Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = C3HeB/FeJ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 817 KB  
Review
Eradication of Drug-Tolerant Mycobacterium tuberculosis 2022: Where We Stand
by Alessio Lanni, Angelo Iacobino, Lanfranco Fattorini and Federico Giannoni
Microorganisms 2023, 11(6), 1511; https://doi.org/10.3390/microorganisms11061511 - 6 Jun 2023
Cited by 6 | Viewed by 3413
Abstract
The lungs of tuberculosis (TB) patients contain a spectrum of granulomatous lesions, ranging from solid and well-vascularized cellular granulomas to avascular caseous granulomas. In solid granulomas, current therapy kills actively replicating (AR) intracellular bacilli, while in low-vascularized caseous granulomas the low-oxygen tension stimulates [...] Read more.
The lungs of tuberculosis (TB) patients contain a spectrum of granulomatous lesions, ranging from solid and well-vascularized cellular granulomas to avascular caseous granulomas. In solid granulomas, current therapy kills actively replicating (AR) intracellular bacilli, while in low-vascularized caseous granulomas the low-oxygen tension stimulates aerobic and microaerophilic AR bacilli to transit into non-replicating (NR), drug-tolerant and extracellular stages. These stages, which do not have genetic mutations and are often referred to as persisters, are difficult to eradicate due to low drug penetration inside the caseum and mycobacterial cell walls. The sputum of TB patients also contains viable bacilli called differentially detectable (DD) cells that, unlike persisters, grow in liquid, but not in solid media. This review provides a comprehensive update on drug combinations killing in vitro AR and drug-tolerant bacilli (persisters and DD cells), and sterilizing Mycobacterium tuberculosis-infected BALB/c and caseum-forming C3HeB/FeJ mice. These observations have been important for testing new drug combinations in noninferiority clinical trials, in order to shorten the duration of current regimens against TB. In 2022, the World Health Organization, following the results of one of these trials, supported the use of a 4-month regimen for the treatment of drug-susceptible TB as a possible alternative to the current 6-month regimen. Full article
(This article belongs to the Special Issue Latest Review Papers in Medical Microbiology 2023)
Show Figures

Figure 1

18 pages, 2835 KB  
Article
E96V Mutation in the Kdelr3 Gene Is Associated with Type 2 Diabetes Susceptibility in Obese NZO Mice
by Delsi Altenhofen, Jenny Minh-An Khuong, Tanja Kuhn, Sandra Lebek, Sarah Görigk, Katharina Kaiser, Christian Binsch, Kerstin Griess, Birgit Knebel, Bengt-Frederik Belgardt, Sandra Cames, Samaneh Eickelschulte, Torben Stermann, Axel Rasche, Ralf Herwig, Jürgen Weiss, Heike Vogel, Annette Schürmann, Alexandra Chadt and Hadi Al-Hasani
Int. J. Mol. Sci. 2023, 24(1), 845; https://doi.org/10.3390/ijms24010845 - 3 Jan 2023
Cited by 1 | Viewed by 3623
Abstract
Type 2 diabetes (T2D) represents a multifactorial metabolic disease with a strong genetic predisposition. Despite elaborate efforts in identifying the genetic variants determining individual susceptibility towards T2D, the majority of genetic factors driving disease development remain poorly understood. With the aim to identify [...] Read more.
Type 2 diabetes (T2D) represents a multifactorial metabolic disease with a strong genetic predisposition. Despite elaborate efforts in identifying the genetic variants determining individual susceptibility towards T2D, the majority of genetic factors driving disease development remain poorly understood. With the aim to identify novel T2D risk genes we previously generated an N2 outcross population using the two inbred mouse strains New Zealand obese (NZO) and C3HeB/FeJ (C3H). A linkage study performed in this population led to the identification of the novel T2D-associated quantitative trait locus (QTL) Nbg15 (NZO blood glucose on chromosome 15, Logarithm of odds (LOD) 6.6). In this study we used a combined approach of positional cloning, gene expression analyses and in silico predictions of DNA polymorphism on gene/protein function to dissect the genetic variants linking Nbg15 to the development of T2D. Moreover, we have generated congenic strains that associated the distal sublocus of Nbg15 to mechanisms altering pancreatic beta cell function. In this sublocus, Cbx6, Fam135b and Kdelr3 were nominated as potential causative genes associated with the Nbg15 driven effects. Moreover, a putative mutation in the Kdelr3 gene from NZO was identified, negatively influencing adaptive responses associated with pancreatic beta cell death and induction of endoplasmic reticulum stress. Importantly, knockdown of Kdelr3 in cultured Min6 beta cells altered insulin granules maturation and pro-insulin levels, pointing towards a crucial role of this gene in islets function and T2D susceptibility. Full article
(This article belongs to the Special Issue Diabetes Mellitus (DM) - Endocrine and Metabolic Disorders)
Show Figures

Graphical abstract

33 pages, 1659 KB  
Review
Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell
by Pablo Soldevilla, Cristina Vilaplana and Pere-Joan Cardona
Pathogens 2023, 12(1), 49; https://doi.org/10.3390/pathogens12010049 - 28 Dec 2022
Cited by 22 | Viewed by 8003
Abstract
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious [...] Read more.
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious diseases, is the mouse. Regarding research in tuberculosis, the mouse has provided useful information about host and bacterial traits related to susceptibility to the infection. The effect of aging, sexual dimorphisms, the route of infection, genetic differences between mice lineages and unbalanced immunity scenarios upon Mycobacterium tuberculosis infection and tuberculosis development has helped, helps and will help biomedical researchers in the design of new tools for diagnosis, treatment and prevention of tuberculosis, despite various discrepancies and the lack of deep study in some areas of these traits. Full article
(This article belongs to the Special Issue Pathogenicity of Mycobacterium tuberculosis)
Show Figures

Figure 1

18 pages, 4287 KB  
Article
Evaluation of Myeloperoxidase as Target for Host-Directed Therapy in Tuberculosis In Vivo
by Lara C. Linnemann, Ulrich E. Schaible and Tobias K. Dallenga
Int. J. Mol. Sci. 2022, 23(5), 2554; https://doi.org/10.3390/ijms23052554 - 25 Feb 2022
Cited by 5 | Viewed by 3057
Abstract
Due to the rise of tuberculosis cases infected with multi and extensively drug-resistant Mycobacterium tuberculosis strains and the emergence of isolates resistant to antibiotics newly in clinical use, host-directed therapies targeting pathogenesis-associated immune pathways adjunct to antibiotics may ameliorate disease and bacterial clearance. [...] Read more.
Due to the rise of tuberculosis cases infected with multi and extensively drug-resistant Mycobacterium tuberculosis strains and the emergence of isolates resistant to antibiotics newly in clinical use, host-directed therapies targeting pathogenesis-associated immune pathways adjunct to antibiotics may ameliorate disease and bacterial clearance. Active tuberculosis is characterized by neutrophil-mediated lung pathology and tissue destruction. Previously, we showed that preventing M. tuberculosis induced necrosis in human neutrophils by inhibition of myeloperoxidase (MPO) promoted default apoptosis and subsequent control of mycobacteria by macrophages taking up the mycobacteria-infected neutrophils. To translate our findings in an in vivo model, we tested the MPO inhibitor 4-aminobenzoic acid hydrazide (ABAH) in C3HeB/FeJ mice, which are highly susceptible to M. tuberculosis infection manifesting in neutrophil-associated necrotic granulomas. MPO inhibition alone or as co-treatment with isoniazid, a first-line antibiotic in tuberculosis treatment, did not result in reduced bacterial burden, improved pathology, or altered infiltrating immune cell compositions. MPO inhibition failed to prevent M. tuberculosis induced neutrophil necrosis in C3Heb/FeJ mice in vivo as well as in murine neutrophils in vitro. In contrast to human neutrophils, murine neutrophils do not respond to M. tuberculosis infection in an MPO-dependent manner. Thus, the murine C3HeB/FeJ model does not fully resemble the pathomechanisms in active human tuberculosis. Consequently, murine infection models of tuberculosis are not necessarily adequate to evaluate host-directed therapies targeting neutrophils in vivo. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Mycobacterial Infection)
Show Figures

Figure 1

14 pages, 3941 KB  
Article
Mouse Age Matters: How Age Affects the Murine Plasma Metabolome
by Patrick Pann, Martin Hrabě de Angelis, Cornelia Prehn and Jerzy Adamski
Metabolites 2020, 10(11), 472; https://doi.org/10.3390/metabo10110472 - 19 Nov 2020
Cited by 9 | Viewed by 3779
Abstract
A large part of metabolomics research relies on experiments involving mouse models, which are usually 6 to 20 weeks of age. However, in this age range mice undergo dramatic developmental changes. Even small age differences may lead to different metabolomes, which in turn [...] Read more.
A large part of metabolomics research relies on experiments involving mouse models, which are usually 6 to 20 weeks of age. However, in this age range mice undergo dramatic developmental changes. Even small age differences may lead to different metabolomes, which in turn could increase inter-sample variability and impair the reproducibility and comparability of metabolomics results. In order to learn more about the variability of the murine plasma metabolome, we analyzed male and female C57BL/6J, C57BL/6NTac, 129S1/SvImJ, and C3HeB/FeJ mice at 6, 10, 14, and 20 weeks of age, using targeted metabolomics (BIOCRATES AbsoluteIDQ™ p150 Kit). Our analysis revealed high variability of the murine plasma metabolome during adolescence and early adulthood. A general age range with minimal variability, and thus a stable metabolome, could not be identified. Age-related metabolomic changes as well as the metabolite profiles at specific ages differed markedly between mouse strains. This observation illustrates the fact that the developmental timing in mice is strain specific. We therefore stress the importance of deliberate strain choice, as well as consistency and precise documentation of animal age, in metabolomics studies. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Graphical abstract

21 pages, 4389 KB  
Article
Omega-3 Fatty Acid and Iron Supplementation Alone, but Not in Combination, Lower Inflammation and Anemia of Infection in Mycobacterium tuberculosis-Infected Mice
by Arista Nienaber, Jeannine Baumgartner, Robin C. Dolman, Mumin Ozturk, Lizelle Zandberg, Frank E. A. Hayford, Frank Brombacher, Renee Blaauw, Suraj P. Parihar, Cornelius M. Smuts and Linda Malan
Nutrients 2020, 12(9), 2897; https://doi.org/10.3390/nu12092897 - 22 Sep 2020
Cited by 15 | Viewed by 8511
Abstract
Progressive inflammation and anemia are common in tuberculosis (TB) and linked to poor clinical outcomes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have inflammation-resolving properties, whereas iron supplementation in TB may have limited efficacy and enhance bacterial growth. We investigated effects of iron [...] Read more.
Progressive inflammation and anemia are common in tuberculosis (TB) and linked to poor clinical outcomes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have inflammation-resolving properties, whereas iron supplementation in TB may have limited efficacy and enhance bacterial growth. We investigated effects of iron and EPA/DHA supplementation, alone and in combination, on inflammation, anemia, iron status markers and clinical outcomes in Mycobacterium tuberculosis-infected C3HeB/FeJ mice. One week post-infection, mice received the AIN-93 diet without (control) or with supplemental iron (Fe), EPA/DHA, or Fe+EPA/DHA for 3 weeks. Mice supplemented with Fe or EPA/DHA had lower soluble transferrin receptor, ferritin and hepcidin than controls, but these effects were attenuated in Fe+EPA/DHA mice. EPA/DHA increased inflammation-resolving lipid mediators and lowered lung IL-1α, IFN-γ, plasma IL-1β, and TNF-α. Fe lowered lung IL-1α, IL-1β, plasma IL-1β, TNF-α, and IL-6. However, the cytokine-lowering effects in the lungs were attenuated with Fe+EPA/DHA. Mice supplemented with EPA/DHA had lower lung bacterial loads than controls, but this effect was attenuated in Fe+EPA/DHA mice. Thus, individually, post-infection EPA/DHA and iron supplementation lowered systemic and lung inflammation and mitigated anemia of infection in TB, but not when combined. EPA/DHA also enhanced bactericidal effects and could support inflammation resolution and management of anemia. Full article
(This article belongs to the Special Issue Omega-3 Polyunsaturated Fatty Acids and Human Health)
Show Figures

Figure 1

14 pages, 3245 KB  
Article
Cording Mycobacterium tuberculosis Bacilli Have a Key Role in the Progression towards Active Tuberculosis, Which is Stopped by Previous Immune Response
by Lilibeth Arias, Paula Cardona, Martí Català, Víctor Campo-Pérez, Clara Prats, Cristina Vilaplana, Esther Julián and Pere-Joan Cardona
Microorganisms 2020, 8(2), 228; https://doi.org/10.3390/microorganisms8020228 - 8 Feb 2020
Cited by 5 | Viewed by 4151
Abstract
Cording was the first virulence factor identified in Mycobacterium tuberculosis (Mtb). We aimed to ascertain its role in the induction of active tuberculosis (TB) in the mouse strain C3HeB/FeJ by testing the immunopathogenic capacity of the H37Rv strain. We have obtained two batches [...] Read more.
Cording was the first virulence factor identified in Mycobacterium tuberculosis (Mtb). We aimed to ascertain its role in the induction of active tuberculosis (TB) in the mouse strain C3HeB/FeJ by testing the immunopathogenic capacity of the H37Rv strain. We have obtained two batches of the same strain by stopping their growth in Proskauer Beck liquid medium once the mid-log phase was reached, in the noncording Mtb (NCMtb) batch, and two days later in the cording Mtb (CMtb) batch, when cording could be detected by microscopic analysis. Mice were challenged with each batch intravenously and followed-up for 24 days. CMtb caused a significant increase in the bacillary load at an early stage post-challenge (day 17), when a granulomatous response started, generating exudative lesions characterized by neutrophilic infiltration, which promoted extracellular bacillary growth together with cording formation, as shown for the first time in vivo. In contrast, NCMtb experienced slight or no bacillary growth and lesions could barely be detected. Previous Bacillus Calmette-Guérin (BCG) vaccination or low dose aerosol (LDA) Mtb infection were able to delay the progression towards active TB after CMtb challenge. While BCG vaccination also reduced bacillary load when NCMtb was challenged, LDA did not, and its proliferative lesions experienced neutrophil infiltration. Analysis of lung cytokine and chemokine profiles points to their capacity to block the production of CXCL-1 and further amplification of IL-1β, IL-17 and neutrophilic extracellular trap formation, all of which are essential for TB progression. These data highlight the key role of cording formation in the induction of active TB. Full article
Show Figures

Figure 1

Back to TopTop