Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (574)

Search Parameters:
Keywords = CB1 cannabinoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2651 KB  
Article
BI-5756 Reduces Graft-Versus-Host Disease Through CB1-Mediated Treg Upregulation
by Sena Kim, Abdul-Jalil Dania, Sora Lim and Jaebok Choi
Molecules 2025, 30(17), 3517; https://doi.org/10.3390/molecules30173517 - 28 Aug 2025
Abstract
Cannabinoid receptor 1 (CB1) has been implicated in multiple inflammatory diseases by regulating pro-inflammatory mediators or altering immune cell polarization. However, the expression and direct functional role of CB1 in T cells remain largely unexplored. Here, we demonstrate that primary murine T cells [...] Read more.
Cannabinoid receptor 1 (CB1) has been implicated in multiple inflammatory diseases by regulating pro-inflammatory mediators or altering immune cell polarization. However, the expression and direct functional role of CB1 in T cells remain largely unexplored. Here, we demonstrate that primary murine T cells express CB1 and that its novel agonist, BI-5756, directly increases the frequencies of regulatory T cells (Tregs) in primary murine pan T cells after activation. In addition, BI-5756 exhibits an in vivo protective effect against graft-versus-host disease (GvHD), an allogeneic T cell-mediated inflammatory complication after allogeneic hematopoietic cell transplantation (allo-HCT), resulting in an improved overall survival with enhanced platelet recovery and reconstitution of bone marrow-derived B and T cells. BI-5756 also directly suppresses tumor cell growth and upregulates MHC I, MHC II, and CD80 on tumor cells, which may subsequently enhance T cell-mediated anti-tumor responses in mixed lymphocyte reaction with A20 cells. The ability of BI-5756 to increase Tregs was significantly abrogated by rimonabant, a potent and selective CB1 antagonist, suggesting that the immunomodulatory effect of BI-5756 is mediated via CB1. In summary, BI-5756, a potent CB1 agonist, increases Tregs while preserving anti-tumor responses in vitro and effectively reduces GvHD in vivo. Full article
(This article belongs to the Special Issue The Role of Cannabinoids in Human Health)
Show Figures

Figure 1

26 pages, 2099 KB  
Review
Cannabis Medicine 2.0: Nanotechnology-Based Delivery Systems for Synthetic and Chemically Modified Cannabinoids for Enhanced Therapeutic Performance
by Izabela Żółnowska, Aleksandra Gostyńska-Stawna, Anna Jelińska and Maciej Stawny
Nanomaterials 2025, 15(16), 1260; https://doi.org/10.3390/nano15161260 - 15 Aug 2025
Viewed by 373
Abstract
The therapeutic potential of cannabinoids and other ligands of cannabinoid receptors attracts considerable attention due to their diverse pharmacological effects and utility in various medical applications. However, challenges such as low solubility, limited bioavailability, and potential side effects hinder their broad clinical use. [...] Read more.
The therapeutic potential of cannabinoids and other ligands of cannabinoid receptors attracts considerable attention due to their diverse pharmacological effects and utility in various medical applications. However, challenges such as low solubility, limited bioavailability, and potential side effects hinder their broad clinical use. Nanoformulation techniques offer a promising approach to address these issues and optimize the therapeutic effectiveness of cannabinoids and other cannabinoid receptor ligands. This comprehensive review explores the advancements in nanoformulation strategies to enhance the therapeutic efficacy and safety of synthetic cannabinoids and related compounds, such as CB13, rimonabant, and HU-211, which have been studied in a range of preclinical models addressing conditions such as neuropathic pain, depression, and cancer. The review discusses various nanocarriers employed in this field, including lipid-based, polymeric, and hybrid nanoparticles, micelles, emulsions, and other nanoengineered carriers. In addition to formulation approaches, this review provides an in-depth analysis of chemical structures and their effect on compound activity, especially in the context of the affinity for the cannabinoid type 1 receptor in the brain, which is chiefly responsible for the psychoactive effects. The provided summary of research concerning either chemical modifications of existing cannabinoids or the creation of new compounds that interact with cannabinoid receptors, followed by the development of nanoformulations for these agents, allows for the identification of new research directions and future perspectives for Cannabis-based medicine. In conclusion, the combination of nanotechnology and cannabinoid pharmacology holds promise for delivering more effective and safer therapeutic solutions for a broad spectrum of medical conditions, making this an exciting area of research with profound implications for the healthcare and pharmaceutical industries. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

24 pages, 9295 KB  
Review
Cannabis Derivatives as Ingredients of Functional Foods to Combat the COVID-19 Pandemic
by Xiaoli Qin, Xiai Yang, Yanchun Deng, Litao Guo, Zhimin Li, Xiushi Yang and Chunsheng Hou
Foods 2025, 14(16), 2830; https://doi.org/10.3390/foods14162830 - 15 Aug 2025
Viewed by 472
Abstract
Lower respiratory infections predominantly affect children under five and the elderly, with influenza viruses and respiratory syncytial viruses (including SARS-CoV-2) being the most common pathogens. The COVID-19 pandemic has posed significant global public health challenges. While vaccination remains crucial, its efficacy is limited, [...] Read more.
Lower respiratory infections predominantly affect children under five and the elderly, with influenza viruses and respiratory syncytial viruses (including SARS-CoV-2) being the most common pathogens. The COVID-19 pandemic has posed significant global public health challenges. While vaccination remains crucial, its efficacy is limited, highlighting the need for complementary approaches to mitigate immune hyperactivation in severe COVID-19 cases. Medicinal plants like Cannabis sativa show therapeutic potential, with over 85% of SARS-CoV-2-infected patients in China receiving traditional herbal treatments. This review explores the antiviral applications of cannabis and its bioactive compounds, particularly against SARS-CoV-2, while evaluating their pharmacological and food industry potential. Cannabis contains over 100 cannabinoids, terpenes, flavonoids, and fatty acids. Cannabinoids may block viral entry, modulate immune responses (e.g., suppressing pro-inflammatory cytokines via CB2/PPARγ activation), and alleviate COVID-19-related psychological stress. There are several challenges with pharmacological and food applications of cannabinoids, including clinical validation of cannabinoids for COVID-19 treatment and optimizing cannabinoid solubility/bioavailability for functional foods. However, rising demand for health-focused products presents market opportunities. Genetic engineering to enhance cannabinoid yields and integrated pharmacological studies are needed to unlock cannabis’s full potential in drug discovery and nutraceuticals. Cannabis-derived compounds hold promise for antiviral therapies and functional ingredients, though further research is essential to ensure safety and efficacy. Full article
(This article belongs to the Special Issue Functional Food and Safety Evaluation: Second Edition)
Show Figures

Figure 1

28 pages, 3665 KB  
Article
Evaluation of the Cytotoxic Activity of Nanostructured Lipid Carrier Systems for Fatty Acid Amides and Silk Fibroins in Breast Cancer Cell Lines
by Sandro da Silva Borges, Sued Eustáquio Mendes Miranda, Victor Hugo de Souza Marinho, André Luís Branco de Barros, Sergio Yoshioka, Lorane Izabel da Silva Hage-Melim, Ana Carolina de Jesus Silva, Irlon Maciel Ferreira and Anna Eliza Maciel de Faria Mota Oliveira
Molecules 2025, 30(16), 3337; https://doi.org/10.3390/molecules30163337 - 11 Aug 2025
Viewed by 471
Abstract
Breast cancer, a highly prevalent malignancy among women, continues to pose a significant global health challenge, as conventional therapies are often limited by adverse effects. This study developed and evaluated nanostructured lipid carriers (NLCs) encapsulating fatty acid amides (FAAs) semi-synthesized from andiroba oil [...] Read more.
Breast cancer, a highly prevalent malignancy among women, continues to pose a significant global health challenge, as conventional therapies are often limited by adverse effects. This study developed and evaluated nanostructured lipid carriers (NLCs) encapsulating fatty acid amides (FAAs) semi-synthesized from andiroba oil and combined with silk fibroin (SF) as a novel therapeutic strategy. Methods: FAAs were synthesized via direct amidation and characterized by GC-MS, FT-IR, and 13C NMR. These fatty acid amides were then incorporated into NLCs containing SF. The formulation was evaluated for its physicochemical stability, cell selectivity, and cytotoxicity against 4T1 murine breast cancer cells and healthy human fibroblasts. Results: The NLC-FAA/SF formulation exhibited physicochemical stability (average particle size: 136.9 ± 23.6 nm; zeta potential: −8.3 ± 12.0 mV; polydispersity index: 0.19 ± 0.04), indicating a monodisperse and stable system. In vitro cytotoxicity assays demonstrated high selective activity against 4T1 murine breast cancer cells (IC50 = 0.18 ± 0.06 μg/mL) and negligible toxicity to healthy human fibroblasts. Molecular docking studies revealed favorable interactions between the FAAs and cannabinoid receptors CB1 and CB2, with unsaturated FAAs showing higher binding scores and stability, suggesting their potential as cannabinoid receptor ligands. These findings highlight NLC-FAA/SF as a promising, selective, and effective nanoplatform for breast cancer treatment, warranting further investigation into its mechanism of action and in vivo efficacy. Full article
Show Figures

Figure 1

18 pages, 2315 KB  
Article
Cannabinoid Receptors in the Horse Lateral Nucleus of the Amygdala: A Potential Target for Ameliorating Pain Perception, Stress and Anxiety in Horses
by Cristiano Bombardi, Giulia Salamanca, Claudio Tagliavia, Annamaria Grandis, Rodrigo Zamith Cunha, Alessandro Gramenzi, Margherita De Silva, Augusta Zannoni and Roberto Chiocchetti
Int. J. Mol. Sci. 2025, 26(15), 7613; https://doi.org/10.3390/ijms26157613 - 6 Aug 2025
Viewed by 343
Abstract
The amygdala is composed of several nuclei, including the lateral nucleus which is the main receiving area for the input from cortical and subcortical brain regions. It mediates fear, anxiety, stress, and pain across species. Evidence suggests that the endocannabinoid system may be [...] Read more.
The amygdala is composed of several nuclei, including the lateral nucleus which is the main receiving area for the input from cortical and subcortical brain regions. It mediates fear, anxiety, stress, and pain across species. Evidence suggests that the endocannabinoid system may be a promising target for modulating these processes. Cannabinoid and cannabinoid-related receptors have been identified in the amygdala of rodents, carnivores, and humans, but not in horses. This study aimed to investigate the gene expression of cannabinoid receptors 1 (CB1R) and 2 (CB2R), transient receptor potential vanilloid 1 (TRPV1), and peroxisome proliferator-activated receptor gamma (PPARγ) within the lateral nucleus of six equine amygdalae collected post mortem from an abattoir using quantitative real-time PCR, cellular distribution, and immunofluorescence. mRNA expression of CB1R and CB2R, but not TRPV1 or PPARγ, was detected. The percentage of immunoreactivity (IR) was calculated using ImageJ software. Cannabinoid receptor 1 immunoreactivity was absent in the somata but was strongly detected in the surrounding neuropil and varicosities and CB2R-IR was observed in the varicosities; TRPV1-IR showed moderate expression in the cytoplasm of somata and processes, while PPARγ-IR was weak-to-moderate in the neuronal nuclei. These findings demonstrate endocannabinoid system components in the equine amygdala and may support future studies on Cannabis spp. molecules acting on these receptors. Full article
Show Figures

Figure 1

22 pages, 1078 KB  
Review
The Cannabinoid Pharmacology of Bone Healing: Developments in Fusion Medicine
by Gabriel Urreola, Michael Le, Alan Harris, Jose A. Castillo, Augustine M. Saiz, Hania Shahzad, Allan R. Martin, Kee D. Kim, Safdar Khan and Richard Price
Biomedicines 2025, 13(8), 1891; https://doi.org/10.3390/biomedicines13081891 - 3 Aug 2025
Viewed by 861
Abstract
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual [...] Read more.
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual cannabinoids affect fracture repair and spinal arthrodesis. Methods: PubMed, Web of Science and Scopus were searched from inception to 31 May 2025 with the terms “cannabinoid”, “CB1”, “CB2”, “spinal fusion”, “fracture”, “osteoblast” and “osteoclast”. Animal studies, in vitro experiments and clinical reports that reported bone outcomes were eligible. Results: CB2 signaling was uniformly osteogenic. CB2-knockout mice developed high-turnover osteoporosis, whereas CB2 agonists (HU-308, JWH-133, HU-433, JWH-015) restored trabecular volume, enhanced osteoblast activity and strengthened fracture callus. Cannabidiol (CBD), a non-psychoactive phytocannabinoid with CB2 bias, accelerated early posterolateral fusion in rats and reduced the RANKL/OPG ratio without compromising final union. In contrast, sustained or high-dose Δ9-tetrahydrocannabinol (THC) activation of CB1 slowed chondrocyte hypertrophy, decreased mesenchymal-stromal-cell mineralization and correlated clinically with 6–10% lower bone-mineral density and a 1.8–3.6-fold higher pseudarthrosis or revision risk. Short-course or low-dose THC appeared skeletal neutral. Responses varied with sex, age and genetic background; no prospective trials defined safe perioperative dosing thresholds. Conclusions: CB2 activation and CBD consistently favor bone repair, whereas chronic high-THC exposure poses a modifiable risk for nonunion in spine surgery. Prospective, receptor-specific trials stratified by THC/CBD ratio, patient sex and ECS genotype are needed to establish evidence-based cannabinoid use in spinal fusion. Full article
(This article belongs to the Topic Cannabis, Cannabinoids and Its Derivatives)
Show Figures

Figure 1

29 pages, 1550 KB  
Review
Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes
by Aniello Alfieri, Sveva Di Franco, Vincenzo Maffei, Pasquale Sansone, Maria Caterina Pace, Maria Beatrice Passavanti and Marco Fiore
Pharmaceuticals 2025, 18(8), 1100; https://doi.org/10.3390/ph18081100 - 24 Jul 2025
Viewed by 1560
Abstract
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for [...] Read more.
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for their aromatic qualities, terpenes such as myrcene, β-caryophyllene (BCP), limonene, pinene, linalool, and humulene have demonstrated a broad spectrum of biological activities. Beyond their observable analgesic, anti-inflammatory, and anxiolytic outcomes, these compounds exert their actions through distinct molecular mechanisms. These include the activation of cannabinoid receptor type 2 (CB2), the modulation of transient receptor potential (TRP) and adenosine receptors, and the inhibition of pro-inflammatory signalling pathways such as Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Cyclooxygenase-2 (COX-2). This narrative review synthesizes the current preclinical and emerging clinical data on terpene-mediated analgesia, highlighting both monoterpenes and sesquiterpenes, and discusses their potential for synergistic interaction with cannabinoids, the so-called entourage effect. Although preclinical findings are promising, clinical translation is limited by methodological variability, the lack of standardized formulations, and insufficient pharmacokinetic characterization. Further human studies are essential to clarify their therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

39 pages, 2934 KB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 658
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

30 pages, 5339 KB  
Article
Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions
by Sylwia Dziemitko, Adrian Chabowski and Ewa Harasim-Symbor
Cells 2025, 14(13), 998; https://doi.org/10.3390/cells14130998 - 30 Jun 2025
Viewed by 489
Abstract
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the [...] Read more.
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the heart’s energetic substrates, promoting an increased reliance on FAs and decreased cardiac efficiency. A therapeutic application of a non-psychotropic phytocannabinoid, cannabigerol (CBG), seems to be a promising target since it interacts with different receptors and ion channels, including cannabinoid receptors—CB1 and CB2, α2 adrenoceptor, or 5-hydroxytryptamine receptor. Therefore, in the current study, we evaluated a concentration-dependent effect of CBG (2.5 µM, 5 µM, and 10 µM) on H9c2 cardiomyocytes in lipid overload conditions. Gas–liquid chromatography and Western blotting techniques were used to determine the cellular lipid content and the level of selected proteins involved in FA metabolism, glucose transport, and the insulin signaling pathway. The glucose uptake assay was performed using a colorimetric method. Eighteen-hour CBG treatment in the highest concentration (10 µM) significantly diminished the accumulation of diacylglycerols (DAGs) and the saturation status of this lipid fraction. Moreover, the same concentration of CBG markedly decreased the level of FA transporters, namely fatty acid translocase (CD36) and plasma membrane fatty acid-binding protein (FABPpm), in the presence of palmitate (PA) in the culture medium. The results of our experiment suggest that CBG can significantly modulate lipid storage and composition in cardiomyocytes, thereby protecting against lipid-induced cellular dysfunction. Full article
(This article belongs to the Special Issue Advancements in Cardiac Metabolism)
Show Figures

Graphical abstract

35 pages, 1877 KB  
Review
Dysregulation of the Cannabinoid System in Childhood Epilepsy: From Mechanisms to Therapy
by Gloria Montebello and Giuseppe Di Giovanni
Int. J. Mol. Sci. 2025, 26(13), 6234; https://doi.org/10.3390/ijms26136234 - 27 Jun 2025
Viewed by 2561
Abstract
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and [...] Read more.
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and immune homeostasis from early life through adolescence and into aging. In pediatric epilepsies, alterations in ECS components, particularly CB1 receptor expression and endocannabinoid levels, reveal disorder-specific vulnerabilities and therapeutic opportunities. Cannabidiol (CBD), a non-psychoactive compound from Cannabis sativa, has shown strong preclinical and clinical efficacy in treating DRE and is approved for Dravet syndrome, Lennox–Gastaut syndrome, and Tuberous Sclerosis Complex. Other ECS-based strategies, such as the use of CB1 receptor-positive allosteric modulators, can selectively enhance endogenous cannabinoid signaling where and when it is active, potentially reducing seizures in conditions like Dravet and absence epilepsy. Similarly, FAAH and MAGL inhibitors may help restore ECS tone without directly activating CB1 receptors. Precision targeting of ECS components based on regional expression and syndrome-specific pathophysiology may optimize seizure control and associated comorbidities. Nonetheless, long-term pediatric use must be approached with caution, given the critical role of the ECS in brain development. Full article
Show Figures

Figure 1

17 pages, 6485 KB  
Article
Exogenous Administration of Delta-9-Tetrahydrocannabinol Affects Adult Hippocampal Neurotransmission in Female Wistar Rats
by Ana M. Neves, Sandra Leal, Bruno M. Fonseca and Susana I. Sá
Int. J. Mol. Sci. 2025, 26(13), 6144; https://doi.org/10.3390/ijms26136144 - 26 Jun 2025
Viewed by 463
Abstract
Delta-9-tetrahydrocannabinol (THC) is a psychoactive element of Cannabis sativa and affects the human cannabinoid system through its receptors, CB1R and CB2R. CB1R was found in several brain areas, including the hippocampal formation (HF), and it is responsible for most THC side effects. We [...] Read more.
Delta-9-tetrahydrocannabinol (THC) is a psychoactive element of Cannabis sativa and affects the human cannabinoid system through its receptors, CB1R and CB2R. CB1R was found in several brain areas, including the hippocampal formation (HF), and it is responsible for most THC side effects. We investigated THC’s effects in the HF of female Wistar rats to assess changes in its neurotransmission. Female Wister rats (n = 20) were gonadectomized under anesthesia at 8 weeks old. Afterwards, they received estradiol benzoate (EB) and/or THC. Immunohistochemistry was performed to assess the expression of the cholinergic receptor alpha 7 subunit (CHRNA7), the vesicular acetylcholine transporter (VAChT), the vesicular glutamate transporter (VGLUT), the gamma-aminobutyric acid type A receptor (GABRA), the CB1 receptor, and estradiol receptor alpha (EBα). In the HF, the expression of CHRNA7 was increased by EB and by THC in the Oil groups but decreased by THC in the EB groups. The same is true for VGLUT expression in the DG and hilum and for GABRA expression in the hilum. The expression of VAChT and CB1 is reduced by EB, while the concomitant administration of THC increases it. GAD expression is reduced by EB administration in CA1, CA3, and DG. Our results may help with decision-making regarding the prescription of low doses of THC as a therapeutical approach. Full article
Show Figures

Figure 1

19 pages, 7023 KB  
Article
Modulation of Neurexins Alternative Splicing by Cannabinoid Receptors 1 (CB1) Signaling
by Elisa Innocenzi, Giuseppe Sciamanna, Alice Zucchi, Vanessa Medici, Eleonora Cesari, Donatella Farini, David J. Elliott, Claudio Sette and Paola Grimaldi
Cells 2025, 14(13), 972; https://doi.org/10.3390/cells14130972 - 25 Jun 2025
Viewed by 726
Abstract
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding [...] Read more.
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding thousands of isoforms with different properties of interaction with post-synaptic molecules for a quick adaptation to internal and external inputs. The endocannabinoid system also plays a central role in synaptic plasticity, regulating key retrograde signaling at both excitatory and inhibitory synapses. This study aims at elucidating the crosstalk between alternative splicing of neurexin and the endocannabinoid system in the hippocampus. By employing an ex vivo hippocampal system, we found that pharmacological activation of cannabinoid receptor 1 (CB1) with the specific agonist ACEA led to reduced neurotransmission, associated with increased expression of the Nrxn1–3 spliced isoforms excluding the exon at splice site 4 (SS4−). In contrast, treatment with the CB1 antagonist AM251 increased glutamatergic activity and promoted the expression of the Nrxn variants including the exon (SS4+) Knockout of the involved splicing factor SLM2 determined the suppression of the exon splicing at SS4 and the expression only of the SS4+ variants of Nrxns1–3 transcripts. Interestingly, in SLM2 ko hippocampus, modulation of neurotransmission by AM251 or ACEA was abolished. These findings suggest a direct crosstalk between CB1-dependent signaling, neurotransmission and expression of specific Nrxns splice variants in the hippocampus. We propose that the fine-tuned regulation of Nrxn13 genes alternative splicing may play an important role in the feedback control of neurotransmission by the endocannabinoid system. Full article
(This article belongs to the Special Issue Synaptic Plasticity and the Neurobiology of Learning and Memory)
Show Figures

Figure 1

24 pages, 5287 KB  
Article
A Tourette Syndrome/ADHD-like Phenotype Results from Postnatal Disruption of CB1 and CB2 Receptor Signalling
by Victoria Gorberg, Tamar Harpaz, Emilya Natali Shamir, Orit Diana Karminsky, Ester Fride, Roger G. Pertwee, Iain R. Greig, Peter McCaffery and Sharon Anavi-Goffer
Int. J. Mol. Sci. 2025, 26(13), 6052; https://doi.org/10.3390/ijms26136052 - 24 Jun 2025
Viewed by 720
Abstract
Cannabinoid receptor 1 (CB1) signalling is critical for weight gain and for milk intake in newborn pups. This is important as in humans, low birth weight increases the risk for attention-deficit hyperactivity disorder (ADHD). Moreover, some children with ADHD also have [...] Read more.
Cannabinoid receptor 1 (CB1) signalling is critical for weight gain and for milk intake in newborn pups. This is important as in humans, low birth weight increases the risk for attention-deficit hyperactivity disorder (ADHD). Moreover, some children with ADHD also have Tourette syndrome (TS). However, it remains unclear if insufficient CB1 receptor signalling may promote ADHD/TS-like behaviours. Here, ADHD/TS-like behaviours were studied from postnatal to adulthood by exposing postnatal wild-type CB1 and Cannabinoid receptor 2 (CB2) knockout mouse pups to SR141716A (rimonabant), a CB1 receptor antagonist/inverse agonist. Postnatal disruption of the cannabinoid system by SR141716A induced vocal-like tics and learning deficits in male mice, accompanied by excessive vocalisation, hyperactivity, motor-like tics and/or high-risk behaviour in adults. In CB1 knockouts, rearing and risky behaviours increased in females. In CB2 knockouts, vocal-like tics did not develop, and males were hyperactive with learning deficits. Importantly, females were hyperactive but showed no vocal-like tics. The appearance of vocal-like tics depends on disrupted CB1 receptor signalling and on functional CB2 receptors after birth. Inhibition of CB1 receptor signalling together with CB2 receptor stimulation underlie ADHD/TS-like behaviours in males. This study suggests that the ADHD/TS phenotype may be a single clinical entity resulting from incorrect cannabinoid signalling after birth. Full article
Show Figures

Figure 1

17 pages, 3818 KB  
Article
Multi-Target Protective Effects of β-Caryophyllene (BCP) at the Intersection of Neuroinflammation and Neurodegeneration
by Caterina Ricardi, Anna Mazzierli, Stefano Guglielmo, Nicola Origlia, Francesca Gado, Clementina Manera, Grazia Chiellini and Beatrice Polini
Int. J. Mol. Sci. 2025, 26(13), 6027; https://doi.org/10.3390/ijms26136027 - 23 Jun 2025
Viewed by 806
Abstract
Recent advances in cannabinoid-based therapies identified the natural CB2 receptor agonist β-caryophyllene (BCP) as a promising anti-inflammatory and neuroprotective agent. To further explore its therapeutic potential on the management of neurodegenerative disorders, in the present study we investigated the ability of BCP to [...] Read more.
Recent advances in cannabinoid-based therapies identified the natural CB2 receptor agonist β-caryophyllene (BCP) as a promising anti-inflammatory and neuroprotective agent. To further explore its therapeutic potential on the management of neurodegenerative disorders, in the present study we investigated the ability of BCP to prevent neuroinflammation and promote neuroprotection by using both in vitro and ex vivo models of β-amyloid induced neurotoxicity. Our data showed that BCP significantly protected human microglial HMC3 cells from Aβ25-35-induced cytotoxicity, reducing the release of pro-inflammatory cytokines (TNF-α, IL-6) while enhancing IL-10 secretion. These effects were associated with a reduced activation of the NF-κB pathway, which emerged as a central mediator of BCP action. Notably, the use of CB2R- or PPARγ-selective antagonists revealed that the observed NF-κB inhibition by BCP may involve the coordinated activation of both canonical (e.g., CB2R) and non-canonical (e.g., PPARγ) receptors. Moreover, BCP restored the expression of SIRT1, PGC-1α, and BDNF, indicating the involvement of neurotrophic pathways. Clear neuroprotective properties for BCP have been highlighted in Aβ1-42-treated brain slice preparations, where BCP demonstrated the rescue of both the amyloid-dependent depression of BDNF expression and long-term synaptic potentiation (LTP) impairment. Overall, our results suggest that BCP constitutes an attractive natural molecule for the treatment of Aβ-induced neuroinflammation and synaptic dysfunction, warranting further exploration for its clinical application. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 7139 KB  
Article
Cannabinoid Receptor 1 Regulates Zebrafish Renal Multiciliated Cell Development via cAMP Signaling
by Thanh Khoa Nguyen, Sophia Baker, Julienne Angtuaco, Liana Arceri, Samuel Kaczor, Bram Fitzsimonds, Matthew R. Hawkins and Rebecca A. Wingert
J. Dev. Biol. 2025, 13(2), 20; https://doi.org/10.3390/jdb13020020 - 17 Jun 2025
Viewed by 1012
Abstract
Endocannabinoid signaling plays a significant role in neurogenesis and nervous system physiology, but its roles in the development of other tissues are just beginning to be appreciated. Previous reports have shown the presence of the key endocannabinoid receptor Cannabinoid receptor 1 (CB1 or [...] Read more.
Endocannabinoid signaling plays a significant role in neurogenesis and nervous system physiology, but its roles in the development of other tissues are just beginning to be appreciated. Previous reports have shown the presence of the key endocannabinoid receptor Cannabinoid receptor 1 (CB1 or Cnr1) in multiciliated (MCC) tissues and its upregulation in kidney diseases, yet the relationship between Cnr1 and renal MCC development is unknown. Here, we report that Cnr1 is essential for cilia development across tissues and regulates renal MCCs via cyclic AMP (cAMP) signaling during zebrafish embryogenesis. Using a combination of genetic and pharmacological studies, we found that the loss of function, agonism and antagonism of cnr1 all lead to reduced mature renal MCC populations. cnr1 deficiency also led to reduced cilia development across tissues, including the pronephros, ear, Kupffer’s vesicle (KV), and nasal placode. Interestingly, treatment with the cAMP activator Forskolin (FSK) restored renal MCC defects in agonist-treated embryos, suggesting that cnr1 mediates cAMP signaling in renal MCC development. Meanwhile, treatment with the cAMP inhibitor SQ-22536 alone or with cnr1 deficiency led to reduced MCC populations, suggesting that cnr1 also mediates renal MCC development independently of cAMP signaling. Our findings indicate that cnr1 has a critical role in controlling renal MCC development both via cAMP signaling and an independent pathway, further revealing implications for ciliopathies and renal diseases. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

Back to TopTop