Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,732)

Search Parameters:
Keywords = CDK1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1893 KB  
Article
Anti-Photoaging Effects of a Standardized Hot Water Extract of Petasites japonicus Leaves in Ultraviolet B-Exposed Hairless Mice
by Hyeon-A Song, Min-Ji Park, Chae-Won Lee, Sangsu Park, Jong Kil Lee, Kyung-Sook Chung and Kyung-Tae Lee
Pharmaceuticals 2025, 18(10), 1490; https://doi.org/10.3390/ph18101490 - 3 Oct 2025
Abstract
Background: Ultraviolet B (UVB) radiation accelerates skin aging by inducing oxidative stress, collagen degradation, and cellular senescence. Although Petasites japonicus is known for its antioxidant properties, its anti-photoaging potential remains underexplored. This research explored the protective properties of a hot water extract from [...] Read more.
Background: Ultraviolet B (UVB) radiation accelerates skin aging by inducing oxidative stress, collagen degradation, and cellular senescence. Although Petasites japonicus is known for its antioxidant properties, its anti-photoaging potential remains underexplored. This research explored the protective properties of a hot water extract from P. japonicus leaves (KP-1) against photoaging caused by UVB exposure. Methods: Hairless mice were exposed to UVB three times per week and orally administered KP-1 for 13 weeks. Wrinkle formation, epidermal thickness, skin hydration, and collagen content were assessed. Protein expression related to MAPK/AP-1, TGF-β/Smad2/3, and p53/p21 pathways was analyzed by Western blotting. Results: KP-1 significantly reduced UVB-induced wrinkle area, epidermal and dermal thickening, and transepidermal water loss while restoring collagen density and skin hydration. KP-1 inhibited MMP-1 expression, enhanced COL1A1 levels, suppressed MAPK/AP-1 activation, and activated TGF-β/Smad2/3 signaling. It also balanced p53/p21 expression and restored cyclin D1 and CDK4 levels, thereby preventing UVB-induced senescence. Conclusions: The findings of this research revealed that KP-1 can serve as a promising natural substance for safeguarding the skin from damage and aging caused by UVB exposure. Full article
Show Figures

Figure 1

20 pages, 3137 KB  
Article
Mistletoe Extracts Inhibit Progressive Growth of Prostate Cancer Cells
by Sascha D. Markowitsch, Larissa Albrecht, Moritz Meiborg, Jochen Rutz, Anita Thomas, Felix K. -H. Chun, Axel Haferkamp, Eva Juengel and Roman A. Blaheta
Cells 2025, 14(19), 1535; https://doi.org/10.3390/cells14191535 - 30 Sep 2025
Abstract
Although multimodal therapeutic management has significantly improved outcome in prostate cancer (PCa) patients, treatment options for castrate-resistant disease remain challenging. Plant-derived mistletoe extracts have supported cancer patients and are, therefore, widely used as complementary medicine. However, mechanisms behind possible mistletoe benefits to PCa [...] Read more.
Although multimodal therapeutic management has significantly improved outcome in prostate cancer (PCa) patients, treatment options for castrate-resistant disease remain challenging. Plant-derived mistletoe extracts have supported cancer patients and are, therefore, widely used as complementary medicine. However, mechanisms behind possible mistletoe benefits to PCa patients remain to be explored. The present study was designed to evaluate the effect of mistletoe extracts from four different host trees (Tiliae, Populi, Salicis, and Crataegi) on the growth and proliferation of PCa cell lines in vitro. PC3, DU145, and LNCaP cells were used to evaluate tumor cell growth (MTT assay) and proliferation (BrdU incorporation assay). Clonogenicity, apoptosis, cell cycle, and cell-cycle-regulating proteins (cyclin-dependent kinases (CDKs) and cyclins) were investigated, as was CD44 standard and splice variant expression and integrin α and β receptors. SiRNA knockdown studies were employed to investigate the functional relevance of integrins. All mistletoe extracts significantly inhibited cell growth in a dose-dependent manner and cell proliferation and clonogenicity were suppressed. Populi and Salicis induced cell-cycle arrest in the G2/M phase and increased apoptosis. Both extracts down-regulated CDK1 and cyclin A and altered CD44 expression. Integrins α5 in all cell lines and α6 in DU145 and LNCaP were particularly diminished. Knocking down α5 and α6 induced cell growth inhibition in DU145. Mistletoe extracts block the growth and proliferation of PCa cells in vitro and therefore qualify for use in future animal studies to evaluate mistletoe as an adjunct to standard PCa treatment. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives Against Human Disease)
17 pages, 399 KB  
Review
A Comprehensive Review of Robinetin: Distribution, Biological Activity and Pharmacokinetic Parameters
by Katarzyna Jakimiuk
Int. J. Mol. Sci. 2025, 26(19), 9546; https://doi.org/10.3390/ijms26199546 - 30 Sep 2025
Abstract
Robinetin, a naturally occurring polyhydroxylated flavonol, has gained attention due to its broad spectrum of biological activities and potential therapeutic applications. This review presents a comprehensive summary of the current knowledge concerning the natural occurrence, extraction, spectroscopic characterization, and pharmacological properties of robinetin. [...] Read more.
Robinetin, a naturally occurring polyhydroxylated flavonol, has gained attention due to its broad spectrum of biological activities and potential therapeutic applications. This review presents a comprehensive summary of the current knowledge concerning the natural occurrence, extraction, spectroscopic characterization, and pharmacological properties of robinetin. Ethnobotanical evidence highlights its presence in various medicinal plants, particularly within the Fabaceae family, where it contributes to traditional treatments of infections, inflammation, and metabolic disorders. Robinetin exhibits diverse bioactivities, including antiviral, antibacterial, antiparasitic, antioxidant, anti-mutagenic, and enzyme-inhibitory effects. Notably, it inhibits HIV-1 integrase and acetylcholinesterase and demonstrates moderate antiproliferative activity in cancer cell lines. Despite limited water solubility, its redox behavior and metal-chelating capabilities support its antioxidant potential. Recent in vivo studies indicate its hepatoprotective and metabolic regulatory effects. Additionally, computational models reveal promising interactions with molecular targets such as CDK1. Collectively, these findings underscore the multifaceted therapeutic potential of robinetin and advocate for further pharmacokinetic and clinical investigations to validate its efficacy as a lead compound for the development of phytochemically derived pharmaceuticals. Full article
(This article belongs to the Special Issue Role of Natural Compounds in Human Health and Disease)
Show Figures

Figure 1

14 pages, 20431 KB  
Article
Construction of a Novel 3D Urinary Bladder Mucosa Model and Its Application in Toxicity Assessment of Arsenicals
by Runjie Guo, Min Gi, Tohru Kiyono, Arpamas Vachiraarunwong, Shugo Suzuki, Masaki Fujioka, Guiyu Qiu, Kwanchanok Praseatsook, Yurina Kawamura, Anna Kakehashi, Ikue Noura, Xiaoli Xie and Hideki Wanibuchi
Toxics 2025, 13(10), 828; https://doi.org/10.3390/toxics13100828 - 29 Sep 2025
Abstract
The urinary bladder is a primary target organ for environmental toxicants such as arsenic. The objects of this study were two-fold. First, we constructed a novel 3D urinary bladder mucosa model (3D-UBMM) composed of an overlying epithelium and a supporting subepithelial layer. Primary [...] Read more.
The urinary bladder is a primary target organ for environmental toxicants such as arsenic. The objects of this study were two-fold. First, we constructed a novel 3D urinary bladder mucosa model (3D-UBMM) composed of an overlying epithelium and a supporting subepithelial layer. Primary human bladder urothelial and fibroblast cells were immortalized by introducing the human CDK4R24C and TERT genes. The construction of the 3D-UBMM involved incorporating immortalized fibroblast cells into a collagen raft, while immortalized urothelial cells were cultured at the air-liquid interface. This 3D-UBMM closely resembles the human bladder epithelium in terms of morphology and marker protein expression, including uroplakin 1b, P63, and cytokeratin 5. Second, using the 3D-UBMM we investigated the cytotoxicity of sodium arsenite (iAsIII) and dimethylarsenic acid (DMAV). Exposure to iAsIII and DMAV resulted in increased urothelial necrosis, increased γ-H2AX-positive cells, and reduced P63-positive cells, all in a dose–response manner. These findings affirm that this novel 3D-UBMM resembles the human bladder epithelium and offers a practical in vitro model for evaluating bladder toxicants and carcinogens, identifying mechanisms of carcinogenesis, and supporting hazard identification and risk assessment. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

24 pages, 1980 KB  
Review
Natural and Synthetic Compounds Against Colorectal Cancer: An Update of Preclinical Studies in Saudi Arabia
by Mansoor-Ali Vaali-Mohammed, Adhila Nazar, Mohamad Meeramaideen and Saleha Khan
Curr. Oncol. 2025, 32(10), 546; https://doi.org/10.3390/curroncol32100546 - 29 Sep 2025
Abstract
Colorectal cancer (CRC) remains a major contributor to global cancer-related mortality, with rising incidence observed in several regions, including Saudi Arabia. This review compiles and critically analyzes recent preclinical research from Saudi-based institutions that investigates the anti-CRC potential of natural and synthetic compounds. [...] Read more.
Colorectal cancer (CRC) remains a major contributor to global cancer-related mortality, with rising incidence observed in several regions, including Saudi Arabia. This review compiles and critically analyzes recent preclinical research from Saudi-based institutions that investigates the anti-CRC potential of natural and synthetic compounds. Numerous natural products such as Nigella sativa, Moringa oleifera, Curcuma longa, and marine-derived metabolites have demonstrated cytotoxic effects through pathways involving apoptosis induction, reactive oxygen species (ROS) generation, and inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and cyclooxygenase-2 (COX-2). In parallel, synthetic and semi-synthetic agents, including C4–G4 (semi-synthetic hybrids designed from flavonoids and benzoxazole scaffolds that act as dual epidermal growth factor receptor (EGFR)/COX-2 inhibitors)), oxazole derivatives, and camptothecin-based nanocarriers, exhibit promising anti-tumor activity via molecular targeting of cyclin-dependent kinase 8 (CDK8), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and β-catenin pathways. Selected in vivo studies primarily utilizing xenograft and chemically induced rodent models have shown reductions in tumor volume and modulation of apoptotic and inflammatory biomarkers. Additionally, green-synthesized metallic nanoparticles (NPs) and polyethylene glycol (PEG)-modified carriers have been investigated to improve bioavailability and tumor targeting of lead compounds. While these findings are encouraging, the majority remain in preclinical phases. Limitations such as poor solubility, lack of pharmacokinetic data, and absence of clinical trials impede translational progress. This review highlights the need for standardized evaluation protocols, mechanistic validation, and region-specific clinical studies to assess efficacy and safety. Given Saudi Arabia’s rich biodiversity and growing research capacity under national strategies like Vision 2030, the country is well-positioned to contribute meaningfully to CRC drug discovery. By integrating bioactive natural products, rationally designed synthetics, and advanced delivery platforms, a pipeline of innovative CRC therapeutics tailored to local and global contexts may be realized. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Figure 1

21 pages, 4606 KB  
Article
Targeting a Tau Kinase Cdk5, Cyclin-Dependent Kinase: A Blood-Based Diagnostic Marker and Therapeutic Earmark for Alzheimer’s Disease
by Sakshi Kumari, Abhinay Kumar Singh, Mukesh Kumar, Rashmita Pradhan, Abhijith R. Rao, Yudhishthir Yadav, Pramod Kumar, Partha Haldar, Punit Kaur and Sharmistha Dey
Biomolecules 2025, 15(10), 1365; https://doi.org/10.3390/biom15101365 - 26 Sep 2025
Abstract
Protein kinases are important molecules of Alzheimer’s Disease (AD), driving neuronal demise and the emergence of the disease’s destructive hallmarks. Cdk5 has recently been highlighted as a key therapeutic target for AD. This study evaluated the expression levels of Cdk5 and Mcl1 (Cdk5’s [...] Read more.
Protein kinases are important molecules of Alzheimer’s Disease (AD), driving neuronal demise and the emergence of the disease’s destructive hallmarks. Cdk5 has recently been highlighted as a key therapeutic target for AD. This study evaluated the expression levels of Cdk5 and Mcl1 (Cdk5’s substrate) in blood samples of 61 AD, 55 Mild Cognitive Impairment (MCI), and 57 Geriatric Controls (GC), and explored the in vitro inhibition of Cdk5. The serum levels of Cdk5 and Mcl1 were measured by Surface Plasmon Resonance (SPR) and verified by Western blot and RT-PCR. Molecular modeling and simulation studies were used to identify a potent hit targeting Cdk5 and validated by binding studies using SPR. The peptide rescue effect was analyzed by MTT assay in the AD cellular model. SPR analysis revealed a significant change in Cdk5 and Mcl1 levels in the serum samples of AD and MCI compared to GC. Results were validated by Western blot and RT-PCR. Binary logistic regression analysis revealed that the concentration of both Cdk5 and Mcl1 was independently associated with disease after adjusting for certain parameters. ROC analysis established an optimum diagnostic cutoff value for Cdk5 [24.97 ng/µL (AUC-0.90)] and Mcl1 [23.08 ng/µL (AUC-0.94)] with high sensitivity and specificity. The peptide YCWS strongly binds to Cdk5′s ATP binding site, confirmed by molecular modeling and SPR. In the AD cellular model, peptide YCWS rescued neurotoxicity, increased Mcl1 levels, and reduced destructive hallmarks by inhibiting Cdk5. It can be concluded that Cdk5 is a promising molecule as a circulatory biomarker for the diagnosis of the early stages of AD, and its peptide inhibitor YCWS is a potential therapeutic agent. Full article
Show Figures

Figure 1

15 pages, 2948 KB  
Article
Pan-Cancer Analysis of Mutations Affecting Protein Liquid–Liquid Phase Separation Revealing Clinical Implications
by Xiaoping Cen, Lulu Wang, Kai Yu, Huanming Yang, Roland Eils, Wei Dong, Huan Lin and Zexian Liu
Biology 2025, 14(10), 1320; https://doi.org/10.3390/biology14101320 - 25 Sep 2025
Abstract
Phase separation is one of the mechanisms critical for protein function, and its aberrances are associated with cancer development. However, mutations that affect protein phase separation and cancer development have not been systematically identified and analyzed. In this study, we systematically identified the [...] Read more.
Phase separation is one of the mechanisms critical for protein function, and its aberrances are associated with cancer development. However, mutations that affect protein phase separation and cancer development have not been systematically identified and analyzed. In this study, we systematically identified the mutations affecting protein liquid–liquid phase separation in multiple cancers. We calculated the phase separation scores alterations for over 1,200,000 mutations across 16 cancer types using the TCGA dataset. We then performed pathway enrichment, kinase, TF enrichment, and survival analysis to identify related biological processes and clinical implications. Nearly 10% of the mutations were defined to affect phase separation in pan-cancer. These mutations occupied a consistent percentage in each cancer type. Extremely influencing mutations accumulate on stomach adenocarcinoma (STAD), uterine corpus endometrial carcinoma (UCEC), and skin cutaneous melanoma (SKCM). Moreover, proteins carrying these mutations are enriched in cancer-related pathways, including TGF-beta signaling pathways and polycomb repressive complex. Phase separation of these proteins would be regulated by kinases, including CDK1, CDK2, and EGFR, and transcription factors, including ZNF407, ZNF318, and MGA proteins, to play functions in cancer. Protein–Protein Interaction Network revealed that these phase separation proteins are highly interconnected. Finally, patients carrying mutations that positively affect the protein phase separation are associated with poor prognosis in skin cutaneous melanoma (SKCM) and lung squamous cell carcinoma (LUSC), which could be partially explained by the pathogenicity of these mutations. The study provided a pan-cancer landscape for depicting the association of phase separation and cancer mutations, which would be a rich data resource for understanding the association of cancer mutations and phase separation. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Graphical abstract

19 pages, 13934 KB  
Article
Epigenetic Effects and Potential Contributions of m6A Modification to Mammary Gland Development and Lactation of Dairy Goats Explored via MeRIP-seq
by Lu Zhang, Zhibin Ji, Mingxin Zhao, Jianzhi Fu and Xianglei Meng
Animals 2025, 15(19), 2775; https://doi.org/10.3390/ani15192775 - 23 Sep 2025
Viewed by 102
Abstract
To date, more than 170 chemical modifications have been identified in RNA. m6A (N6-methyladenine) RNA methylation is the most abundant form of mRNA modification in eukaryotes, playing an important role in RNA post-transcriptional processes. To investigate the function of [...] Read more.
To date, more than 170 chemical modifications have been identified in RNA. m6A (N6-methyladenine) RNA methylation is the most abundant form of mRNA modification in eukaryotes, playing an important role in RNA post-transcriptional processes. To investigate the function of m6A methylation modification in the development and lactation of dairy goat mammary glands, mammary gland tissue samples were collected in the early (20 days postpartum), peak (90 days postpartum), and late period (210 days postpartum) of three dairy goats. MeRIP-seq and RNA-seq were used to explore m6A methylation modification events. We identified 1638 differential peaks in the MeRIP-seq data across 1539 differentially methylated genes, which were enriched in ribosome biogenesis in eukaryotes, Toll-like receptor signaling pathway, TNF signaling pathway, MAPK, and other pathways related to mammary gland development and lactation. A conjoint analysis revealed that 179 common differential expressed genes were obtained, of which 150 were negatively regulated by their m6A modifications, while 5 common differentially expressed genes—PPARG, HSPA2, CDK5, ACTB and NOTCH3, were screened out in the two groups. In conclusion, m6A modification involves the pathways related to mammary gland development and lactation by modifying gene expression. This studyprovides new insights into m6A epigenetic regulation, mammary epithelial gene networks, and actionable molecular targets for high-value dairy product production and the breeding of new varieties. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

3 pages, 569 KB  
Correction
Correction: Tabouret et al. TP5, a Peptide Inhibitor of Aberrant and Hyperactive CDK5/p25: A Novel Therapeutic Approach against Glioblastoma. Cancers 2020, 12, 1935
by Emeline Tabouret, Herui Wang, Niranjana Amin, Jinkyu Jung, Romain Appay, Jing Cui, Qi Song, Antonio Cardone, Deric M. Park, Mark R. Gilbert, Harish Pant and Zhengping Zhuang
Cancers 2025, 17(19), 3094; https://doi.org/10.3390/cancers17193094 - 23 Sep 2025
Viewed by 55
Abstract
In the original publication [...] Full article
Show Figures

Figure 2

13 pages, 1498 KB  
Article
Expanding the Clinical and Molecular Spectrum of Primary Autosomal Recessive Microcephaly: Novel CDK5RAP2 Gene Variants and Functional Insights on the Intronic Variants
by Burcu Yeter, Yasemin Kendir Demirkol, Esra Usluer, İpek Görüşen Kavak, Sena Gjota Ergin and Nursel H. Elçioğlu
Genes 2025, 16(10), 1120; https://doi.org/10.3390/genes16101120 - 23 Sep 2025
Viewed by 154
Abstract
Background/Objectives: Autosomal recessive primary microcephaly is a rare and genetically heterogeneous disorder characterized by congenital non-syndromic microcephaly, with at least 28 causative genes identified to date. Biallelic variants in the CDK5RAP2 gene, an ultra-rare cause of autosomal recessive primary microcephaly, lead to [...] Read more.
Background/Objectives: Autosomal recessive primary microcephaly is a rare and genetically heterogeneous disorder characterized by congenital non-syndromic microcephaly, with at least 28 causative genes identified to date. Biallelic variants in the CDK5RAP2 gene, an ultra-rare cause of autosomal recessive primary microcephaly, lead to Primary Autosomal Recessive Microcephaly 3 (MCPH3). Methods: We present seven patients from six families diagnosed with MCPH3 in light of clinical and molecular findings using whole-exome sequencing (WES). Furthermore, we investigated the effects of the identified intronic variants on splicing through RNA analysis. Results: Almost all patients had severe microcephaly, mild to moderate intellectual disability, speech delay, and cutaneous pigmentary abnormalities. Four patients presented with postnatal short stature, and two showed weight deficiency. Dysmorphic evaluation revealed that the most prominent features included brachycephaly, hypertelorism, epicanthus, high-arched eyebrows, prominent nasal bridge, and micrognathia. We identified five distinct homozygous CDK5RAP2 variants in our patients, including four novel variants. Segregation analysis verified that the parents were carriers. Two of these variants were intronic (c.3148+5G>C and c.383+4dupA), two were frameshift (c.3168del), and one was a nonsense variant (c.1591C>T). Both intronic variants disrupted splicing, generating a premature stop codon and resulting in a truncated protein. Conclusions: This study broadens the mutational landscape of CDK5RAP2. We also sought to demonstrate the functional consequences of the CDK5RAP2 intronic variants on gene function using RNA analysis. The identification of four novel variants underscores the importance of molecular diagnostics in patients with primary microcephaly and provides valuable data for genetic counseling and future functional studies. Full article
(This article belongs to the Special Issue Molecular Genetics of Rare Disorders)
Show Figures

Figure 1

19 pages, 2545 KB  
Article
Synthesis and Biological Evaluation of Marine-Inspired Benzothiazole Derivatives as Retinoid X Receptor-α Antagonists with Anti-Cancer Activities
by Yingting Lin, Ming Peng, Renjing Yang, Guanghui Wang, Junjie Chen, Rong Ding, Cuiling Sun, Wenjing Tian and Haifeng Chen
Mar. Drugs 2025, 23(9), 368; https://doi.org/10.3390/md23090368 - 21 Sep 2025
Viewed by 224
Abstract
Retinoid X receptor α (RXRα) plays a vital role in multiple biological and pathological processes and represents a promising therapeutic target for anti-tumor drug design. Inspired by the marine-derived RXRα antagonist meroterpenthiazole A, 21 undescribed benzothiazole derivatives were designed and synthesized. The inhibitory [...] Read more.
Retinoid X receptor α (RXRα) plays a vital role in multiple biological and pathological processes and represents a promising therapeutic target for anti-tumor drug design. Inspired by the marine-derived RXRα antagonist meroterpenthiazole A, 21 undescribed benzothiazole derivatives were designed and synthesized. The inhibitory effects of 21 derivatives on RXRα transactivation and their anti-tumor activities against MDA-MB-231 cells were evaluated. Compounds 4a4h, 6a6b, 7c7f, and 7h7i inhibited 9-cis-retinoic acid-induced RXRα transactivation, while compounds 3b, 4f4h, 7a, 7c, 7f, and 7h7i exhibited inhibitory effects on the proliferation of MDA-MB-231 cells. Meanwhile, the structure–activity relationships governing both the RXRα antagonist effects and the anti-proliferative activities against MDA-MB-231 cells were discussed. Compound 7i exhibited the most potent inhibitory effects on the proliferation of MDA-MB-231 cells with an IC50 value of 16.5 μM. Further mechanism studies revealed that compound 7i induced G2/M phase arrest in MDA-MB-231 cells, accompanied by dose-dependent downregulation of Cyclin B1 and CDK1 protein expression. However, these effects were abolished in RXRα-knockout MDA-MB-231 cells, indicating that the anti-proliferative and cell cycle arrest activities of 7i were RXRα-dependent. Cellular Thermal Shift Assay (CETSA) and molecular docking studies further confirmed that 7i directly bound to RXRα, thereby mediating its anti-cancer efficacy. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Figure 1

24 pages, 15834 KB  
Article
Integrated Analysis, Machine Learning, Molecular Docking and Dynamics of CDK1 Inhibitors in Epithelial Ovarian Cancer: A Multifaceted Approach Towards Targeted Therapy
by Mahla Masoudi, Saber Samadiafshar, Hossein Azizi and Thomas Skutella
Int. J. Mol. Sci. 2025, 26(18), 9168; https://doi.org/10.3390/ijms26189168 - 19 Sep 2025
Viewed by 195
Abstract
Epithelial ovarian cancer (EOC) remains one of the deadliest gynecologic malignancies, largely due to late diagnosis and treatment resistance. The main objective of this study is to identify and validate CDK1 as a high-confidence therapeutic target in EOC and to assess the dual-target [...] Read more.
Epithelial ovarian cancer (EOC) remains one of the deadliest gynecologic malignancies, largely due to late diagnosis and treatment resistance. The main objective of this study is to identify and validate CDK1 as a high-confidence therapeutic target in EOC and to assess the dual-target inhibitory potential of the natural compound Naringin against both CDK1 and its regulator WEE1. This study employed an integrative pipeline combining transcriptomic profiling, protein–protein interaction network analysis, machine learning, and molecular simulations to identify key oncogenic regulators in EOC. CDK1 emerged as a central hub gene, exhibiting strong association with poor prognosis and signaling convergence. CDK1 overexpression correlated with adverse survival outcomes and robust involvement in critical oncogenic pathways. Molecular docking and dynamics simulations assessed the binding efficacy of seven compounds with CDK1 and WEE1, with Naringin showing high-affinity binding, stable complex formation, and minimal predicted toxicity. This study underscores the power of computational-experimental integration in accelerating oncology drug discovery, providing visual and quantitative evidence that systematically connect the study’s aim to its findings. Full article
(This article belongs to the Special Issue Exploring the Genetics and Genomics of Complex Diseases)
Show Figures

Graphical abstract

17 pages, 1742 KB  
Article
Pinocembrin Downregulates Vascular Smooth Muscle Cells Proliferation and Migration Leading to Attenuate Neointima Formation in Balloon-Injured Rats
by Hyeonhwa Kim, Jihye Jung, Young-Bob Yu, Dong-Hyun Choi, Leejin Lim and Heesang Song
Biomolecules 2025, 15(9), 1325; https://doi.org/10.3390/biom15091325 - 17 Sep 2025
Viewed by 303
Abstract
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are a primary cause of cardiovascular diseases such as atherosclerosis and restenosis after angioplasty. Pinocembrin (5,7-dihydroxyflavanone, PCB), a natural flavonoid compound found abundantly in propolis, has been reported to have antibacterial, anti-inflammatory, [...] Read more.
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are a primary cause of cardiovascular diseases such as atherosclerosis and restenosis after angioplasty. Pinocembrin (5,7-dihydroxyflavanone, PCB), a natural flavonoid compound found abundantly in propolis, has been reported to have antibacterial, anti-inflammatory, antioxidant, and anticancer effects, and cardiac function improvement in ischemic heart disease. In this study, the protective effects of PCB against the migration and proliferation of VSMCs were investigated. MTT and BrdU assays were performed to estimate the cytotoxicity and cell proliferative activity of PCB, respectively. Rat aortic VSMC migrations and neointima formation were evaluated using wound healing, boyden chamber assays, and in balloon-injured (BI) rat, respectively. PCB suppressed the phosphorylated levels of p38 in PDGF-BB-induced VSMCs followed by reducing the expression of MMP2 and 9. PCB downregulated the expression levels of cell cycle regulatory proteins such as PCNA, CDK2, CDK4, and Cyclin D1. Furthermore, the phosphorylated levels of FAK at Y397 and Y925 sites and the expression levels of FAK-related proteins such as Integrin β1, Paxillin, Talin, and Vinculin were significantly reduced by PCB in PDGF-BB-induced VSMCs. The neointima formation was markedly decreased by PCB administration in the carotid artery of a balloon-injured rat. In conclusion, PCB inhibits the proliferation and migration of VSMCs by stimulation of PDGF-BB through the regulation of the p38 and FAK signaling pathway. Therefore, PCB may be a promising therapeutic candidate for preventing and treating cardiovascular diseases such as atherosclerosis and restenosis. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

17 pages, 3250 KB  
Article
Development and Evaluation of Liposomal Celastrol-PROTACs for Treating Triple-Negative Breast Cancer
by Xuebin Li, Chaoqun Yu, Gongyi Zheng, Yanghong Li, Weiguo Cao and Fan Wang
Pharmaceuticals 2025, 18(9), 1381; https://doi.org/10.3390/ph18091381 - 16 Sep 2025
Viewed by 293
Abstract
Background: Based on our previous study, Celastrol-based proteolysis-targeting chimeras (Celastrol-PROTACs) were shown to induce apoptosis in 4T1 cells by selectively degrading GRP94 and CDK1/4 through the endogenous ubiquitin–proteasome system. However, their clinical translation is limited by poor solubility, low targeting [...] Read more.
Background: Based on our previous study, Celastrol-based proteolysis-targeting chimeras (Celastrol-PROTACs) were shown to induce apoptosis in 4T1 cells by selectively degrading GRP94 and CDK1/4 through the endogenous ubiquitin–proteasome system. However, their clinical translation is limited by poor solubility, low targeting efficiency, and liver and kidney toxicity. Methods: To address these limitations, we developed a pegylated liposomal formulation of Celastrol-PROTACs (Lip-Celastrol-PROTACs) and evaluated its therapeutic efficacy and safety profile. Results: The tumor volume of the mice in the Celastrol-PROTACs solution group (286 ± 79 mm3) was significantly larger than that of those in the Lip-Celastrol-PROTACs group (229 ± 49 mm3) on day 18 after intravenous administration (p < 0.01). This difference between the two groups was statistically significant (p < 0.01). Notably, the Celastrol-PROTACs group exhibited significantly greater weight loss compared to the Lip-Celastrol-PROTACs group (p < 0.001). In vivo toxicity assessments revealed that the levels of AST and BUN in the Celastrol-PROTACs group were 27.93 ± 4.88 U/L and 12.36 ± 1.33 μmol/L, respectively, whereas those in the Lip-Celastrol-PROTACs group were found to be 7.92 ± 0.94 U/L and 8.19 ± 0.67 μmol/L, respectively. These findings indicate a statistically significant difference between the two formulations (p < 0.01). Conclusions: Our research demonstrated that pegylated liposomes could improve the targeting efficiency and minimize the toxicity of PROTACs, thereby improving overall therapeutic efficacy. These findings indicated that Lip-Celastrol-PROTACs represent a promising strategy for future clinical applications. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

19 pages, 2849 KB  
Article
miR-194-3 Regulates Proliferation and Apoptosis of Follicular Granulosa Cells by Targeting CHD4 in Zhedong White Geese
by Peng Zheng, Zhengyu Zang, Size Wang, Chuicheng Zeng, Yue Pan, Yuanliang Zhang, Shan Yue, Shengjun Liu, He Huang and Xiuhua Zhao
Animals 2025, 15(18), 2676; https://doi.org/10.3390/ani15182676 - 12 Sep 2025
Viewed by 278
Abstract
The dynamic balance between proliferation and apoptosis of follicular granulosa cells (GCs) is crucial for follicular development in poultry. microRNAs play important roles in ovarian development and follicular function. Previous transcriptome analyses showed that miR-194-3 was significantly differentially expressed in the ovaries of [...] Read more.
The dynamic balance between proliferation and apoptosis of follicular granulosa cells (GCs) is crucial for follicular development in poultry. microRNAs play important roles in ovarian development and follicular function. Previous transcriptome analyses showed that miR-194-3 was significantly differentially expressed in the ovaries of Zhedong white geese during the laying and brooding stages. Therefore, the aim of this study was to investigate the regulatory role and molecular mechanism of miR-194-3 on the proliferation and apoptosis of follicular GCs in Zhedong white geese. We first screened the target gene CHD4 of miR-194-3 and constructed the miR-194-3 mimic and inhibitor, a small interfering RNA of target gene CHD4. The experimental results showed that the overexpression of miR-194-3 significantly down-regulated the mRNA and protein expression of GC proliferation genes (PCNA, CDK-2, and CCND-1), reduced the proportion of EdU-labeled positive cells, blocked cell cycle progression, simultaneously up-regulated the mRNA and protein expression of Caspase-3 and Caspase-9, and significantly increased the rate of apoptosis. In contrast, the inhibition of miR-194-3 expression promoted the proliferation of goose follicular GCs, accelerated cell cycle progression, and decreased the apoptosis rate. Bioinformatics prediction combined with the results of the dual luciferase reporter assay confirmed that CHD4 was a direct target gene of miR-194-3. The knockdown of CHD4 expression resulted in the down-regulation of PCNA, CDK-2 and CCND-1 expression; blockage of cell cycle progression; attenuation of cell proliferation; an up-regulation of Caspase-3 and Caspase-9 expression and a significant increase in apoptotic cell death. In summary, both miR-194-3 overexpression and CHD4 knockdown produced similar effects on goose follicular GC proliferation and apoptosis, suggesting that CHD4 may partially mediate the regulatory effects of miR-194-3; however, additional targets or pathways cannot be excluded. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

Back to TopTop