Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = CDG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5133 KiB  
Article
An Investigation of the Secretome Composition of Coriolopsis trogii Mafic-2001 and the Optimization of the Mafic-2001 Enzyme Cocktail to Enhance the Saccharification Efficacy of Chinese Distillers’ Grains
by Chengling Bao, Zhiyun Liu, Xiaoxia Zhong, Xiaofeng Guan, Yunhe Cao and Jinxiu Huang
Int. J. Mol. Sci. 2025, 26(10), 4702; https://doi.org/10.3390/ijms26104702 - 14 May 2025
Viewed by 159
Abstract
The efficient degradation of lignocellulose is essential for valorizing agricultural waste and reducing environmental pollution. An efficient degradation process requires an enzyme cocktail capable of comprehensively deconstructing lignocellulosic components. In this study, the secretome of Coriolopsis trogii Mafic-2001 induced by rice straw was [...] Read more.
The efficient degradation of lignocellulose is essential for valorizing agricultural waste and reducing environmental pollution. An efficient degradation process requires an enzyme cocktail capable of comprehensively deconstructing lignocellulosic components. In this study, the secretome of Coriolopsis trogii Mafic-2001 induced by rice straw was examined, and the enzymatic composition and reaction conditions of Coriolopsis trogii were optimized. Mafic-2001 secreted an enzyme cocktail that included ligninolytic enzymes, cellulases, and hemicellulases. However, the relative abundances of endoglucanase (EG) and β-glucosidase (βG) were only 64.37% and 10.69%, respectively, compared with the relative abundance of cellobiohydrolase, which indicated a critical bottleneck in degradation efficiency. To overcome this limitation, the recombinant enzymes rEG1 and rβG1 were expressed in Pichia pastoris X-33. A functionally enhanced enzyme cocktail (rEG1–rβG1–Mafic-2001 = 0.05:0.09:0.86) was developed via a mixture design to achieve a reducing sugar yield of 2.77 mg/mL from Chinese distillers’ grains (CDGs). Structural analyses revealed that the optimized enzyme cocktail disrupted the reticulated fiber architecture of CDGs and attenuated the characteristic Fourier-transform infrared spectroscopy peaks of lignin, cellulose, and hemicellulose. This study elucidates the synergistic lignocellulose deconstruction mechanism of Mafic-2001 and establishes a precision enzyme-supplementation strategy for efficient CDG bioconversion, providing a scalable platform for the valorization of lignocellulosic biomass. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 2137 KiB  
Article
Complex Metabolomic Changes in a Combined Defect of Glycosylation and Oxidative Phosphorylation in a Patient with Pathogenic Variants in PGM1 and NDUFA13
by Silvia Radenkovic, Isabelle Adant, Matthew J. Bird, Johannes V. Swinnen, David Cassiman, Tamas Kozicz, Sarah C. Gruenert, Bart Ghesquière and Eva Morava
Cells 2025, 14(9), 638; https://doi.org/10.3390/cells14090638 - 25 Apr 2025
Viewed by 466
Abstract
Inherited metabolic disorders (IMDs) are genetic disorders that occur in as many as 1:2500 births worldwide. Nevertheless, they are quite rare individually and even more rare is the co-occurrence of two IMDs in one individual. To better understand the metabolic cross-talk between glycosylation [...] Read more.
Inherited metabolic disorders (IMDs) are genetic disorders that occur in as many as 1:2500 births worldwide. Nevertheless, they are quite rare individually and even more rare is the co-occurrence of two IMDs in one individual. To better understand the metabolic cross-talk between glycosylation changes and deficient energy metabolism, and its potential effect on outcomes, we evaluated patient fibroblasts with likely pathogenic variants in PGM1 and pathogenic variants in NDUFA13 derived from a patient who passed away at 16 years of age. The patient presented with characteristic of PGM1-CDG including bifid uvula, muscle involvement, abnormal glycosylation in blood, and elevated liver transaminases. In addition, hearing loss, seizures, elevated plasma and CSF lactate and a Leigh-like MRI brain pattern were present, which are commonly associated with Leigh syndrome. PGM1-CDG has been reported in about 70 individuals, while NDUFA13 deficiency has so far only been reported in 13 patients. As abundant energy is essential for glycosylation, and both PGM1 and NDUFA13 are linked to energy metabolism, we sought to better understand the underlying biochemical cause of the patient’s clinical presentation. To do so, we performed extensive investigations including tracer metabolomics, lipidomics and enzymatic studies on the patient’s fibroblasts. We found a profound depletion of UDP-hexoses, consistent with PGM1-CDG. Complex I enzyme activity and mitochondrial function were also impaired, corroborating complex I deficiency and Leigh syndrome. Further, lipidomics analysis showed similarities with both PGM1-CDG and OXPHOS-deficient patients. Based on our results, the patient was diagnosed with both PGM1-CDG and Leigh syndrome. In summary, we present the first case of combined CDG and Leigh syndrome, caused by (likely) pathogenic variants in PGM1 and NDUFA13, and underline the importance of considering the synergistic effects of multiple disease-causing variants in patients with complex clinical presentation, leading to the patient’s early demise. Full article
Show Figures

Figure 1

10 pages, 942 KiB  
Communication
Advancing Non-Invasive Colorectal Cancer Screening: Exploring the Potential of Monoclonal Antibody L2A5
by Renato Caldevilla, Mariana Eiras, Daniela A. R. Santos, João Almeida, Beatriz Oliveira, Susana Loureiro, Janine Soares, Miguel Gonzalez-Santos, Nuno Ramos, Paula A. Videira, Lúcio Lara Santos, Mário Dinis-Ribeiro and Luís Lima
Int. J. Mol. Sci. 2025, 26(7), 3070; https://doi.org/10.3390/ijms26073070 - 27 Mar 2025
Viewed by 425
Abstract
Early detection of colorectal cancer (CRC) significantly improves overall prognosis and increases 5-year survival rates up to 90%. Current non-invasive screening methods for CRC, such as the Faecal Immunohistochemical Test (FIT), have some drawbacks, namely, low sensitivity and a high false-positive rate. The [...] Read more.
Early detection of colorectal cancer (CRC) significantly improves overall prognosis and increases 5-year survival rates up to 90%. Current non-invasive screening methods for CRC, such as the Faecal Immunohistochemical Test (FIT), have some drawbacks, namely, low sensitivity and a high false-positive rate. The Sialyl-Tn (STn) antigen, frequently expressed in pre-malignant lesions and adenocarcinomas, has been shown to be detected by the novel monoclonal antibody L2A5. In this study, we explored the potential of L2A5 as a non-invasive CRC screening method in an attempt to overcome current limitations. The subjects were categorised into four groups based on colonoscopy findings: no lesion (NL), low-grade dysplasia (LGD), high-grade dysplasia (HGD), and colorectal cancer (CRC). Slot blot analysis using the L2A5 antibody was performed on stool samples from 95 colonoscopy patients. Our findings showed a differential STn expression between the different clinical groups, evidencing excellent discrimination between NL and CRC (AUC, 0.8252; 95% CI: 0.6983–0.9521; sensitivity, 70%). Moreover, moderate discrimination between the NL+LGD and HGD+CRC groups was discerned (AUC, 0.7766; 95% CI: 0.6792–0.8740; sensitivity, 58%). These findings support the application of L2A5 as a tool for detecting STn, allowing for the identification of advanced lesions in non-invasive CRC screening. Full article
(This article belongs to the Special Issue Biomarker Discovery and Validation for Precision Oncology)
Show Figures

Figure 1

18 pages, 3321 KiB  
Article
Heterogeneous Clustering of Multiomics Data for Breast Cancer Subgroup Classification and Detection
by Joseph Pateras, Musaddiq Lodi, Pratip Rana and Preetam Ghosh
Int. J. Mol. Sci. 2025, 26(4), 1707; https://doi.org/10.3390/ijms26041707 - 17 Feb 2025
Viewed by 768
Abstract
The rapid growth of diverse -omics datasets has made multiomics data integration crucial in cancer research. This study adapts the expectation–maximization routine for the joint latent variable modeling of multiomics patient profiles. By combining this approach with traditional biological feature selection methods, [...] Read more.
The rapid growth of diverse -omics datasets has made multiomics data integration crucial in cancer research. This study adapts the expectation–maximization routine for the joint latent variable modeling of multiomics patient profiles. By combining this approach with traditional biological feature selection methods, this study optimizes latent distribution, enabling efficient patient clustering from well-studied cancer types with reduced computational expense. The proposed optimization subroutines enhance survival analysis and improve runtime performance. This article presents a framework for distinguishing cancer subtypes and identifying potential biomarkers for breast cancer. Key insights into individual subtype expression and function were obtained through differentially expressed gene analysis and pathway enrichment for BRCA patients. The analysis compared 302 tumor samples to 113 normal samples across 60,660 genes. The highly upregulated gene COL10A1, promoting breast cancer progression and poor prognosis, and the consistently downregulated gene CDG300LG, linked to brain metastatic cancer, were identified. Pathway enrichment analysis revealed similarities in cellular matrix organization pathways across subtypes, with notable differences in functions like cell proliferation regulation and endocytosis by host cells. GO Semantic Similarity analysis quantified gene relationships in each subtype, identifying potential biomarkers like MATN2, similar to COL10A1. These insights suggest deeper relationships within clusters and highlight personalized treatment potential based on subtypes. Full article
(This article belongs to the Special Issue Identification of New Molecular Subgroups in Breast Cancer)
Show Figures

Figure 1

13 pages, 8082 KiB  
Article
Genome-Wide Association Integrating a Transcriptomic Meta-Analysis Suggests That Genes Related to Fat Deposition and Muscle Development Are Closely Associated with Growth in Huaxi Cattle
by Cheng-Li Liu, Tao Ren, Peng-Cheng Ruan, Yong-Fu Huang, Simone Ceccobelli, De-Jun Huang, Lu-Pei Zhang and Guang-Xin E
Vet. Sci. 2025, 12(2), 109; https://doi.org/10.3390/vetsci12020109 - 2 Feb 2025
Viewed by 951
Abstract
Growth traits are among the most important economic phenotypes targeted in the genetic improvement of beef cattle. To understand the genetic basis of growth traits in Huaxi cattle, we performed a genome-wide association study (GWAS) on body weight, eye muscle area, and back [...] Read more.
Growth traits are among the most important economic phenotypes targeted in the genetic improvement of beef cattle. To understand the genetic basis of growth traits in Huaxi cattle, we performed a genome-wide association study (GWAS) on body weight, eye muscle area, and back fat thickness across five developmental stages in a population of 202 Huaxi cattle. Additionally, publicly available RNA-seq data from the longissimus dorsi muscle of both young and adult cattle were analyzed to identify key genes and genetic markers associated with growth in Huaxi cattle. In total, 7.19 million high-quality variant loci (SNPs and INDELs) were identified across all samples. In the GWAS, the three multilocus models (FarmCPU, MLMM, and BLINK) outperformed the conventional single-locus models (CMLM, GLM, and MLM). Consequently, GWAS analysis was conducted using multilocus models, which identified 99 variant loci significantly associated with growth traits and annotated a total of 83 candidate genes (CDGs). Additionally, 23 of the 83 CDGs overlapped with significantly differentially expressed genes identified from public RNA-seq datasets of longissimus dorsi muscle between young and adult cattle. Furthermore, gene functional enrichment (KEGG and GO) analyses revealed that over 30% of the pathways and GO terms were associated with muscle development and fat deposition, crucial factors for beef production. Specifically, key genes identified included MGLL, SGMS1, SNX29 and AKAP6, which are implicated in lipid metabolism, adipogenesis, and muscle growth. In summary, this study provides new insights into the genetic mechanisms underlying growth traits in Huaxi cattle and presents promising markers for future breeding improvements. Full article
Show Figures

Figure 1

14 pages, 1191 KiB  
Communication
Glycosylation Pathways Targeted by Deregulated miRNAs in Autism Spectrum Disorder
by Federica Mirabella, Martina Randazzo, Alessandro Rinaldi, Fabio Pettinato, Renata Rizzo, Luisa Sturiale and Rita Barone
Int. J. Mol. Sci. 2025, 26(2), 783; https://doi.org/10.3390/ijms26020783 - 17 Jan 2025
Cited by 1 | Viewed by 1134
Abstract
Autism Spectrum Disorder (ASD) is a complex condition with a multifactorial aetiology including both genetic and epigenetic factors. MicroRNAs (miRNAs) play a role in ASD and may influence metabolic pathways. Glycosylation (the glycoconjugate synthesis pathway) is a necessary process for the optimal development [...] Read more.
Autism Spectrum Disorder (ASD) is a complex condition with a multifactorial aetiology including both genetic and epigenetic factors. MicroRNAs (miRNAs) play a role in ASD and may influence metabolic pathways. Glycosylation (the glycoconjugate synthesis pathway) is a necessary process for the optimal development of the central nervous system (CNS). Congenital Disorders of Glycosylation (CDGs) (CDGs) are linked to over 180 genes and are predominantly associated with neurodevelopmental disorders (NDDs) including ASD. From a literature search, we considered 64 miRNAs consistently deregulated in ASD patients (ASD-miRNAs). Computational tools, including DIANA-miRPath v3.0 and TarBase v8, were employed to investigate the potential involvement of ASD-miRNAs in glycosylation pathways. A regulatory network constructed through miRNet 2.0 revealed the involvement of these miRNAs in targeting genes linked to glycosylation. Protein functions were further validated through the Human Protein Atlas. A total of twenty-five ASD-miRNAs were identified, including nine miRNAs that were differentially expressed in cells or brain tissue in ASD patients and associated with glycosylation pathways, specifically protein N- and O-glycosylation and glycosaminoglycan biosynthesis (heparan sulfate). A number of CDG genes and/or ASD-risk genes, including DOLK, GALNT2, and EXT1, were identified as targets, along with validated interactions involving four key miRNAs (hsa-miR-423-5p, hsa-miR-30c-5p, hsa-miR-195-5p, and hsa-miR-132-5p). B4GALT1, an ASD susceptibility gene, emerged as a central regulatory hub, reinforcing the link between glycosylation and ASD. In sum, the evidence presented here supports the hypothesis that ASD-miRNAs mediate the epigenetic regulation of glycosylation, thus unveiling possible novel patho-mechanisms underlying ASD. Full article
(This article belongs to the Special Issue Molecular Mechanisms of mRNA Transcriptional Regulation: 2nd Edition)
Show Figures

Figure 1

25 pages, 7319 KiB  
Article
A Reinforcement Learning-Based Dynamic Clustering of Sleep Scheduling Algorithm (RLDCSSA-CDG) for Compressive Data Gathering in Wireless Sensor Networks
by Alaa N. El-Shenhabi, Ehab H. Abdelhay, Mohamed A. Mohamed and Ibrahim F. Moawad
Technologies 2025, 13(1), 25; https://doi.org/10.3390/technologies13010025 - 8 Jan 2025
Cited by 1 | Viewed by 1706
Abstract
Energy plays a major role in wireless sensor networks (WSNs), and measurements demonstrate that transmission consumes more energy than processing. Hence, organizing the transmission process and managing energy usage throughout the network are the main goals for maximizing the network’s lifetime. This paper [...] Read more.
Energy plays a major role in wireless sensor networks (WSNs), and measurements demonstrate that transmission consumes more energy than processing. Hence, organizing the transmission process and managing energy usage throughout the network are the main goals for maximizing the network’s lifetime. This paper proposes an algorithm called RLDCSSA-CDG, which is processed through the 3F phases: foundation, formation, and forwarding phases. Firstly, the network architecture is founded, and the cluster heads (CHs) are determined in the foundation phase. Secondly, sensor nodes are dynamically gathered into clusters for better communication in the formation phase. Finally, the transmitting process will be adequately organized based on an adaptive wake-up/sleep scheduling algorithm to transmit the data at the “right time” in the forwarding phase. The MATLAB platform was utilized to conduct simulation studies to validate the proposed RLDCSSA-CDG’s effectiveness. Compared to a very recent work called RLSSA and RLDCA for CDG, the proposed RLDCSSA-CDG reduces total data transmissions by 22.7% and 63.3% and energy consumption by 8.93% and 38.8%, respectively. It also achieves the lowest latency compared to the two contrastive algorithms. Furthermore, the proposed algorithm increases the whole network lifetime by 77.3% and promotes data recovery accuracy by 91.1% relative to the compared algorithms. Full article
Show Figures

Figure 1

21 pages, 8498 KiB  
Article
Carotenoids from Halophilic Archaea: A Novel Approach to Improve Egg Quality and Cecal Microbiota in Laying Hens
by Xufeng Dou, Guodong Zhang, Hao Tang, Xiaoxue Chen, Beibei Chen, Yuxia Mei, Haihong Jiao and Min Ren
Animals 2024, 14(23), 3470; https://doi.org/10.3390/ani14233470 - 1 Dec 2024
Cited by 1 | Viewed by 1460
Abstract
Carotenoids from different sources have different structures and functions, and their dietary components benefit the health of various organisms. The effects of halophilic Archaea-derived C50 carotenoids on poultry egg quality and gut microbiota remain largely unexplored. In this study, we isolated a carotenoid-secreting [...] Read more.
Carotenoids from different sources have different structures and functions, and their dietary components benefit the health of various organisms. The effects of halophilic Archaea-derived C50 carotenoids on poultry egg quality and gut microbiota remain largely unexplored. In this study, we isolated a carotenoid-secreting strain of Halalkalicoccus paucihalophilus, TRM89021, from the Pamir Plateau. We characterized the carotenoid pigments produced by this strain; the major components were bacterioruberin and its derivatives. The effects of these carotenoids on the egg quality and cecal microbiota composition of hens were investigated. Compared to the basal diet group (BDG), supplementation with carotenoids in the carotenoids-supplemented diet group (CDG) resulted in significantly lower a* and b* scores at week 5 and lower b* scores and Haugh units at week 2, while egg strength and weight were higher. CDG also showed increased yolk antioxidant capacity, higher glutathione peroxidase levels, and significantly lower catalase levels (p < 0.05). Plasma analysis revealed elevated total bilirubin and aspartate aminotransferase levels, along with reduced inorganic phosphorus levels in the CDG (p < 0.05). No significant differences in cecal microbiota diversity were observed between the groups at any taxonomic level. This result suggests that halophilic archaea-derived carotenoids have the potential to be used as natural feed supplements to improve egg quality. Our study provides a theoretical basis for applying archaea-derived carotenoids in poultry diets. Full article
Show Figures

Figure 1

18 pages, 5518 KiB  
Article
Synergistic Effects of Pyrrosia lingua Caffeoylquinic Acid Compounds with Levofloxacin Against Uropathogenic Escherichia coli: Insights from Molecular Dynamics Simulations, Antibiofilm, and Antimicrobial Assessments
by Yan Zhang, Fangfang Jiao, Derong Zeng, Xiang Yu, Yongqiang Zhou, Juan Xue, Wude Yang and Jingjing Guo
Molecules 2024, 29(23), 5679; https://doi.org/10.3390/molecules29235679 - 30 Nov 2024
Viewed by 1148
Abstract
Urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), have high morbidity and recurrence rates. Resistance to levofloxacin hydrochloride (LEV), a commonly used treatment for UTIs, is increasingly problematic, exacerbated by biofilm formation mediated by interactions between cyclic di-GMP (c-di-GMP or [...] Read more.
Urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), have high morbidity and recurrence rates. Resistance to levofloxacin hydrochloride (LEV), a commonly used treatment for UTIs, is increasingly problematic, exacerbated by biofilm formation mediated by interactions between cyclic di-GMP (c-di-GMP or CDG) and YcgR. In this study, we identified three caffeoylquinic acid compounds from Pyrrosia lingua—chlorogenic acid (CGA), sibiricose A5 (Si-A5), and 3-O-caffeoylquinic acid methyl ester (CAM)—that target YcgR through molecular docking. Biological assays revealed that combining these compounds with levofloxacin hydrochloride significantly enhanced antibacterial activity against standard UPEC strains in a concentration-dependent manner and clinically isolated UPEC strains. Notably, chlorogenic acid and sibiricose A5, when used with levofloxacin hydrochloride, enhanced intracellular c-di-GMP levels and swimming motility, significantly reduced YcgR gene expression, and effectively inhibited biofilm formation of UPEC at multiple time points. Additionally, molecular dynamics simulations elucidated the strong binding of these compounds to YcgR, underscoring the critical roles of residues, such as Arg118 and Asp145. This research serves as a foundation for tackling antibiotic resistance and developing innovative therapeutics for UTIs. Full article
(This article belongs to the Special Issue Computational Chemistry Insights into Molecular Interactions)
Show Figures

Figure 1

17 pages, 1866 KiB  
Article
Adaptive Channel Division and Subchannel Allocation for Orthogonal Frequency Division Multiple Access-Based Airborne Power Line Communication Networks
by Ruowen Yan, Qiao Li and Huagang Xiong
Sensors 2024, 24(23), 7644; https://doi.org/10.3390/s24237644 - 29 Nov 2024
Viewed by 714
Abstract
This paper addresses the critical needs of the aviation industry in advancing towards More Electric Aircraft (MEA) by leveraging power line communication (PLC) technology, which merges data and power transmission to offer substantial reductions in aircraft system weight and cost. We introduce pioneering [...] Read more.
This paper addresses the critical needs of the aviation industry in advancing towards More Electric Aircraft (MEA) by leveraging power line communication (PLC) technology, which merges data and power transmission to offer substantial reductions in aircraft system weight and cost. We introduce pioneering algorithms for channel division and subchannel allocation within Orthogonal Frequency Division Multiple Access (OFDMA)-based airborne PLC networks, aimed at optimizing network performance in key areas such as throughput, average delay, and fairness. The proposed channel division algorithm dynamically adjusts the count of subchannels to maximize Channel Division Gain (CDG), responding adeptly to fluctuations in network conditions and node density. Concurrently, the subchannel allocation algorithm employs a novel metric, the Subchannel Preference Score (SPS), which factors in both the signal quality and the current occupancy levels of each subchannel to determine their optimal allocation among nodes. This method ensures efficient resource utilization and maintains consistent network performance. Extensive simulations, conducted using the OMNeT++ simulator, have demonstrated that our adaptive algorithms significantly outperform existing methods, providing higher throughput, reduced delays, and improved fairness across the network. These advancements represent a significant leap in MAC protocol design for airborne PLC systems. The outcomes suggest that our algorithms offer a robust and adaptable solution, aligning with the rigorous demands of modern avionics and paving the way for the future integration of MEA technologies. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

9 pages, 14661 KiB  
Communication
Identification of Goat Supernumerary Teat Phenotype Using Wide-Genomic Copy Number Variants
by Lu Xu, Weiyi Zhang, Haoyuan Zhang, Xiuqin Yang, Simone Ceccobelli, Yongju Zhao and Guangxin E
Animals 2024, 14(22), 3252; https://doi.org/10.3390/ani14223252 - 13 Nov 2024
Cited by 1 | Viewed by 928
Abstract
Supernumerary teats (SNTs) or nipples often emerge around the mammary line. This study performed a genome-wide selective sweep analysis (GWS) at the copy number variant (CNV) level using two selected signal calculation methods (VST and FST) to identify candidate [...] Read more.
Supernumerary teats (SNTs) or nipples often emerge around the mammary line. This study performed a genome-wide selective sweep analysis (GWS) at the copy number variant (CNV) level using two selected signal calculation methods (VST and FST) to identify candidate genes associated with SNTs in goats. A total of 12,310 CNVs were identified from 37 animals and 123 CNVs, with the top 1% VST values including 84 candidate genes (CDGs). Of these CDGs, minichromosome maintenance complex component 3, ectodysplasin A receptor associated via death domain, and cullin 5 demonstrated functions closely related to mammary gland development. In addition, 123 CNVs with the top 1% FST values were annotated to 97 CDGs. 5-Hydroxytryptamine receptor 2A, CCAAT/enhancer-binding protein alpha, and the polymeric immunoglobulin receptor affect colostrum secretion through multiple signaling pathways. Two genes, namely, RNA-binding motif protein 46 and β-1,3-galactosyltransferase 5, showed a close relation to mammary gland development. Six CNVs were identified and annotated to five genes by intersecting the top 1% of candidate CNVs with both parameters. These genes include LOC102185621, LOC102190481, and UDP-glucose pyrophosphorylase 2, which potentially affect the occurrence of BC through multiple biological processes, such as cell detoxification, glycogen synthesis, and phospholipid metabolism. In conclusion, we discovered numerous genes related to mammary development and breast cancer (BC) through a GWS, which suggests the mechanism of SNTs in goats and a certain association between mammary cancer and SNTs. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

21 pages, 5085 KiB  
Article
Towards Achieving Circular Economy in the Production of Silica from Rice Husk as a Sustainable Adsorbent
by Alba Rodriguez-Otero, Anne Galarneau, Méghane Drané, Vicmary Vargas, Victor Sebastian, Andrew Wilson, David Grégoire, Sadia Radji, Frederic Marias, Jan H. Christensen and Brice Bouyssiere
Processes 2024, 12(11), 2420; https://doi.org/10.3390/pr12112420 - 2 Nov 2024
Cited by 3 | Viewed by 2229
Abstract
The growing concern over water pollution and waste management requires innovative solutions that promote resource efficiency within a circular economy. This study aims to utilize rice husk (RH) as a sustainable feedstock to develop highly porous silica particles and generate valuable by-products, addressing [...] Read more.
The growing concern over water pollution and waste management requires innovative solutions that promote resource efficiency within a circular economy. This study aims to utilize rice husk (RH) as a sustainable feedstock to develop highly porous silica particles and generate valuable by-products, addressing the dual challenges of waste reduction and water contamination. We hypothesize that optimizing the production of amorphous silica from acid-washed RH will enhance its adsorptive properties and facilitate the concurrent generation of bio-oil and syngas. Amorphous silica particles were extracted from acid-washed RH with a yield of 15 wt% using a combination of acid washing at 100 °C, pyrolysis at 500 °C, and calcination at 700 °C with controlled heating at 2 °C/min. The optimized material (RH2-SiO2), composed of small (60–200 nm) and large (50–200 µm) particles, had a specific surface area of 320 m2/g, with funnel-shaped pores with diameters from 17 nm to 4 nm and showed a maximum cadmium adsorption capacity of 407 mg Cd/g SiO2. Additionally, the pyrolysis process yielded CO-rich syngas and bio-oil with an elevated phenolic content, demonstrating a higher bio-oil yield and reduced gas production compared to untreated RH. Some limitations were identified, including the need for bio-oil upgrading, further research into the application of RH2-SiO2 for wastewater treatment, and the scaling-up of adsorbent production. Despite the challenges, these results contribute to the development of a promising adsorbent for water pollution control while enhancing the value of agricultural waste and moving closer to a circular economy model. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

14 pages, 4919 KiB  
Article
Phylogenetic Relations and High-Altitude Adaptation in Wild Boar (Sus scrofa), Identified Using Genome-Wide Data
by Shiyong Fang, Haoyuan Zhang, Haoyuan Long, Dongjie Zhang, Hongyue Chen, Xiuqin Yang, Hongmei Pan, Xiao Pan, Di Liu and Guangxin E
Animals 2024, 14(20), 2984; https://doi.org/10.3390/ani14202984 - 16 Oct 2024
Viewed by 1343
Abstract
The Qinghai–Tibet Plateau (QTP) wild boar is an excellent model for investigating high-altitude adaptation. In this study, we analyzed genome-wide data from 93 wild boars compiled from various studies worldwide, including the QTP, southern and northern regions of China, Europe, Northeast Asia, and [...] Read more.
The Qinghai–Tibet Plateau (QTP) wild boar is an excellent model for investigating high-altitude adaptation. In this study, we analyzed genome-wide data from 93 wild boars compiled from various studies worldwide, including the QTP, southern and northern regions of China, Europe, Northeast Asia, and Southeast Asia, to explore their phylogenetic patterns and high-altitude adaptation based on genome-wide selection signal analysis and run of homozygosity (ROH) estimation. The findings demonstrate the alignment between the phylogenetic associations among wild boars and their geographical location. An ADMIXTURE analysis indicated a relatively close genetic relationship between QTP and southern Chinese wild boars. Analyses of the fixation index and cross-population extended haplotype homozygosity between populations revealed 295 candidate genes (CDGs) associated with high-altitude adaptation, such as TSC2, TELO2, SLC5A1, and SLC5A4. These CDGs were significantly overrepresented in pathways such as the mammalian target of rapamycin signaling and Fanconi anemia pathways. In addition, 39 ROH islands and numerous selective CDGs (e.g., SLC5A1, SLC5A4, and VCP), which are implicated in glucose metabolism and mitochondrial function, were discovered in QTP wild boars. This study not only assessed the phylogenetic history of QTP wild boars but also advanced our comprehension of the genetic mechanisms underlying the adaptation of wild boars to high altitudes. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 7227 KiB  
Article
Use of Chitosan–Iron Oxide Gels for the Removal of Cd2+ Ions from Aqueous Solutions
by Eduardo Mendizábal, Nely Ríos-Donato, Minerva Guadalupe Ventura-Muñoz, Rosaura Hernández-Montelongo and Ilse Paulina Verduzco-Navarro
Gels 2024, 10(10), 630; https://doi.org/10.3390/gels10100630 - 30 Sep 2024
Viewed by 1176
Abstract
High-quality water availability is substantial for sustaining life, so its contamination presents a serious problem that has been the focus of several studies. The presence of heavy metals, such as cadmium, is frequently studied due to the increase in the contamination levels caused [...] Read more.
High-quality water availability is substantial for sustaining life, so its contamination presents a serious problem that has been the focus of several studies. The presence of heavy metals, such as cadmium, is frequently studied due to the increase in the contamination levels caused by fast industrial expansion. Cadmium ions were removed from aqueous solutions at pH 7.0 by chitosan–magnetite (ChM) xerogel beads and chitosan–FeO (ChF) xerogel beads in batch systems. Kinetic studies were best modeled by the Elovich model. The adsorption isotherms obtained showed an inflection point suggesting the formation of a second layer, and the BET model adjusted to liquid–solid systems was adequate for the description of the experimental data. Maximum uptake capacities of 36.97 ± 0.77 and 28.60 ± 2.09 mg Cd/g xerogel were obtained for ChM and ChF, respectively. The studied composites are considered promising adsorbent materials for removing cadmium ions from aqueous systems. Full article
(This article belongs to the Special Issue Gel-Based Materials: Preparations and Characterization (2nd Edition))
Show Figures

Graphical abstract

19 pages, 64403 KiB  
Article
Improvement in Mechanical Properties of Completely Decomposed Granite Soil Concrete Fabricated with Pre-Setting Pressurization
by Yi Song, Zhongqi Quentin Yue and Yanlu Ding
Materials 2024, 17(17), 4314; https://doi.org/10.3390/ma17174314 - 30 Aug 2024
Viewed by 1139
Abstract
This paper investigates the effectiveness of applying continuous high-compression pressure on the initial setting of fresh concrete to produce hardened concrete materials with excellent mechanical properties. A novel experimental apparatus was self-designed and used for the pre-setting pressure application. The utilization of the [...] Read more.
This paper investigates the effectiveness of applying continuous high-compression pressure on the initial setting of fresh concrete to produce hardened concrete materials with excellent mechanical properties. A novel experimental apparatus was self-designed and used for the pre-setting pressure application. The utilization of the completely decomposed granite (CDG) soil as an alternative aggregate in concrete production was also explored. A total of twenty-eight specimens were fabricated using two types of fine aggregates, six mix ratios, two initial pressure values, and two distinct durations of the initial pressure application. The density and uniaxial compressive strength (UCS) of the specimens were examined to evaluate their mechanical qualities, while micro-CT tests with image analysis were used to quantify their porosity. The results indicated that the 10 MPa initial pre-setting pressurization can effectively eliminate the excess air and voids within the fresh concrete, therefore enhancing the mechanical properties of the hardened concrete specimens of various types. Compared with non-pressurized specimens, the porosity values of pressurized specimens were reduced by 73.11% to 86.53%, the density values were increased by 1.43% to 8.31%, and the UCS values were increased by 8.42% to 187.43%. These findings provide a reference for using a continuous high pre-setting compression pressure and using CDG soil as an aggregate in the fabrication of concrete materials with improved mechanical performance. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop