Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = CPEB4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4280 KB  
Article
The Role of MCM7 and Its Hosted miR-106b-25 Cluster in Renal Cancer Progression
by Katarzyna M. Głuchowska and Bartłomiej Hofman
Int. J. Mol. Sci. 2025, 26(17), 8618; https://doi.org/10.3390/ijms26178618 - 4 Sep 2025
Viewed by 874
Abstract
Renal cancer is among the deadliest human malignancies. MCM7, a cell cycle-regulating protein, is frequently overexpressed in cancers and is associated with hyperproliferation and cancer progression. miR-25-3p, miR-93-5p, and miR-106b-5p form the miR-106b-25 cluster, located within the MCM7 gene, and have previously been [...] Read more.
Renal cancer is among the deadliest human malignancies. MCM7, a cell cycle-regulating protein, is frequently overexpressed in cancers and is associated with hyperproliferation and cancer progression. miR-25-3p, miR-93-5p, and miR-106b-5p form the miR-106b-25 cluster, located within the MCM7 gene, and have previously been reported as upregulated in RCC. This study investigates whether miRNAs from the miR-106b-25 cluster regulate common target genes, enhance one another’s effect, and act synergistically with MCM7 to promote tumor progression. Tissue samples from clear cell RCC (ccRCC) and paired controls were analysed to assess MCM7 expression and genes targeted by the miR-106b-25 cluster. Findings were further validated using the TCGA-KIRC dataset. Functional studies in RCC-derived cell lines were conducted to evaluate the effects of miRNAs on target gene expression, as well as MCM7, and the combined contributions of MCM7 and the miR-106b-25 cluster to renal cancer progression. We demonstrate that MCM7 is upregulated at both transcript and protein levels in RCC, contributing to cancer progression by regulating cell proliferation and caspase-3/7 activity. Furthermore, we identified cancer-related genes aberrantly expressed in ccRCC (BRMS1L, CPEB3, DNAJB9, KIF3B, NFIB, PTPRJ, RBL2) and targeted by members of the miR-106b-25 cluster, suggesting that their dysregulation may be driven by these miRNAs. Inhibition of the miR-106b-25 cluster increases caspase-3/7 activity. These findings demonstrate that both MCM7 and the miR-106b-25 cluster contribute to renal cancer progression. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Human Diseases: 2nd Edition)
Show Figures

Figure 1

35 pages, 19403 KB  
Article
Effects of Temperature and Salinity on Ovarian Development and Differences in Energy Metabolism Between Reproduction and Growth During Ovarian Development in the Lateolabrax maculatus
by Yangtao Peng, Lulu Yan, Chao Zhao, Bo Zhang, Bo Zhang and Lihua Qiu
Int. J. Mol. Sci. 2025, 26(17), 8295; https://doi.org/10.3390/ijms26178295 - 27 Aug 2025
Viewed by 747
Abstract
Fish reproduction requires suitable salinity and temperature, as well as sufficient energy. This study investigated temperature and salinity effects on ovarian development of Lateolabrax maculatus and energy metabolism differences between reproduction and growth. Two salinities (4‰ and 30‰) and temperatures (18 ± 1 [...] Read more.
Fish reproduction requires suitable salinity and temperature, as well as sufficient energy. This study investigated temperature and salinity effects on ovarian development of Lateolabrax maculatus and energy metabolism differences between reproduction and growth. Two salinities (4‰ and 30‰) and temperatures (18 ± 1 °C and 30 ± 1 °C) formed four treatments: SWNT (30‰, 30 ± 1 °C), SWLT (30‰, 18 ± 1 °C), FWLT (4‰, 18 ± 1 °C), and FWNT (4‰, 30 ± 1 °C). GSI and sex hormones (FSH, LH, E2, and 17α,20β-DHP) were measured. Transcriptome analysis explored how temperature and salinity regulate ovarian development in L. maculatus, while integrated transcriptomic and targeted energy metabolomic analyses revealed energy metabolism differences between ovary and muscle during this process. The results showed that low salinity (4‰) and low temperature (18 ± 1 °C) synergistically promoted ovarian development in the FWLT group, as indicated by a significant increase in GSI and elevated levels of key sex hormones (FSH, LH, E2, and 17α,20β-DHP). Transcriptome analysis showed that low temperature activated pathways involved in steroidogenesis, oocyte maturation, and meiosis, and genes such as ADCY6, PRKACB, CPEB4, FZD7-A, and CCND2 were significantly upregulated. Salinity changes mainly affected amino acid metabolism, cholesterol metabolism, and the insulin signaling pathway. Genes such as PCSK9 and CKM may regulate ovarian development by regulating hormone synthesis and energy metabolism. Comprehensive transcriptome and metabolome analyses show that glycolysis is downregulated and oxidative phosphorylation is upregulated in the ovary, suggesting that ovarian oogenesis tends to be energized by aerobic metabolism. The TCA cycle may be used more for providing biosynthetic precursors and facilitating the transport of substrates between the mitochondrion and the cytoplasm rather than just as a source of ATP. Muscle tissue relies primarily on glycolysis for rapid energy production and may redistribute energy to the gonads, prioritizing the energy needs of the ovaries and contributing to the dynamic balance between reproduction and growth. This study provides insights into the molecular mechanisms of how environmental factors regulate fish reproduction, providing a theoretical basis and potential molecular targets for the regulation of reproduction and optimization of aquaculture environments. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1861 KB  
Article
Genome-Wide Association Study of Osteoporosis Risk in Korean Pre-Menopausal Women: The Korean Genome and Epidemiology Study
by Su Kang Kim, Seoung-Jin Hong, Gyutae Kim, Ju Yeon Ban and Sang Wook Kang
Int. J. Mol. Sci. 2025, 26(17), 8177; https://doi.org/10.3390/ijms26178177 - 22 Aug 2025
Viewed by 595
Abstract
Osteoporosis is a common disease characterized by a reduction in bone mineral density (BMD), leading to an increased risk of pathological fractures and even mortality. Although menopause is a major risk factor, osteoporosis can also occur in premenopausal women. The aim of this [...] Read more.
Osteoporosis is a common disease characterized by a reduction in bone mineral density (BMD), leading to an increased risk of pathological fractures and even mortality. Although menopause is a major risk factor, osteoporosis can also occur in premenopausal women. The aim of this study was to identify genetic variants associated with the development of osteoporosis in Korean premenopausal women. Subjects were recruited from the Anseong and Ansan cohorts of the Korean Genome and Epidemiology Study (KoGES). Clinical and epidemiological characteristics were assessed, and participants were classified based on BMD values measured at the distal radius and mid-shaft tibia. Individuals with confounding risk factors such as low body weight, smoking, high alcohol consumption, steroid/hormone therapy, or relevant medical history were excluded. A total of 247 healthy controls and 57 osteoporosis patients were included. Genotyping was performed using the Illumina Infinium HumanExome BeadChip and the Affymetrix Axiom Exome Array. Data were analyzed using the SNP and Variation Suite and PLINK, with quality control thresholds set at MAF ≥ 0.05 and HWE p ≥ 0.01. Functional annotation and protein structure predictions were performed using PolyPhen-2, SIFT, and PROVEAN. Genome-wide association analyses identified 113 single-nucleotide polymorphisms (SNPs) in 69 genes significantly associated with osteoporosis (p < 0.05) in both platforms, with 18 SNPs showing high cross-platform consistency (p < 0.01). Several of these genes were implicated in bone metabolism (e.g., ESRRG, PECAM1, COL6A5), vitamin D metabolism (e.g., NADSYN1, EFTUD1), skeletal muscle function (e.g., PACSIN2, ESRRG), and reproductive processes (e.g., CPEB1, EFCAB6, ASXL3). Notably, the CPEB1 rs783540 SNP exhibited the strongest association (p < 0.001) in both analyses. Our findings suggest that genetic polymorphisms in pathways related to bone metabolism, vitamin D signaling, muscle–bone interaction, and reproductive hormone regulation may contribute to the development of osteoporosis in Korean premenopausal women. These results provide a genetic basis for early identification of at-risk individuals and warrant further functional studies to elucidate the underlying mechanisms. Full article
(This article belongs to the Special Issue Molecular Biology of Osteoporosis)
Show Figures

Figure 1

17 pages, 2576 KB  
Article
A Maternal Gene Regulator CPEB2 Is Involved in Mating-Induced Egg Maturation in the Cnaphalocrocis medinalis
by Yi Duan, Yueran Xiao, Guo Cai, Kepeng Wang, Chenfan Zhao and Pengcheng Liu
Insects 2025, 16(7), 666; https://doi.org/10.3390/insects16070666 - 26 Jun 2025
Viewed by 610
Abstract
Cytoplasmic polyadenylation element-binding proteins (CPEBs) are critical regulators of maternal mRNA translation during oogenesis, yet their roles in insect reproduction remain underexplored. Here, we characterized CmCPEB2, a CPEB homolog in the rice leaf roller Cnaphalocrocis medinalis, a destructive lepidopteran pest insect, and [...] Read more.
Cytoplasmic polyadenylation element-binding proteins (CPEBs) are critical regulators of maternal mRNA translation during oogenesis, yet their roles in insect reproduction remain underexplored. Here, we characterized CmCPEB2, a CPEB homolog in the rice leaf roller Cnaphalocrocis medinalis, a destructive lepidopteran pest insect, and elucidated its role in mating-induced oviposition. The CmCPEB2 protein harbored conserved RNA recognition motifs and a ZZ-type zinc finger domain and was phylogenetically clustered with lepidopteran orthologs. Spatiotemporal expression profiling revealed CmCPEB2 was predominantly expressed in ovaries post-mating, peaking at 12 h with a 6.75-fold increase in transcript levels. Liposome-mediated RNA interference targeting CmCPEB2 resulted in a 52% reduction in transcript abundance, leading to significant defects in ovarian maturation, diminished vitellogenin deposition, and a 36.7% decline in fecundity. The transcriptomic analysis of RNAi-treated ovaries identified 512 differentially expressed genes, with downregulated genes enriched in chorion formation and epithelial cell development. Tissue culture-based hormonal assays demonstrated the juvenile hormone-dependent regulation of CmCPEB2, as JH treatment induced its transcription, while knockdown of the JH-responsive transcription factor CmKr-h1 in the moths suppressed CmCPEB2 expression post-mating. These findings established CmCPEB2 as a juvenile hormone-dependent regulator of mating-induced oviposition that orchestrates vitellogenesis through yolk protein synthesis and ovarian deposition and choriogenesis via transcriptional control of chorion-related genes. This study provides novel evidence of CPEB2-mediated reproductive regulation in Lepidoptera, highlighting its dual role in nutrient allocation and structural eggshell formation during insect oogenesis and oviposition. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

15 pages, 2076 KB  
Article
Validation of Targeted Relationships of Novel circRNA803/lncRNA MSTRG.19726–oar-let-7a–CPEB1 ceRNA Networks, Key to Follicle Development in Single-Litter and Multi-Litter Sheep Based on Whole-Transcriptome Sequencing
by Bo Gu, Anqi Wang, Hang Liu, Xudong Liu and Huaizhi Jiang
Int. J. Mol. Sci. 2025, 26(11), 5161; https://doi.org/10.3390/ijms26115161 - 28 May 2025
Viewed by 518
Abstract
The objective of this study is to investigate the molecular regulatory mechanisms of non-coding RNA (ncRNA) during the developmental process of multi-litter sheep ovaries and identify key regulatory genes that enhance the reproductive capacity of sheep. This study selected Small-Tail Han sheep (multi-litter [...] Read more.
The objective of this study is to investigate the molecular regulatory mechanisms of non-coding RNA (ncRNA) during the developmental process of multi-litter sheep ovaries and identify key regulatory genes that enhance the reproductive capacity of sheep. This study selected Small-Tail Han sheep (multi-litter sheep) and Ujumuqin sheep (single-litter sheep) as comparative models, constructed the expression profiles of ncRNAs and mRNAs in ovarian tissues, identified differentially expressed (DE) lncRNAs, circRNAs, miRNAs, and mRNAs, and performed target gene prediction along with functional and signaling pathway enrichment analyses. Reproduction-related pathways were further screened to construct competing endogenous RNA (ceRNA) regulatory networks (lncRNA–miRNA–mRNA and circRNA–miRNA–mRNA). Finally, the dual-luciferase reporter gene assay system was employed to perform the functional validation of the relevant targeted regulatory effects. A comprehensive screening identified 411 DE lncRNAs, 322 DE circRNAs, 26 DE miRNAs, and 29 DEGs from the ovarian tissues of Ujumqin and Small-Tail Han sheep. The results of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that the DE target genes were significantly enriched in pathways associated with cell dedifferentiation, the positive regulation of embryonic development, glycosaminoglycan biosynthesis, Hippo signaling, and other signaling pathways. To identify genes associated with reproductive processes, we performed differential expression screening followed by pathway enrichment analysis, which revealed significant enrichment in reproductive regulatory pathways. Based on these findings, we constructed a ceRNA regulatory network incorporating 22 DEGs, 17 DE lncRNAs, three DE circRNAs, and one DE miRNA. Our analysis revealed that oar-let-7a is involved in signaling pathways such as oocyte meiosis and Hippo, suggesting it may serve as a key miRNA regulating the trait of multiple offspring. The dual-luciferase reporter assay was employed to confirm that oar-let-7a directly targets and regulates the expression of CPEB1. Additionally, it was demonstrated that circRNA803 and lncRNA MSTRG.19726 function as molecular sponges to competitively bind and regulate oar-let-7a. These findings suggest that oar-let-7a mediates the expression of CPEB1 via circRNA803 and lncRNA MSTRG.19726 sponge adsorption, thereby regulating the process of follicular dominance in sheep. The qRT-PCR method was employed to validate the expression patterns of nine randomly selected DEGs, and the results corroborated the reliability of the RNA-seq sequencing data. This study investigated the coordinated regulatory mechanism of DE ncRNAs and their corresponding target genes, identifying a ceRNA network, circRNA803/lncRNA MSTRG.19726-oar-let-7a-CPEB1, which plays a critical role in regulating the process of follicular dominance in sheep. These findings provide fundamental data for uncovering the reproductive potential of sheep and facilitate a comprehensive understanding of their reproductive characteristics, which hold significant guiding implications for enhancing reproductive efficiency. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 237 KB  
Article
Association Between Genetically Predicted Memory and Self-Reported Foreign Language Proficiency
by Meruert B. Yerdenova, Gaukhar K. Datkhabayeva, Manzura K. Zholdassova, Altyngul T. Kamzanova, Zukhra M. Sadvakassova, Amal Bouzid, Poorna Manasa Bhamidimarri, Rifat Hamoudi, Ekaterina A. Semenova, Andrey K. Larin, Nikolay A. Kulemin, Edward V. Generozov, Tim Rees, Almira M. Kustubayeva and Ildus I. Ahmetov
Genes 2025, 16(5), 589; https://doi.org/10.3390/genes16050589 - 17 May 2025
Cited by 1 | Viewed by 1047
Abstract
Background: Foreign language proficiency is a complex trait that reflects an individual’s ability to effectively understand and use a non-native language, shaped by both genetic and environmental factors. The aim of this study was to establish the relationship between genetically determined memory capacity [...] Read more.
Background: Foreign language proficiency is a complex trait that reflects an individual’s ability to effectively understand and use a non-native language, shaped by both genetic and environmental factors. The aim of this study was to establish the relationship between genetically determined memory capacity and self-reported foreign language proficiency in 129 children (63 males, 66 females, age 14.2 ± 3.9) and 128 adults (90 males, 38 females, age 29.8 ± 8.2). Methods: Seven single nucleotide polymorphisms (SNPs) previously linked with memory function were used in a polygenic analysis (CAMTA1 rs4908449, CLSTN2 rs6439886, COMT rs4680, CPEB3 rs11186856, SCN1A rs10930201, SNAP25 rs3746544, and WWC1 rs17070145). Self-reported foreign language proficiency was evaluated using a single-item question. Children’s level of immersion in foreign languages was divided into three categories: linguistic school, non-linguistic school with extra foreign language courses, and non-linguistic school without additional foreign language courses. Results: We found that genetically predicted memory capacity (i.e., number of memory-increasing alleles) was positively associated with self-reported foreign language proficiency in children (p = 0.0078 adjusted for age, sex, ethnicity, verbal IQ, and level of immersion in foreign languages). When combined, genetically predicted memory capacity, age, sex, ethnicity, verbal IQ, and level of immersion in foreign languages explained 31.5% (p < 0.0001) of the variance in children’s self-reported foreign language proficiency. The association between genetically predicted memory capacity and self-reported foreign language proficiency was replicated in adults (p = 0.0158 adjusted for age, sex, and ethnicity). Conclusions: Foreign language proficiency may partly depend on the presence of a high number of memory-increasing alleles in both children and adults. Full article
(This article belongs to the Section Neurogenomics)
16 pages, 2039 KB  
Article
Punishment-Induced Suppression of Methamphetamine Self-Administration Is Accompanied by the Activation of the CPEB4/GLD2 Polyadenylation Complex of the Translational Machinery
by Atul P. Daiwile, Bruce Ladenheim, Subramaniam Jayanthi and Jean Lud Cadet
Int. J. Mol. Sci. 2025, 26(6), 2734; https://doi.org/10.3390/ijms26062734 - 18 Mar 2025
Cited by 1 | Viewed by 710
Abstract
Methamphetamine (METH) use disorder (MUD) is a public health catastrophe. Herein, we used a METH self-administration model to assess behavioral responses to the dopamine receptor D1 (DRD1) antagonist, SCH23390. Differential gene expression was measured in the dorsal striatum after a 30-day withdrawal from [...] Read more.
Methamphetamine (METH) use disorder (MUD) is a public health catastrophe. Herein, we used a METH self-administration model to assess behavioral responses to the dopamine receptor D1 (DRD1) antagonist, SCH23390. Differential gene expression was measured in the dorsal striatum after a 30-day withdrawal from METH. SCH23390 administration reduced METH taking in all animals. Shock Resistant (SR) rats showed greater incubation of METH seeking, which was correlated with increased Creb1, Cbp, and JunD mRNA expression. Cytoplasmic polyadenylation element binding protein 4 (Cpeb4) mRNA levels were increased in shock-sensitive (SS) rats. SS rats also showed increased protein levels for cleavage and polyadenylation specificity factor (CPSF) and germ line development 2 (GLD2) that are CPEB4-interacting proteins. Interestingly, GLD2-regulated GLUN2A mRNA and its protein showed increased expression in the shock-sensitive rats. Taken together, these observations identified CPEB4-regulated molecular mechanisms acting via NMDA GLUN2A receptors as potential targets for the treatment of METH use disorder. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

16 pages, 3532 KB  
Article
Hypothalamus Transcriptome Reveals Key lncRNAs and mRNAs Associated with Fecundity in Goats
by Yingshi Wei, Caiye Zhu, Xiaoyun He and Mingxing Chu
Animals 2025, 15(5), 754; https://doi.org/10.3390/ani15050754 - 6 Mar 2025
Cited by 2 | Viewed by 926
Abstract
The hypothalamus (hyp) serves as the regulatory hub of the neuroendocrine system, synthesizing and secreting reproductive hormones that modulate estrus, follicular maturation, and embryonic development in goats. This study employed RNA-seq analysis to examine gene expression in the hypothalamic tissue of Yunshang black [...] Read more.
The hypothalamus (hyp) serves as the regulatory hub of the neuroendocrine system, synthesizing and secreting reproductive hormones that modulate estrus, follicular maturation, and embryonic development in goats. This study employed RNA-seq analysis to examine gene expression in the hypothalamic tissue of Yunshang black goats during the luteal phase in goats with high fecundity (LP_HY), during the luteal phase in goats with low fecundity (LP_LY), during the follicular phase in goats with high fecundity (FP_HY), and during the follicular phase in goats with low fecundity (FP_LY). Differential long non-coding RNAs (DE lncRNAs) and differential mRNAs (DE mRNAs) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and the construction of co-expression networks associated with reproduction. As a result, DE lncRNAs (390, 375, 405, and 394) and DE mRNAs (1836, 2047, 2003, and 1963) were identified in the four comparisons, namely FP_LY vs. FP_HY, LP_HY vs. FP_HY, LP_LY vs. FP_LY, and LP_LY vs. LP_HY, respectively. Functional annotations indicated significant enrichment of numerous DE lncRNAs and DE mRNAs in reproduction-related pathways such as the gonadotropin-releasing hormone pathway, the prolactin signaling pathway, the estrogen signaling pathway, the Wnt signaling pathway, oocyte meiosis, and progesterone-mediated oocyte maturation. The co-expression network of lncRNAs and target genes identified the interrelationships between reproduction-related genes such as IGF1, PORCN, PLCB2, MAPK8, PRLR, and CPEB2 with our newly discovered lncRNAs. This study expands the understanding of lncRNAs and mRNAs in goat hypothalamic tissue and provides new insights into molecular mechanisms related to goat reproduction. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

16 pages, 21217 KB  
Article
Global Identification of Anti-Melanoma Cellular Targets by Photochemically Induced Coupling of L-Shikonin Reactions on the Surface of Magnetic Particles
by Min Li, Wenying Li, Fang Xu, Yiping Pu and Jianguang Li
Pharmaceutics 2024, 16(12), 1543; https://doi.org/10.3390/pharmaceutics16121543 - 2 Dec 2024
Cited by 1 | Viewed by 1355
Abstract
Background: L-Shikonin, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored. Methods: A novel Fe3O4@L-Shikonin [...] Read more.
Background: L-Shikonin, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored. Methods: A novel Fe3O4@L-Shikonin was designed and synthesized in this study by linking Fe3O4 and L-Shikonin through benzophenone. Fe3O4@L-Shikonin was characterized using several techniques, including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and drug removal methods, to determine the content of L-Shikonin on the surface of the magnetic particles. Target hooking technology was utilized to identify the target proteins of the compound in melanoma. The synthesized Fe3O4@L-Shikonin was co-incubated with A375 cell lysate, followed by the target proteins, which were purified by magnetic enrichment using magnetic microspheres and identified by high-resolution mass spectrometry. Results: AutoDock Vina software was employed for molecular docking analysis, where it was found that L-Shikonin targets RPN1, CPEB4, and HNRNPUL1 proteins. Subsequently, A375 cells were treated with L-Shikonin at different concentrations (2.5, 5.0, 10.0 μM) for 48 h, and the expressions of the three proteins were observed. The results showed a significant reduction in the relative expression of CPEB4 in the high-dose group compared to the control group (p < 0.01). Moreover, the relative expression of HNRNPUL1 was decreased in the medium- and high-dose groups (p < 0.05). Conclusions: This study initially revealed from the source that L-Shikonin may regulate melanoma-specific markers, melanosomes, tyrosine kinases related to abnormal tyrosine metabolism, and melanoma through multiple targets such as CPEB4 and HNRNPUL1. Proliferation and metastasis work together to exert an anti-melanoma mechanism, which provides a new idea for the follow-up study of the molecular pharmacological mechanism of the complex system of total naphthoquinones in Arnebia euchroma (Royle) Johns. Full article
(This article belongs to the Special Issue Applications of Nanotechnology for Melanoma Treatment and Diagnosis)
Show Figures

Figure 1

18 pages, 3426 KB  
Article
Effect of Gossypol on Gene Expression in Swine Granulosa Cells
by Min-Wook Hong, Hun Kim, So-Young Choi, Neelesh Sharma and Sung-Jin Lee
Toxins 2024, 16(10), 436; https://doi.org/10.3390/toxins16100436 - 10 Oct 2024
Cited by 2 | Viewed by 1636
Abstract
Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and [...] Read more.
Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and 12.5 µM) for 72 h, in vitro. The analysis revealed significant changes in the expression of numerous genes in the GP-treated groups. A Gene Ontology analysis highlighted that the differentially expressed genes (DEGs) primarily pertained to processes such as the mitotic cell cycle, chromosome organization, centromeric region, and protein binding. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated distinct impacts on various pathways in response to different GP concentrations. Specifically, in the GP6.25 group, pathways related to the cycle oocyte meiosis, progesterone-mediated oocyte maturation, and p53 signaling were prominently affected. Meanwhile, in the GP12.5 group, pathways associated with PI3K-Akt signaling, focal adhesion, HIF-1 signaling, cell cycle, and ECM–receptor interaction showed significant alterations. Notably, genes linked to female reproductive function (CDK1, CCNB1, CPEB1, MMP3), cellular component organization (BIRC5, CYP1A1, TGFB3, COL1A2), and oxidation–reduction processes (PRDX6, MGST1, SOD3) exhibited differential expression in GP-treated groups. These findings offer valuable insights into the changes in GC gene expression in pigs exposed to GP. Full article
Show Figures

Figure 1

24 pages, 8655 KB  
Article
Transcriptome Profiling Associated with CARD11 Overexpression in Colorectal Cancer Implicates a Potential Role for Tumor Immune Microenvironment and Cancer Pathways Modulation via NF-κB
by Faisal Alhosani, Burcu Yener Ilce, Reem Sami Alhamidi, Poorna Manasa Bhamidimarri, Alaa Mohamed Hamad, Noura Alkhayyal, Axel Künstner, Cyrus Khandanpour, Hauke Busch, Basel Al-Ramadi, Kadria Sayed, Ali AlFazari, Riyad Bendardaf and Rifat Hamoudi
Int. J. Mol. Sci. 2024, 25(19), 10367; https://doi.org/10.3390/ijms251910367 - 26 Sep 2024
Cited by 2 | Viewed by 3497
Abstract
The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has [...] Read more.
The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has been implicated in various diseases, including cancer. CARD11 is a key molecule in the BCL10-MALT1 complex, which is involved in transducing the signal downstream of the NF-κB pathway. This study aims to elucidate how CARD11 overexpression exacerbates the prognosis of colorectal cancer (CRC). To identify the cellular pathways influenced by CARD11, transcriptomic analysis in both CRC cell lines and patients was carried out on CARD11– overexpressed HCT-116 and HT-29 CRC cell lines alongside empty vector-transfected cell lines. Furthermore, a comparison of transcriptomic data from adenoma and carcinoma CRC patients with low- (CARD11–) and high-(CARD11+) CARD11 expression was carried out. Whole transcriptomics and bioinformatics analysis results indicate that CARD11 appears to play a key role in CRC progression. Absolute GSEA (absGSEA) on HCT-116 transcriptomics data revealed that CARD11 overexpression promotes cell growth and tissue remodeling and enhances immune response. Key genes co-expressed with CARD11, such as EP300, KDM5A, HIF1A, NFKBIZ, and DUSP1, were identified as mediators of these processes. In the HT-29 cell line, CARD11 overexpression activated pathways involved in chemotaxis and extracellular matrix (ECM) organization, marked by IL1RN, MDK, SPP1, and chemokines like CXCL1, CXCL3, and CCL22, which were shown to contribute to the more invasive stage of CRC. In patient samples, adenoma patients exhibited increased expression of genes associated with the tumor immune microenvironment, such as IL6ST, collagen family members, and CRC transition markers, such as GLI3 and PIEZO2, in CARD11+ adenoma patients. Carcinoma patients showed a dramatic increase in the expression of MAPK8IP2 in CARD11+ carcinoma patients alongside other cancer-related genes, including EMB, EPHB6, and CPEB4. Full article
(This article belongs to the Special Issue New Molecular Aspects of Colorectal Cancer)
Show Figures

Figure 1

18 pages, 3114 KB  
Article
CPEB3 Maintains Developmental Competence of the Oocyte
by Lucie Lamacova, Denisa Jansova, Zongliang Jiang, Michal Dvoran, Daria Aleshkina, Rajan Iyyappan, Anna Jindrova, Heng-Yu Fan, Yuxuan Jiao and Andrej Susor
Cells 2024, 13(10), 850; https://doi.org/10.3390/cells13100850 - 16 May 2024
Cited by 2 | Viewed by 1922
Abstract
Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic [...] Read more.
Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3’UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Graphical abstract

13 pages, 2006 KB  
Article
Ribonucleic Acid Sequencing Reveals the Upregulation and Resolution of Inflammation and Extracellular Matrix Remodeling in Lidocaine-Treated Human Acute Monocytic Leukemia Cell Line THP-1
by Sheng-Wei Feng, Wei-Chun Lin, I-Ta Lee, Sheng-Dean Luo and Ching-Shuen Wang
Biomedicines 2024, 12(3), 509; https://doi.org/10.3390/biomedicines12030509 - 23 Feb 2024
Cited by 2 | Viewed by 2225
Abstract
Lidocaine, a local anesthetic widely used in dentistry, is esteemed for its efficacy and safety. Recent research reveals its additional role in modulating the immune system, and particularly in reducing inflammation crucial for protecting tooth-supporting tissues. Notably, monocytes and macrophages, essential cellular components [...] Read more.
Lidocaine, a local anesthetic widely used in dentistry, is esteemed for its efficacy and safety. Recent research reveals its additional role in modulating the immune system, and particularly in reducing inflammation crucial for protecting tooth-supporting tissues. Notably, monocytes and macrophages, essential cellular components overseeing various physiological and pathological processes, stand as potential mediators of lidocaine’s effects. Therefore, this study aimed to investigate how lidocaine influences cell behavior using RNA sequencing. To investigate the effect of lidocaine on THP-1 cells’ behavior, we performed an MTT assay and RNA-Seq along with qPCR analyses to evaluate the transcriptomic and proteomic changes in THP-1 cells. Our results showed that a high dose of lidocaine (>1 mM) had a significant cytotoxic effect on THP-1 cells. However, a lidocaine dose lower than 0.5 mM induced a mixed anti-inflammatory profile by significantly upregulating tissue remodeling (GDF15, FGF7, HGF, COL4A3, COL8A2, LAMB2, LAMC2, PDGFRA, and VEGFA) and through the resolution of inflammation (Cpeb4, Socs1, Socs2, Socs3, Dusp1, Tnfaip3, and Gata3) gene cassettes. This study explores the effect of lidocaine on the THP-1 in the M2-like healing phenotype and provides potential applications of lidocaine’s therapeutic effectiveness in dental tissue repair. Full article
Show Figures

Figure 1

14 pages, 4260 KB  
Article
Blending Modification Technology of Insulation Materials for Deep Sea Optoelectronic Composite Cables
by Shuhong Xie, Zhenzhen Chen, Zhiyu Yan, Xingyu Qiu, Ming Hu, Chunfei Gu, Xindong Zhao and Kai Wang
Energies 2024, 17(4), 820; https://doi.org/10.3390/en17040820 - 8 Feb 2024
Cited by 2 | Viewed by 1417
Abstract
The insulation layer of deep-sea optoelectronic composite cables in direct contact with high-pressure and highly corrosive seawater is required for excellent water resistance, environmental stress cracking resistance (ESCR), and the ability to withstand high DC voltage. Although high-density polyethylene (HDPE) displays remarkable water [...] Read more.
The insulation layer of deep-sea optoelectronic composite cables in direct contact with high-pressure and highly corrosive seawater is required for excellent water resistance, environmental stress cracking resistance (ESCR), and the ability to withstand high DC voltage. Although high-density polyethylene (HDPE) displays remarkable water resistance, it lacks sufficient resistance to environmental stress cracking (ESCR). This article is based on a blend modification approach to mixing HDPE with different vinyl copolymer materials (cPE-A and cPE-B). The processing performance and mechanical properties of the materials are evaluated through rheological and mechanical testing. The materials’ durability in working environments is assessed through ESCR tests and water resistance experiments. Ultimately, the direct current electrical performance of the materials is evaluated through tests measuring space charge distribution, direct current resistivity, and direct current breakdown strength. The results indicate that, in the polyethylene blend system, the rheological properties and ESCR characteristics of HDPE/cPE-A composite materials did not show significant improvement. Further incorporation of high melt index linear low-density polyethylene (LLDPE) material not only meets the requirements of extrusion processing but also exhibits a notable enhancement in ESCR performance. Meanwhile, copolymerized polyethylene cPE-B, with a more complex structure, proves effective in toughening HDPE materials. The material’s hardness significantly decreases, and when incorporating cPE-B at a level exceeding 20 phr, the composite materials achieve excellent ESCR performance. In a simulated seawater environment at 50 MPa, the water permeability of all co-modified composite materials remained below 0.16% after 120 h. The spatial charge distribution and direct current resistivity characteristics of the HDPE, cPE-A, and LLDPE composite systems surpassed those of the HDPE/cPE-B materials. However, the HDPE/cPE-B composite system exhibited superior dielectric strength. The application of composite materials in deep-sea electro–optical composite cables is highly promising. Full article
Show Figures

Figure 1

16 pages, 2674 KB  
Article
A Polyelectrolyte Colloidal Brush Based on Cellulose: Perspectives for Future Applications
by Michael A. Smirnov, Vitaly K. Vorobiov, Veronika S. Fedotova, Maria P. Sokolova, Natalya V. Bobrova, Nikolay N. Smirnov and Oleg V. Borisov
Polymers 2023, 15(23), 4526; https://doi.org/10.3390/polym15234526 - 25 Nov 2023
Viewed by 2045
Abstract
This feature article is devoted to the evaluation of different techniques for producing colloidal polyelectrolyte brushes (CPEBs) based on cellulose nanofibers modified with grafted polyacrylates. The paper also reviews the potential applications of these CPEBs in designing electrode materials and as reinforcing additives. [...] Read more.
This feature article is devoted to the evaluation of different techniques for producing colloidal polyelectrolyte brushes (CPEBs) based on cellulose nanofibers modified with grafted polyacrylates. The paper also reviews the potential applications of these CPEBs in designing electrode materials and as reinforcing additives. Additionally, we discuss our own perspectives on investigating composites with CPEBs. Herein, polyacrylic acid (PAA) was grafted onto the surface of cellulose nanofibers (CNFs) employing a “grafting from” approach. The effect of the PAA shell on the morphological structure of a composite with polypyrrole (PPy) was investigated. The performance of as-obtained CNF-PAA/PPy as organic electrode material for supercapacitors was examined. Furthermore, this research highlights the ability of CNF-PAA filler to act as an additional crosslinker forming a physical sub-network due to the hydrogen bond interaction inside chemically crosslinked polyacrylamide (PAAm) hydrogels. The enhancement of the mechanical properties of the material with a concomitant decrease in its swelling ratio compared to a pristine PAAm hydrogel was observed. The findings were compared with the recent theoretical foundation pertaining to other similar materials. Full article
(This article belongs to the Special Issue Polyelectrolytes and Interpolyelectrolyte Complexes)
Show Figures

Figure 1

Back to TopTop