Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (230)

Search Parameters:
Keywords = CAH3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4832 KB  
Article
Biosynthetic Collagen-Analog Hydrogels Stimulate Endogenous Regrowth of Rabbit Corneas: A Pilot Study
by Iris Timmerman, Marie-Claude Robert, Claire Vergneau-Grosset, Tristan Juette, Javier Benito, Marta Garbin, Mostafa Zamani-Roudbaraki, Mona Moradi, Hamid Goodarzi, Christos Boutopoulos, Marie-Odile Benoit-Biancamano, May Griffith and Maria Vanore
Vet. Sci. 2025, 12(8), 785; https://doi.org/10.3390/vetsci12080785 - 21 Aug 2025
Viewed by 118
Abstract
Pro-regenerative corneal implants are being developed to improve corneal healing for companion animals in clinical practice. This pilot study evaluated early corneal tissue and nerve regeneration using biosynthetic collagen-analog hydrogels (CAH) in liquid and solid forms. Their efficacy was compared to each other [...] Read more.
Pro-regenerative corneal implants are being developed to improve corneal healing for companion animals in clinical practice. This pilot study evaluated early corneal tissue and nerve regeneration using biosynthetic collagen-analog hydrogels (CAH) in liquid and solid forms. Their efficacy was compared to each other and to allografts on nine white New Zealand rabbits, divided in three groups of three. Each rabbit cornea underwent keratectomy followed by grafting with either a control allograft cornea, liquid injectable, or solid CAH implant. Corneal healing was assessed over 16 weeks using clinical exams, esthesiometry, in vivo confocal microscopy, and optical coherence tomography. One rabbit per group was euthanized at 3, 10, and 16 weeks for histopathological analysis. Both liquid and solid implants enabled corneal re-epithelialization and regeneration of stromal tissue and corneal nerves. Esthesiometric values indicated faster nerve regeneration in rabbits grafted with biosynthetic implants compared to allografts (p < 0.005). By 16 weeks, regenerated neocorneas achieved transparency comparable to allografts. Solid and liquid CAH implants supported complete corneal tissue and nerve regeneration in the studied rabbits. These results suggest that with further research and development, the current gold standard for corneal transplantation could be replaced by high-performing, easily produced biosynthetic alternatives. Full article
(This article belongs to the Special Issue Vision in Focus: Advances in Veterinary Ophthalmology)
Show Figures

Figure 1

13 pages, 5908 KB  
Article
Experimental Study on the Strength Characteristics of Modified Guilin Red Clay
by Wenwu Chen, Zhigao Xie, Jiguang Chen, Mengyao Hong, Xiaobo Wang, Haofeng Zhou and Bai Yang
Buildings 2025, 15(14), 2533; https://doi.org/10.3390/buildings15142533 - 18 Jul 2025
Viewed by 278
Abstract
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to [...] Read more.
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to evaluate the strength characteristics and microstructural changes in modified clay specimens with varying dosages. The results demonstrate distinct strengthening mechanisms: Lignin exhibits an optimal dosage (6%), significantly increasing cohesion and internal friction angle through physical reinforcement (“soil fiber” formation), but higher dosages (8%) lead to particle separation and strength reduction. In contrast, lime provides continuous and substantial strength enhancement with increasing dosage (up to 8%), primarily through chemical reactions producing cementitious compounds (e.g., C-S-H, C-A-H) that densify the structure. Consequently, lime-modified clay shows significantly higher cohesion and internal friction angle compared to lignin-modified clay at equivalent or higher dosages, with corresponding stress–strain curves shifting from enhanced (strain-hardening) to softening behavior. These findings provide practical insights into red clay improvement in geotechnical engineering applications. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

10 pages, 807 KB  
Case Report
A Case of Salt-Wasting Congenital Adrenal Hyperplasia Caused by a Rare Intronic Variant in the CYP21A2 Gene
by Zoia Antysheva, Anton Esibov, Ekaterina Avsievich, Ekaterina Petriaikina, Vladimir Yudin, Anton Keskinov, Sergey Yudin, Dmitry Svetlichnyy, Julia Krupinova, Aleksey Ivashechkin, Yulia Katsaran, Mary Woroncow, Veronika Skvortsova, Viktor Bogdanov and Pavel Volchkov
Int. J. Mol. Sci. 2025, 26(14), 6648; https://doi.org/10.3390/ijms26146648 - 11 Jul 2025
Viewed by 397
Abstract
This case report describes a novel intronic mutation, CYP21A2:c.738+75C>T (rs1463196531), identified in a 4-year-old male with congenital adrenal insufficiency, and expands the known mutation spectrum associated with this condition. The patient, born full-term to unrelated parents, presented with adrenal failure within the [...] Read more.
This case report describes a novel intronic mutation, CYP21A2:c.738+75C>T (rs1463196531), identified in a 4-year-old male with congenital adrenal insufficiency, and expands the known mutation spectrum associated with this condition. The patient, born full-term to unrelated parents, presented with adrenal failure within the first month of life, characterized by acute adrenal crisis symptoms such as vomiting, dehydration, weight loss, hypotension, and electrolyte imbalances. Hormonal evaluations confirmed primary adrenocortical insufficiency, necessitating ongoing hydrocortisone and fludrocortisone therapy. Using family trio-based amplicon sequencing of the CYP21A2 gene, we identified compound heterozygosity consisting of a full gene deletion and a novel pathogenic intronic mutation. Additionally, analysis of WGS data was performed to rule out pathogenic variants in genes that might lead to a similar phenotype, thereby eliminating the possibility of other genes contributing to the proband’s disease. This case demonstrates the potential of using amplicon sequencing in molecular genetic diagnostic testing to detect rare intronic variants in the CYP21A2 gene in cases of early-onset adrenal failure. It also contributes to a better understanding of the genetic basis of congenital adrenal hyperplasia (CAH), which remains a significant autosomal recessive disorder affecting cortisol and aldosterone production, with an incidence of 1 in 10,000 to 1 in 15,000 globally. Full article
Show Figures

Figure 1

21 pages, 4492 KB  
Article
IrO2-Decorated Titania Nanotubes as Oxygen Evolution Anodes
by Aikaterini Touni, Effrosyni Mitrousi, Patricia Carvalho, Maria Nikopoulou, Eleni Pavlidou, Dimitra A. Lambropoulou and Sotiris Sotiropoulos
Molecules 2025, 30(14), 2921; https://doi.org/10.3390/molecules30142921 - 10 Jul 2025
Viewed by 398
Abstract
In this work, we have used both plain titania nanotubes, TNTs, and their reduced black analogues, bTNTs, that bear metallic conductivity (prepared by solid state reaction of TNTs with CaH2 at 500 °C for 2 h), as catalyst supports for the oxygen [...] Read more.
In this work, we have used both plain titania nanotubes, TNTs, and their reduced black analogues, bTNTs, that bear metallic conductivity (prepared by solid state reaction of TNTs with CaH2 at 500 °C for 2 h), as catalyst supports for the oxygen evolution reaction (OER). Ir was subsequently been deposited on them by the galvanic replacement of electrodeposited Ni by Ir(IV) chloro-complexes; this was followed by Ir electrochemical anodization to IrO2. By carrying out the preparation of the TNTs in either two or one anodization steps, we were able to produce close-packed or open-structure nanotubes, respectively. In the former case, larger than 100 nm Ir aggregates were finally formed on the top face of the nanotubes (leading to partial or full surface coverage); in the latter case, Ir nanoparticles smaller than 100 nm were obtained, with some of them located inside the pores of the nanotubes, which retained a porous surface structure. The electrocatalytic activity of IrO2 supported on open-structure bTNTs towards OER is superior to that supported on close-packed bTNTs and TNTs, and its performance is comparable or better than that of similar electrodes reported in the literature (overpotential of η = 240 mV at 10 mA cm−2; current density of 70 mA cm−2 and mass specific current density of 258 mA mgIr−1 at η = 300 mV). Furthermore, these electrodes demonstrated good medium-term stability, maintaining stable performance for 72 h at 10 mA cm−2 in acid. Full article
(This article belongs to the Special Issue Advances in Water Electrolysis Technology)
Show Figures

Graphical abstract

5 pages, 161 KB  
Editorial
Integration of Adjunctive Therapy for Congenital Adrenal Hyperplasia
by Phyllis W. Speiser
Children 2025, 12(7), 898; https://doi.org/10.3390/children12070898 - 8 Jul 2025
Viewed by 415
Abstract
CAH represents a prototypical enzyme deficiency disorder, most commonly affecting steroid 21-hydroxylase, in which the critical adrenal pathway from cholesterol to cortisol is blocked [...] Full article
(This article belongs to the Section Pediatric Endocrinology & Diabetes)
13 pages, 7730 KB  
Article
Study of New Glass–Ceramic and Dense Ceramic Containing Biogenic Hydroxyapatite
by Tina Tasheva, Albena Yoleva, Janna Mateeva and Hristo Georgiev
Materials 2025, 18(13), 3059; https://doi.org/10.3390/ma18133059 - 27 Jun 2025
Viewed by 463
Abstract
A novel bioactive glass–ceramic was developed using biogenic hydroxyapatite (BHA) synthesized from Rapana venosa (Black Sea) shells and monocalcium phosphate monohydrate [Ca(H2PO4)2·H2O] via solid-state synthesis. The prepared batches were obtained by combining BHA with SiO [...] Read more.
A novel bioactive glass–ceramic was developed using biogenic hydroxyapatite (BHA) synthesized from Rapana venosa (Black Sea) shells and monocalcium phosphate monohydrate [Ca(H2PO4)2·H2O] via solid-state synthesis. The prepared batches were obtained by combining BHA with SiO2, B2O3, and Na2O, melted at 1200 °C and melt-quenched in water to form glass–ceramic materials. Dense biogenic hydroxyapatite-based ceramics were successfully sintered at 1200 °C (2 h hold) using a 25 mass % sintering additive composed of 35 mass % B2O3, 45 mass % SiO2, 10 mass % Al2O3, and 10 mass % Na2O. Structural characterization was carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The resulting materials consisted of a well-defined crystalline hydroxyapatite phase [Ca10(PO4)6(OH)2] alongside an amorphous phase. In samples with increased SiO2 and reduced B2O3 content (composition 3), a finely dispersed Na3Ca6(PO4)5 crystalline phase appeared, with a reduced presence of hydroxyapatite. Bioactivity was assessed in simulated body fluid (SBF) after 10 and 20 days of immersion, confirming the material’s ability to support apatite layer formation. The main structural units SiO4, PO4, and BO3 are interconnected through Si–O–Si, B–O–B, P–O–P, and mixed Si–O–Al linkages, contributing to both structural stability and bioactivity. Full article
Show Figures

Figure 1

18 pages, 803 KB  
Article
Growth Assessment and Nutritional Status in Children with Congenital Adrenal Hyperplasia—A Cross-Sectional Study from a Vietnamese Tertiary Pediatric Center
by Thi Thuy Hong Nguyen, Khanh Minh Le, Thi Anh Thuong Tran, Khanh Ngoc Nguyen, Thi Bich Ngoc Can, Phuong Thao Bui, Dat Tien Tran and Chi Dung Vu
Diagnostics 2025, 15(12), 1534; https://doi.org/10.3390/diagnostics15121534 - 16 Jun 2025
Viewed by 793
Abstract
Background/Objectives: Children with congenital adrenal hyperplasia (CAH) face significant risks of impaired growth and metabolic disturbances despite standard glucocorticoid therapy. This cross-sectional study aimed to evaluate growth outcomes, nutritional status, and associated factors among children with CAH treated in a Vietnamese tertiary pediatric [...] Read more.
Background/Objectives: Children with congenital adrenal hyperplasia (CAH) face significant risks of impaired growth and metabolic disturbances despite standard glucocorticoid therapy. This cross-sectional study aimed to evaluate growth outcomes, nutritional status, and associated factors among children with CAH treated in a Vietnamese tertiary pediatric center. Methods: We assessed 201 children aged 1.1–16.5 years in a tertiary pediatric center in Vietnam for anthropometric parameters, biochemical markers (calcium, phosphate, 25-hydroxyvitamin D), and clinical features. Growth status was evaluated using WHO standards, and bone age was assessed radiographically. Statistical analyses explored associations between growth outcomes and clinical, biochemical, and treatment-related factors. Results: Stunting was present in 16.4% of children, while 53.3% were overweight or obese. Bone age advancement occurred in 51.7% of cases. Vitamin D insufficiency or deficiency was detected in 85.6% of patients, and hypocalcemia was present in 85.1%. Overweight/obesity, vitamin D deficiency, and bone age advancement were associated with older age, prolonged corticosteroid therapy, higher androgen levels, and clinical features of treatment imbalance (e.g., Cushingoid appearance, hyperpigmentation). Female sex was significantly associated with higher rates of stunting. Conclusions: Growth impairment, nutritional deficiencies, and skeletal maturation disturbances are prevalent among children with CAH in Vietnam. Early identification of risk factors and the implementation of tailored management strategies that address both endocrine and nutritional health are crucial for optimizing long-term outcomes. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Pediatric Diseases)
Show Figures

Figure 1

15 pages, 1742 KB  
Article
Silicon Reduce Structural Carbon Components and Its Potential to Regulate the Physiological Traits of Plants
by Baiying Huang, Danghui Xu, Wenhong Zhou, Yuqi Wu and Wei Mou
Plants 2025, 14(12), 1779; https://doi.org/10.3390/plants14121779 - 11 Jun 2025
Viewed by 438
Abstract
Phosphorus (P) and silicon (Si) could profoundly affect the net primary productivity (ANPP) of grassland ecosystems. However, how ecosystem biomass will respond to different Si addition, especially under a concurrent increase in P fertilization, remains limited. With persistent demand for grassland utilization, there [...] Read more.
Phosphorus (P) and silicon (Si) could profoundly affect the net primary productivity (ANPP) of grassland ecosystems. However, how ecosystem biomass will respond to different Si addition, especially under a concurrent increase in P fertilization, remains limited. With persistent demand for grassland utilization, there is a need to enhance and sustain the productivity of grasslands on the Qinghai–Tibet Plateau. Three P addition rates (0, 400, 800, and 1200 kg Ca(H2PO4)2 ha−1 yr−1) without Si and with Si (14.36 kg H4SiO4 ha−1 yr−1) were applied to alpine grassland on the Qinghai–Tibet Plateau to evaluate the responses of aboveground biomass and the underlying mechanisms linking to structural carbon composition and physiological traits of grasses and forbs. Our results show that the application of Si significantly reduced the lignin, cellulose, hemicellulose, and total phenol contents of both grasses and forbs. Additionally, the addition of P, Si, and phosphorus and silicon (PSi) co-application significantly increased the net photosynthetic rate (Pn) and light use efficiency (LUE) of grasses and forbs. Moreover, Si promoted the absorption of N and P by plants, resulting in significant changes in the Si:C, Si:P, and Si:N ratios and increasing the aboveground biomass. Our findings suggest that Si can replace structural carbohydrates and regulate the absorption and utilization of N and P to optimize the photosynthetic process of leaves, thereby achieving greater biomass. In summary, Si supplementation improves ecosystem stability in alpine meadows by optimizing plant functions and increasing biomass accumulation. Full article
(This article belongs to the Special Issue Silicon and Its Physiological Role in Plant Growth and Development)
Show Figures

Figure 1

19 pages, 7249 KB  
Article
Effect of Calcium Chloride on the Reinforcement of Uranium Tailings with Sodium Hydroxide–Sodium Silicate–Metakaolin
by Qianjin Niu and Xiujuan Feng
Minerals 2025, 15(5), 526; https://doi.org/10.3390/min15050526 - 15 May 2025
Viewed by 382
Abstract
The uranium tailings mineral body is large and loose, and this could lead to radioactive contamination. Nuclides and heavy metals released from uranium tailings can be reduced through reinforcement treatment. The current study investigated the effect of CaCl2 solutions with the same [...] Read more.
The uranium tailings mineral body is large and loose, and this could lead to radioactive contamination. Nuclides and heavy metals released from uranium tailings can be reduced through reinforcement treatment. The current study investigated the effect of CaCl2 solutions with the same volume and different mass fractions on uranium tailing reinforcement under the premise of fixing the dosage of metakaolin, sodium hydroxide, sodium silicate, and the water reducer. It was found that, when 20.0% CaCl2 was injected, the hydration reaction occurred more efficiently, and a more uniform gel polymer was produced. The degree of polymerization was higher, as well as the degree of aggregation near macropores. A large number of closed mesopores formed on the solidified surface. The pore structure of the solidified body was significantly improved; uranium ore particles had smaller gaps between them; the solidified body was better compacted; the leaching rates of uranium and its heavy metal ions were significantly reduced; and the compressive strength of the solidified body improved. In the triaxial test, the solidified body had a strength increase of 4.7 times. In addition to SEM, XPS, and XRD, the solidified samples were analyzed. In uranium slag solidified bodies, C-S-H and C-A-H gels and C-A-S-H and N-A-S-H polymers were formed. The gel polymers were wrapped around the uranium tailing particles, resulting in an 82.6% reduction in uranium leaching and a 57.2% reduction in radon exhalation. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

14 pages, 5068 KB  
Article
Ca-, Li-, and Cu-Salicylatoborates for Potential Applications in Neutron Capture Therapy: A Computational Method for the Preliminary Discrimination of the More Promising Compounds
by Domenica Marabello, Paola Benzi, Carlo Canepa and Alma Cioci
Inorganics 2025, 13(5), 136; https://doi.org/10.3390/inorganics13050136 - 26 Apr 2025
Viewed by 506
Abstract
Boron Neutron Capture Therapy is a re-emerging therapy for the treatment of cancer, and the development of new neutron-reactive nuclei carriers with enhanced efficiency is of great importance. In this work we propose three new boron-based solid compounds, of formulas [Ca(H2O) [...] Read more.
Boron Neutron Capture Therapy is a re-emerging therapy for the treatment of cancer, and the development of new neutron-reactive nuclei carriers with enhanced efficiency is of great importance. In this work we propose three new boron-based solid compounds, of formulas [Ca(H2O)6](C14H8O6B)2 (CaSB), [Cu(C14H8O6B)] (CuSB), and [Li(C14H8O6B)(H2O)] (LiSB), usable as nanoparticles for the carriage of the 10B isotope. The copper atom in CuSB was introduced because it is known that its presence magnifies the effect of the radiation on cells. Furthermore, the lithium atom in LiSB also allows us to include the 6Li isotope, which can take part in the nuclear reactions, enhancing the efficiency of the anti-cancer treatment. The compounds were characterized with single-crystal X-ray diffraction to compare the densities of the reactive isotopes in the materials, a key parameter related to the efficiency of the materials. In this work, we used a computational method to calculate the dose absorbed by a tumor mass treated with nanoparticles of the compounds in order to select the most efficient one for the therapy. The results reported in this work are encouraging. Full article
Show Figures

Graphical abstract

14 pages, 2091 KB  
Article
Influence of Oil Viscosity on Hysteresis Effect in Electrowetting Displays Based on Simulation
by Wei Li, Linwei Liu, Taiyuan Zhang, Lixia Tian, Li Wang, Cheng Xu, Jianwen Lu, Zichuan Yi and Guofu Zhou
Micromachines 2025, 16(4), 479; https://doi.org/10.3390/mi16040479 - 18 Apr 2025
Viewed by 402
Abstract
As the most promising new reflective display technology, electrowetting displays (EWDs) have the advantages of a simple structure, fast response, high contrast, and rich colors. However, due to the hysteresis effect, the grayscales of EWDs cannot be accurately controlled, which seriously restricts the [...] Read more.
As the most promising new reflective display technology, electrowetting displays (EWDs) have the advantages of a simple structure, fast response, high contrast, and rich colors. However, due to the hysteresis effect, the grayscales of EWDs cannot be accurately controlled, which seriously restricts the industrialization process of this technology. In this paper, the oil movement process in an EWD pixel cell was simulated, and the influence of oil viscosity on the hysteresis effect was studied based on the proposed simulation model. Firstly, the cause of the hysteresis effect was analyzed through the hysteresis curve of an EWD. Then, based on the COMSOL Multiphysics simulation environment, the oil movement process in an EWD pixel cell was simulated by coupling the phase field of laminar two-phase flow and electrostatic field. Finally, based on the simulation model, the influence of oil viscosity on the hysteresis effect in an EWD pixel cell was studied. We observed that the maximum hysteresis difference in the hysteresis effect increased with the increase in oil viscosity and decreased with the decrease in oil viscosity. The oil viscosity had little effect on the maximum aperture ratio of EWD. The pixel-on response time and pixel-off response time increased with the increase in oil viscosity. Full article
Show Figures

Figure 1

23 pages, 4778 KB  
Article
Enhancement of Biochar Carbon Sequestration Through Mineral Regulation: Effects and Mechanisms
by Fan Yang, Pengxiao Gao, Lin Chi, Zhongyu Gao, Yajun Wang, Liu Luo, Bo Liu, Xinyue Liu and Jingke Sima
Agronomy 2025, 15(4), 943; https://doi.org/10.3390/agronomy15040943 - 12 Apr 2025
Viewed by 1076
Abstract
The conversion of waste biomass into biochar through inert pyrolysis represents a promising strategy for carbon sequestration. However, biochar production is often accompanied by the release of small molecular chemical substances during pyrolysis, and the resulting biochar is susceptible to environmental degradation. To [...] Read more.
The conversion of waste biomass into biochar through inert pyrolysis represents a promising strategy for carbon sequestration. However, biochar production is often accompanied by the release of small molecular chemical substances during pyrolysis, and the resulting biochar is susceptible to environmental degradation. To enhance the carbon retention rate of biochar during pyrolysis and its stability in the environment, this study explored the incorporation of various metal soluble salts (CaCl2, Ca(H2PO4)2, MgCl2, FeCl3) and clay minerals (quartz, goethite, bentonite, albite) with two types of waste biomass (phragmites and goldenrod) for pre-treatment to enhance both carbon retention and stability in the resulting biochar. Furthermore, to elucidate the regulatory mechanisms of minerals on biochar structural formation, the three primary components of raw biomass—hemicellulose, cellulose, and lignin—were individually mixed with the minerals at a ratio of 1:5 (mineral/biomass, w/w) to produce biochars for a comparative analysis. The experimental results demonstrated that metal soluble salts, particularly Ca(H2PO4)2, exhibited a superior performance in enhancing biochar’s carbon retention compared to clay minerals. Specifically, Ca(H2PO4)2 treatment resulted in a remarkable 15% increase in the carbon retention rate. Through K2Cr2O7 oxidation simulating soil aging conditions, Ca(H2PO4)2-treated biochar showed approximately 12% greater stability than the untreated samples. This enhanced stability was primarily attributed to the formation of stable chemical bonds (C–O–P and P–O), which facilitated the preservation of aromatic carbon structures and small molecular compounds including sugars, alcohols, and ethers. Mechanistic investigations revealed that Ca(H2PO4)2 significantly influenced the pyrolysis process by increasing the activation energy from 85.9 kJ mol−1 to 156.5 kJ mol−1 and introducing greater reaction complexity. During the initial pyrolysis stage (<300 °C), Ca(H2PO4)2 catalyzed depolymerization, ring-opening, and C–C bond cleavage in hemicellulose, enhanced cellulose depolymerization, and side-chain cleavage in lignin phenylpropanes. In the intermediate temperature range (300–400 °C), Ca(H2PO4)2 facilitated carboxylate nucleophilic addition reactions and promoted cyclization to form aromatic carbon structures. The innovative aspect of this work is that minerals can increase both the yield and carbon retention rate of biochar. Furthermore, it reveals the mechanisms underlying the improvements in pyrolysis, providing a scientific basis and theoretical foundation for better displaying the carbon sequestration potential of biochar in future applications. Full article
Show Figures

Figure 1

15 pages, 2620 KB  
Article
Research of the Process of Obtaining Monocalcium Phosphate from Unconditional Phosphate Raw Materials
by Abibulla Anarbayev, Balzhan Kabylbekova, Zhakhongir Khussanov, Bakyt Smailov, Nurlan Anarbaev and Yevgeniy Kulikov
ChemEngineering 2025, 9(2), 39; https://doi.org/10.3390/chemengineering9020039 - 2 Apr 2025
Viewed by 653
Abstract
The article presents methods for processing low-grade phosphate raw materials from the Chilisay deposit using a circulation method to produce mineral fertilizers and feed monocalcium phosphate. A study was conducted on the process of obtaining high-quality monocalcium phosphate, and optimal parameters for the [...] Read more.
The article presents methods for processing low-grade phosphate raw materials from the Chilisay deposit using a circulation method to produce mineral fertilizers and feed monocalcium phosphate. A study was conducted on the process of obtaining high-quality monocalcium phosphate, and optimal parameters for the decomposition of low-grade phosphate raw materials were determined. Based on the research, it was established that for the decomposition of phosphate raw materials, phosphoric acid with a concentration of 36–42% P2O5 should be used; the recycle phosphoric acid rate should be 540–560% of the stoichiometric amount required for the formation of monocalcium phosphate (MCP); the decomposition temperature should be 95–100 °C; the decomposition duration should be 40–50 min; the filtration temperature of the insoluble residue should be 85–90 °C; the crystallization temperature of MCP should be 40–45 °C; and the crystallization duration should be 85–90 min. For the sulfation of the mother solution and the production of recycle phosphoric acid, sulfuric acid with a concentration of 86–93% H2SO4 should be used; the sulfuric acid rate should be 95–100% of the stoichiometric amount required for the decomposition of dissolved Ca(H2PO4)2. After drying the wet residue, monocalcium phosphate was obtained with the following composition: P2O5—55%, Ca—18.01%, H2O—4.0%, F—0.01%, As—0.004%, Pb—0.002%. The obtained monocalcium phosphate is used in agriculture as a mineral fertilizer and feed monocalcium phosphate. Full article
Show Figures

Figure 1

17 pages, 7672 KB  
Article
Hygrothermal Aging of Glass Fiber-Reinforced Benzoxazine Composites
by Poom Narongdej, Daniel Tseng, Riley Gomez, Ehsan Barjasteh and Sara Moghtadernejad
Eng 2025, 6(3), 60; https://doi.org/10.3390/eng6030060 - 20 Mar 2025
Viewed by 597
Abstract
Glass fiber-reinforced polymer (GFRP) composites are widely utilized across industries, particularly in structural components exposed to hygrothermal environments characterized by elevated temperature and moisture. Such conditions can significantly degrade the mechanical properties and structural integrity of GFRP composites. Therefore, it is essential to [...] Read more.
Glass fiber-reinforced polymer (GFRP) composites are widely utilized across industries, particularly in structural components exposed to hygrothermal environments characterized by elevated temperature and moisture. Such conditions can significantly degrade the mechanical properties and structural integrity of GFRP composites. Therefore, it is essential to utilize effective methods for assessing their hygrothermal aging. Traditional approaches to hygrothermal aging evaluation are hindered by several limitations, including time intensity, high costs, labor demands, and constraints on specimen size due to laboratory space. This study addresses these challenges by introducing a facile and efficient alternative that evaluates GFRP degradation under hygrothermal conditions through surface wettability analysis. Herein, a glass fiber-reinforced benzoxazine (BZ) composite was fabricated using the vacuum-assisted resin transfer molding (VARTM) method and was aged in a controlled humidity and temperature chamber for up to 5 weeks. When analyzing the wettability characteristics of the composite, notable changes in the contact angle (CA) and contact angle hysteresis (CAH) were 21.77% and 90.90%, respectively. Impact droplet dynamics further demonstrated reduced wetting length and faster droplet equilibrium times with the prolonged aging duration, indicating a progressive decline in surface characteristics. These changes correlated with reductions in flexural strength, highlighting the surface’s heightened sensitivity to environmental degradation compared with internal structural integrity. This study emphasizes the critical role of surface characterization in predicting the overall integrity of GFRP composites. Full article
Show Figures

Figure 1

10 pages, 1154 KB  
Case Report
Unique Case Report: A Rare Association of 21-Hydroxylase Deficiency with Triple X Karyotype
by Rossana Santiago de Sousa Azulay, Alexandre Nogueira Facundo, Sarah Sousa e Sousa, Gilvan Cortes Nascimento, Marcelo Magalhães, Clariano Pires de Oliveira Neto, Joana D’arc Matos França de Abreu, Débora Cristina Ferreira Lago, Sabrina da Silva Pereira Damianse, Viviane Chaves de Carvalho, Caio Andrade Nascimento, Vandilson Pinheiro Rodrigues, Fernanda Borchers Coeli-Lacchini, Margaret de Castro and Manuel dos Santos Faria
Genes 2025, 16(3), 354; https://doi.org/10.3390/genes16030354 - 20 Mar 2025
Viewed by 978
Abstract
Background: Congenital adrenal hyperplasia (CAH) represents a group of autosomal recessive disorders characterized by impaired cortisol synthesis in the adrenal glands. Over 90% of CAH cases result from a deficiency of the enzyme 21-hydroxylase (21OHD). The clinical spectrum of 21OHD ranges from [...] Read more.
Background: Congenital adrenal hyperplasia (CAH) represents a group of autosomal recessive disorders characterized by impaired cortisol synthesis in the adrenal glands. Over 90% of CAH cases result from a deficiency of the enzyme 21-hydroxylase (21OHD). The clinical spectrum of 21OHD ranges from the severe, life-threatening salt-wasting classic form, often presenting with prenatal virilization in females, to the non-classic (milder) form, which lacks glucocorticoid deficiency. Females with the non-classic form may experience symptoms of hyperandrogenism or infertility later in life, while males with non-classic CAH are often undiagnosed due to the subtler presentation. The coexistence of genetic anomalies and CAH is rarely reported in the literature, particularly in cases involving Triple X syndrome—a condition typically associated with a mild and frequently underdiagnosed clinical course. Case presentation: Here, we present a unique case of a 38-year-old woman with a history of premature ovarian failure and subsequent clinical features of hyperandrogenism. Further investigation revealed a novel association between partial 21OHD and a Triple X karyotype—an association not previously documented in the literature. Conclusions: This case highlights the potential for coexisting rare genetic conditions and underscores the critical importance of thorough and meticulous clinical evaluation. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

Back to TopTop