Functional Inorganic Biomaterials for Molecular Sensing and Biomedical Applications

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Inorganic Materials".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 115

Special Issue Editor


E-Mail
Guest Editor
Chemistry Department, School of Science, Ivan Hilton Science Center, New Mexico Highlands University, Las Vegas, NM, USA
Interests: inorganic materials; molecular self-assembly; drug delivery; protein folding and dynamics; modeling of functional nanomaterials

Special Issue Information

Dear Colleagues,

It is my utmost pleasure to invite you to contribute a full article, short communication, opinion, or review article to this Special Issue, entitled "Functional Inorganic Biomaterials for Molecular Sensing and Biomedical Applications".

Science thrives on innovation and technological advancements that can further the quality of life via the prevention, early detection, diagnosis, and treatment of various diseases and fostering environmental sustainability. Inorganic biomaterials encompass a diverse array of materials that include metals, polymers, ceramics, and composites, and are shown to be pivotal in chemistry, materials science, biology, medicine, and biomedical engineering. The development of inorganic biomaterials with tunable intrinsic properties (i.e., shape, size, surface-to-volume ratio or aspect ratio, topography, and electrostatic interactions), engineerable surfaces, and functionality is much sought after in imaging and clinical therapy. The molecular sensing and biomedical applications of inorganic biomaterials are quite diverse and include regenerative medicine, tumor imaging, atherosclerosis imaging, tissue engineering, drug delivery, orthopedic implants, photothermal therapy, and the design of controllable medical devices. Inorganic biomaterials and their hybrid assemblies can also be applied as scaffolds to immobilize biological molecules in a defined manner and provide the means of producing advanced materials for tailored biological applications.

This Special Issue calls for studies on the structural characterization of inorganic biomaterials, the biophysical and biochemical properties of inorganic-based biomaterials, biocompatibility, and applications of inorganic biomaterials, including, but not limited to, imaging and clinical therapy, such as therapeutic drug delivery, gene therapy, stem cell therapy, tissue engineering, and regenerative medicine. The invitation is open to researchers who investigate the medical applications of inorganic biomaterials using computation and experiments. The objective of this Special Issue is to showcase the recent advances in inorganic biomaterials, which include all stages of the process, from design to application, as well as prospects for their use in clinical trials and modern medicine.

I look forward to receiving your contributions.

Dr. Nabanita Saikia
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • structural characterization of inorganic biomaterials
  • light-responsive inorganic biomaterials
  • biocompatibility of inorganic biomaterials
  • molecular imaging
  • therapeutic applications of inorganic biomaterials
  • inorganic biomaterial-based medical devices
  • wound healing and regenerative medicine

Published Papers

This special issue is now open for submission, see below for planned papers.

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Advances in Application of Inorganic-Based Bionanomaterials as Biocompatible Scaffolds for Regenerative Medicine and Tissue Engineering
Authors: Nabanita Saikia
Affiliation: Department of Chemistry, New Mexico Highlands University, Las Vegas, NM 87701, United States
Abstract: Regenerative medicine is an interdisciplinary field that involves the principles of stem cell technology and tissue engineering to aid in the replacement or regeneration of human cells, tissues, or organs and restore normal functions. The term 'regenerative medicine' was coined by William Haseltine during a 1999 conference on Lake Como. Regenerative medicine has emerged as a novel frontier in research and since its inception in 1968, regenerative therapies have provided clinical benefits for bone, skin, cartilage, neural, and cardiac regeneration, repair and restoration of disease tissues, and scaffold fabrication. Inorganic biomaterials are pivotal in regenerative medicine and have gained precedence over contemporary synthetic and biomaterials due to their tunable intrinsic properties that are characterized by size, topography, charge, and chemical stability, display flexible cellular response in intracellular matric environments, act as a scaffold to provide structural support for cell adhesion, tissue regeneration, and development. Given the wide gamut of near-future applications that can be envisaged for inorganic biomaterials, this review focuses on the emergence of application in stem-cell regenerative research and tissue engineering, regeneration of artificial skin and cartilage, neural nerve injuries, bioprinting, and the design of new inorganic bio-scaffolds. The challenges associated with clinical applications of inorganic biomaterials and tissue compatibility will be discussed using current state-of-the-art techniques.

Back to TopTop