating broad substrate scope and excellent functional group tolerance. Mechanistic investigations suggest [...] Read more.
Our work introduces a facile and efficient metal-free [3+3] annulation approach for the synthesis of polysubstituted pyridines via the reaction between β-enaminonitriles and β,β-dichloromethyl peroxides. This strategy operates under mild conditions, demonstrating broad substrate scope and excellent functional group tolerance. Mechanistic investigations suggest that the reaction proceeds through a Kornblum–De La Mare rearrangement followed by SNV-type C-Cl bond cleavage and intramolecular cyclization/condensation. By circumventing the need for transition metal catalysts or radical initiators, our method offers practical utility in organic synthesis and provides a new avenue for the rapid construction of complex pyridine scaffolds. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

20 pages, 4450 KB  
Article
Synergistic Promotion of Selective Oxidation of Glycerol to C3 Products by Mo-Doped BiVO4-Coupled FeOOH Co-Catalysts Through Photoelectrocatalysis Process
by Jian Wang, Xinyue Guo, Haomin Gong, Wanggang Zhang, Yiming Liu and Bo Li
J. Compos. Sci. 2025, 9(8), 381; https://doi.org/10.3390/jcs9080381 - 22 Jul 2025
Viewed by 372
Abstract
The Mo:BiVO4/FeOOH photoelectrode was synthesized through the deposition of FeOOH onto the surface of the Mo:BiVO4 photoelectrode. The composite photoelectrode demonstrated a photocurrent of 1.8 mA·cm−2, which is three times greater than that observed for pure BiVO4 [...] Read more.
The Mo:BiVO4/FeOOH photoelectrode was synthesized through the deposition of FeOOH onto the surface of the Mo:BiVO4 photoelectrode. The composite photoelectrode demonstrated a photocurrent of 1.8 mA·cm−2, which is three times greater than that observed for pure BiVO4. Furthermore, the glycerol conversion rate was recorded at 79 μmol·cm−2·h−1, approximately double that of pure BiVO4, while the selectivity for glyceraldehyde reached 49%, also about twice that of pure BiVO4. The incorporation of Mo has been shown to enhance the stability of the BiVO4. Additionally, Mo doping improves the efficiency of electron-hole transport and increases the carrier concentration within the BiVO4. This enhancement leads to a greater number of holes participating in the formation of iron oxyhydroxide (FeOOH), thereby stabilizing the FeOOH co-catalyst within the glycerol conversion system. The FeOOH co-catalyst facilitates the adsorption and oxidation of the primary hydroxyl group of glycerol, resulting in the cleavage of the C−H bond to generate a carbon radical (C). The interaction between the carbon radical and the hydroxyl group produces an intermediate, which subsequently dehydrates to form glyceraldehyde (GLAD). Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Figure 1

11 pages, 581 KB  
Communication
Rapid and One-Pot Synthesis of Aryl Ynamides from Aryl Alkynyl Acids by Metal-Free C-N Cleavage of Tertiary Amines
by Yong Liu, Xiaoyong Liu, Hongwei Li and Shengmei Guo
Molecules 2025, 30(14), 2955; https://doi.org/10.3390/molecules30142955 - 13 Jul 2025
Viewed by 638
Abstract
Herein a rapid, metal-free, and highly efficient synthesis of aryl ynamides from aryl alkynyl acids has been described. This approach, utilizing tertiary amines as an amino source via metal-free C-N cleavage, enabled the construction of a diverse range of aryl ynamides with medium [...] Read more.
Herein a rapid, metal-free, and highly efficient synthesis of aryl ynamides from aryl alkynyl acids has been described. This approach, utilizing tertiary amines as an amino source via metal-free C-N cleavage, enabled the construction of a diverse range of aryl ynamides with medium to excellent yields (33 examples, up to 95% yield). This reaction exhibits significantly enhanced efficiency compared to the conventional stepwise approach involving aryl alkynyl acids and secondary amines. It can be successfully scaled up, providing a practical and environmentally benign strategy for alkynamide synthesis. Full article
(This article belongs to the Special Issue Advances in Alkyne Chemistry)
Show Figures

Scheme 1

22 pages, 6795 KB  
Article
Nonionic Fast-Penetration System for Diffusion-Driven Degradation of Liquid Plugs
by Yuexin Tian, Yintao Liu, Haifeng Dong, Xiangjun Liu and Jinjun Huang
Polymers 2025, 17(13), 1757; https://doi.org/10.3390/polym17131757 - 25 Jun 2025
Viewed by 2537
Abstract
Degradable liquid gel plugs are increasingly required for zonal isolation in high-temperature reservoirs, yet their practical deployment is limited by slow internal degradation and insufficient structural failure under diffusive conditions. In this study, a diffusion-driven degradation strategy was developed based on γ-valerolactone and [...] Read more.
Degradable liquid gel plugs are increasingly required for zonal isolation in high-temperature reservoirs, yet their practical deployment is limited by slow internal degradation and insufficient structural failure under diffusive conditions. In this study, a diffusion-driven degradation strategy was developed based on γ-valerolactone and a nonionic fast-penetration agent (Tb), aiming to construct internal pathways and enhance decomposability of a model E51 epoxy–anhydride liquid plug. A multiscale characterization framework, including swelling index evaluation, SEM–EDS, FTIR mapping, CLSM imaging, μ-CT, AFM, and nanoindentation, was applied to investigate degradation behavior under varying temperatures (120–140 °C) and solvent-to-plug ratios (1:1–5:1). The plug exhibited a swelling index of 1.81 in GVL and formed tree-like degradation channels with widths of 20–30 μm. Functional group mapping revealed preferential cleavage of ester and ether bonds at the surface, and mechanical softening (modulus reduction > 57%) was confirmed by AFM and nanoindentation. Higher temperatures and solvent ratios synergistically reduced full degradation time from 84 h to 12 h. These findings validate a “penetration-induced softening–ester bond scission–diffusion channel construction” mechanism, offering an effective design pathway for intelligent degradation control in high-temperature downhole environments. Full article
Show Figures

Figure 1

21 pages, 3937 KB  
Article
Identification, Cloning, and Functional Characterization of Carotenoid Cleavage Dioxygenase (CCD) from Olea europaea and Ipomoea nil
by Kaixuan Ke, Yufeng Zhang, Xinyi Wang, Zhaoyan Luo, Yangyang Chen, Xianying Fang and Linguo Zhao
Biology 2025, 14(7), 752; https://doi.org/10.3390/biology14070752 - 24 Jun 2025
Viewed by 532
Abstract
The aromatic C13 apocarotenoid β-ionone is a high-value natural-flavor and -fragrance compound derived from the oxidative cleavage of carotenoids. Carotenoid cleavage dioxygenases (CCDs) play a pivotal role in the biosynthesis of volatile apocarotenoids, particularly β-ionone. In this study, we report the identification, [...] Read more.
The aromatic C13 apocarotenoid β-ionone is a high-value natural-flavor and -fragrance compound derived from the oxidative cleavage of carotenoids. Carotenoid cleavage dioxygenases (CCDs) play a pivotal role in the biosynthesis of volatile apocarotenoids, particularly β-ionone. In this study, we report the identification, cloning, and functional characterization of two CCD1 homologs: OeCCD1 from Olea europaea and InCCD1 from Ipomoea nil. These two species, which, respectively, represent a woody perennial and a herbaceous annual, were selected to explore the potential functional divergence of CCD1 enzymes across different plant growth forms. These CCD1 genes were synthesized using codon optimization for Escherichia coli expression, followed by heterologous expression and purification using a GST-fusion system. In vitro assays confirmed that both enzymes cleave β-carotene at the 9,10 (9′,10′) double bond to yield β-ionone, but only OeCCD1 exhibits detectable activity on zeaxanthin; InCCD1 shows no in vitro cleavage of zeaxanthin. Kinetic characterization using β-apo-8′-carotenal as substrate revealed, for OeCCD1, a Km of 0.82 mM, Vmax of 2.30 U/mg (kcat = 3.35 s−1), and kcat/Km of 4.09 mM−1·s−1, whereas InCCD1 displayed Km = 0.69 mM, Vmax = 1.22 U/mg (kcat = 1.82 s−1), and kcat/Km = 2.64 mM−1·s−1. The optimization of expression parameters, as well as the systematic evaluation of temperature, pH, solvent, and metal ion effects, provided further insights into the stability and functional diversity within the plant CCD1 family. Overall, these findings offer promising enzymatic tools for the sustainable production of β-ionone and related apocarotenoids in engineered microbial cell factories. Full article
(This article belongs to the Section Biotechnology)
Show Figures

Graphical abstract

18 pages, 2791 KB  
Article
Assessment of Biodegradation Mechanisms of Ceftiofur Sodium by Escherichia sp. CS-1 and Insights from Transcriptomic Analysis
by Meng-Yang Yan, Cai-Hong Zhao, Jie Wu, Adil Mohammad, Yi-Tao Li, Liang-Bo Liu, Yi-Bo Cao, Xing-Mei Deng, Jia Guo, Hui Zhang, Hong-Su He and Zhi-Hua Sun
Microorganisms 2025, 13(6), 1404; https://doi.org/10.3390/microorganisms13061404 - 16 Jun 2025
Viewed by 551
Abstract
Ceftiofur sodium (CFS) is a clinically significant cephalosporin widely used in the livestock and poultry industries. However, CFS that is not absorbed by animals is excreted in feces, entering the environment and contributing to the emergence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes [...] Read more.
Ceftiofur sodium (CFS) is a clinically significant cephalosporin widely used in the livestock and poultry industries. However, CFS that is not absorbed by animals is excreted in feces, entering the environment and contributing to the emergence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs). This situation poses substantial challenges to both environmental integrity and public health. Currently, research on the biodegradation of CFS is limited. In this study, we isolated a strain of Escherichia coli, designated E. coli CS-1, a Gram-negative, rod-shaped bacterium capable of utilizing CFS as its sole carbon source, from fecal samples collected from hog farms. We investigated the effects of initial CFS concentration, pH, temperature, and inoculum size on the degradation of CFS by E. coli CS-1 through a series of single-factor experiments conducted under aerobic conditions. The results indicated that E. coli CS-1 achieved the highest CFS degradation rate under the following optimal conditions: an initial CFS concentration of 50 mg/L, a pH of 7.0, a temperature of 37 °C, and an inoculum size of 6% (volume fraction). Under these conditions, E. coli CS-1 was able to completely degrade CFS within 60 h. Additionally, E. coli CS-1 exhibited significant capabilities for CFS degradation. In this study, six major degradation products of (CFS) were identified by UPLC–MS/MS: desfuroyl ceftiofur, 5-hydroxymethyl-2-furaldehyde, 7-aminodesacetoxycephalosporanic acid, 5-hydroxy-2-furoic acid, 2-furoic acid, and CEF-aldehyde. Based on these findings, two degradation pathways are proposed. Pathway I: CFS is hydrolyzed to break the sulfur–carbon (S–C) bond, generating two products. These products undergo subsequent hydrolysis and redox reactions for gradual transformation. Pathway II: The β-lactam bond of CFS is enzymatically cleaved, forming CEF-aldehyde as the primary degradation product, which is consistent with the biodegradation mechanism of most β-lactam antibiotics via β-lactam ring cleavage. Transcriptome sequencing revealed that 758 genes essential for degradation were upregulated in response to the hydrolysis and redox processes associated with CFS. Furthermore, the differentially expressed genes (DEGs) of E. coli CS-1 were functionally annotated using a combination of genomics and bioinformatics approaches. This study highlights the potential of E. coli CS-1 to degrade CFS in the environment and proposes hypotheses regarding the possible biodegradation mechanisms of CFS for future research. Full article
(This article belongs to the Special Issue Antibiotic and Resistance Gene Pollution in the Environment)
Show Figures

Figure 1

15 pages, 5030 KB  
Article
Decorating Ti3C2 MXene Nanosheets with Fe-Nx-C Nanoparticles for Efficient Oxygen Reduction Reaction
by Han Zheng, Fagang Wang and Weimeng Si
Inorganics 2025, 13(6), 188; https://doi.org/10.3390/inorganics13060188 - 6 Jun 2025
Viewed by 701
Abstract
Finding alternatives to platinum that exhibit high activity, stability, and abundant reserves as oxygen reduction electrocatalysts is crucial for the advancement of fuel cells. In this study, we first mixed FeCl2·4H2O, 1,10-phenanthroline, and Vulcan XC-72, followed by pyrolysis in [...] Read more.
Finding alternatives to platinum that exhibit high activity, stability, and abundant reserves as oxygen reduction electrocatalysts is crucial for the advancement of fuel cells. In this study, we first mixed FeCl2·4H2O, 1,10-phenanthroline, and Vulcan XC-72, followed by pyrolysis in a nitrogen atmosphere, to obtain FeNC. Subsequently, we combined FeNC with MXene produce FeNC/MXene composites. The FeNC/MXene catalyst achieved a half-wave potential of 0.857 V in an alkaline medium, exhibiting better oxygen reduction reaction (ORR) activity and durability than commercial Pt/C catalysts. The layered structure of MXene endows the material with a high specific surface area and facilitates efficient electron transfer pathways, thereby promoting rapid charge transfer and material diffusion. The cleavage of Ti-C bonds in Ti3C2 at elevated temperatures results in the transformation of MXene into TiO2, where the coexistence of anatase and rutile phases generates a synergistic effect that enhances both the mass transfer rate and the electrical conductivity of the catalytic layer. Additionally, the unique electronic structure of the FeNx sites simultaneously optimizes electrocatalytic activity and stability. Leveraging these structural advantages, the FeNC/MXene composite catalysts demonstrate exceptional catalytic activity and long-term stability in oxygen reduction reactions. Full article
Show Figures

Figure 1

19 pages, 6947 KB  
Article
Simulation of the Pyrolysis Process of Cyclohexane-Containing Semi-Aromatic Polyamide Based on ReaxFF-MD
by Xiaotong Zhang, Yuanbo Zheng, Qian Zhang, Kai Wu, Qinwei Yu and Jianming Yang
Polymers 2025, 17(12), 1593; https://doi.org/10.3390/polym17121593 - 6 Jun 2025
Viewed by 889
Abstract
Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs [...] Read more.
Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs Reactive Force Field Molecular Dynamics (ReaxFF-MD) simulations to establish a pyrolysis model for poly(terephthaloyl-hexahydro-m-xylylenediamine) (PHXDT), systematically probing its pyrolysis kinetics and evolutionary pathways under elevated temperatures. The simulation results reveal an activation energy of 107.55 kJ/mol and a pre-exponential factor of 9.64 × 1013 s−1 for the pyrolysis process. The primary decomposition pathway involves three distinct stages. The first is initial backbone scission generating macromolecular fragments, followed by secondary fragmentation that preferentially occurs at short-chain hydrocarbon formation sites alongside radical recombination. Ultimately, the process progresses to deep dehydrogenation, carbonization, and heteroatom elimination through sequential reaction steps. Mechanistic analysis identifies multi-pathway pyrolysis involving carboxyl/amide bond cleavage and radical-mediated transformations (N-C-O, C-C-O, OH· and H·), yielding primary products including H2, CO, H2O, CH3N, C2H2, and C2H4. Crucially, the cyclohexane structure demonstrates preferential participation in dehydrogenation and hydrogen transfer reactions due to its conformational dynamic instability and low bond dissociation energy, significantly accelerating the rapid generation of small molecules like H2. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 4044 KB  
Article
Reaction Pathway Analysis of Methane and Propylene Cracking: A Reactive Force Field Simulation Approach
by Wei Yang, Yiqiang Hong, Youpei Du, Zhen Dai, Guangyuan Cui, Geng Chen, Dabo Xing, Yunlong Ma, Lei Liang and Hongyang Cui
Materials 2025, 18(12), 2672; https://doi.org/10.3390/ma18122672 - 6 Jun 2025
Viewed by 450
Abstract
This study presents the development and validation of an elementary reaction pathway tracking algorithm based on reactive force field simulations, enabling the dynamic monitoring of cracking products at the 20,000-atom scale, the accurate identification of chain reaction pathways, and the comprehensive tracking of [...] Read more.
This study presents the development and validation of an elementary reaction pathway tracking algorithm based on reactive force field simulations, enabling the dynamic monitoring of cracking products at the 20,000-atom scale, the accurate identification of chain reaction pathways, and the comprehensive tracking of large carbon chain formation. The research demonstrates that the differences between methane and propylene cracking–polymerization reactions primarily stem from disparities in bond dissociation energies, radical stabilities, and molecular topologies, and the operation of molecular dynamics relies on LAMMPS 3 March 2020. The cracking pathway of methane is relatively straightforward, predominantly involving the homolytic cleavage of C–H bonds, followed by radical chain propagation leading to the formation of large carbonaceous species. In contrast, propylene, owing to its unsaturated structure and multiple reactive sites, exhibits more complex reaction networks and a wider diversity of products. Furthermore, the study elucidates the reaction pathways of intermediate species during methane and propylene cracking and investigates the effect of reaction temperature on carbon sheet development. In conclusion, the algorithm established in this work offers a detailed mechanistic insight into the gas-phase cracking of methane and propylene, providing a new theoretical basis for the optimization of gas-phase deposition processes and the rational design of carbon-based materials. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

13 pages, 1125 KB  
Article
Oxidative Pyrolysis of Typical Volatile Model Compounds Under Low Oxygen Equivalence Ratios During Oxidative Pyrolysis of Biomass
by Liying Wang, Dan Lin, Dongjing Liu, Xing Xie, Shihong Zhang and Bin Li
Energies 2025, 18(11), 2996; https://doi.org/10.3390/en18112996 - 5 Jun 2025
Viewed by 485
Abstract
This study aims to investigate the oxidative pyrolysis of biomass volatiles with a particular focus on the formation of liquid products. Furfural, hydroxyacetone, and 3,4-dimethoxybenzaldehyde were chosen as volatile model compounds. The impacts of the oxygen equivalence ratio (ER, 0–15%) and temperature (400–500 [...] Read more.
This study aims to investigate the oxidative pyrolysis of biomass volatiles with a particular focus on the formation of liquid products. Furfural, hydroxyacetone, and 3,4-dimethoxybenzaldehyde were chosen as volatile model compounds. The impacts of the oxygen equivalence ratio (ER, 0–15%) and temperature (400–500 °C) on the product composition and distribution were examined using a two-stage quartz-tube reactor. The results showed that volatile pyrolysis was limited at the lower temperature of 400 °C even with oxygen introduction, while it could be significantly promoted at 500 °C as illustrated by the observed great decrease in the GC-MS peak areas of the volatile compounds especially under an oxidative atmosphere. For instance, the peak area of 3,4-dimethoxybenzaldehyde at 500 °C under an ER of 4% was only ~9% of that at 400 °C. Oxygen introduction enhanced the volatile decomposition with the formation of mainly permanent gases (although not given in the study) rather than liquid products, but distinct impacts were obtained for varied volatile compounds possibly due to their different chemical structures and autoignition temperatures. From the perspective of liquid product formation, furfural would undergo the cleavage of C-C/C-O bonds to form linear intermediates and subsequent aromatization to generate aromatics (benzene and benzofuran). The presence of oxygen could enhance the oxidative destruction of the C-C/C-O bonds and the removal of O from the molecules to form simple aromatics such as benzene, phenol, and toluene. Hydroxyacetone mainly underwent C-C/C-O cleavage that was further enhanced in the presence of oxygen; the resultant intermediates would recombine to generate acetoin and 2,3-pentanedione. A higher ER would directly oxidize the alcoholic hydroxyl group (-OH) into an aldehyde group (-CHO) to form methyl glyoxal, while 3,4-dimethoxybenzaldehyde mainly underwent cleavage and recombination of bonds connected with the benzene ring including aldehyde group (-CHO), CAr-O, CMethoxy-O bonds, thus forming 1,2-dimethoxybenzene, toluene, and 3-hydroxybenzadehyde. This study provides more fundamental insights into the homogeneous oxidation of volatiles during the oxidative fast pyrolysis of biomass, facilitating the deployment of this technology. Full article
Show Figures

Figure 1

Back to TopTop