Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = CPFD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1871 KB  
Proceeding Paper
Numerical Simulation for Dual Solid Particle Separation Using Fluidized Bed
by Muhammad Lutfil Amin and Nur Ikhwan
Eng. Proc. 2025, 84(1), 97; https://doi.org/10.3390/engproc2025084097 - 17 Jun 2025
Viewed by 440
Abstract
Particle separation is a common process in various industries, particularly in mineral processing. Therefore, this research aimed to evaluate the performance of separation method using fluidized bed. The evaluation was performed using silica gel particle with diameters of 0.9 and 3 mm, including [...] Read more.
Particle separation is a common process in various industries, particularly in mineral processing. Therefore, this research aimed to evaluate the performance of separation method using fluidized bed. The evaluation was performed using silica gel particle with diameters of 0.9 and 3 mm, including diesel fuel as fuel. This simulation was carried out to obtain the optimum separation of small-sized particle (0.9 mm) based on variations in fluid velocity (0.034, 0.068, and 0.102 m/s), outlet height (0.3, 0.6, and 0.9 m), and time. Optimum separation, defined by maximum separation efficiency (99%) in minimum time for separation, was determined using Computational Particle Fluid Dynamics software (CPFD VR 17.4.0). Separation efficiency of simulation results was validated by experimental research The results showed that, at velocity of 0.034 m/s, big particle could be partially separated at an outlet height of 0.9 m. At velocity of 0.068 m/s, small particle was separated at an outlet height of 0.6 m for 220 s, and big particle at 0.9, with a time longer than 300 s. Based on these results, optimum condition was obtained at velocity of 0.102 m/s, where small and big particle was separated at a time of 100 s, with output heights of 0.9 and 0.6 m, respectively. Full article
Show Figures

Figure 1

8 pages, 456 KB  
Case Report
The HIFEM™ Treatment of Stress and Mixed Urinary Incontinence in Parous Women: A Case Series Study
by Lubomír Mikulášek and Dragana Žarković
Uro 2025, 5(2), 9; https://doi.org/10.3390/uro5020009 - 2 May 2025
Viewed by 926
Abstract
Purpose: Urinary incontinence (UI) significantly impacts the quality of life, necessitating a range of treatments, from behavioral changes to surgical interventions. Electromagnetic muscle stimulation (HIFEM™) therapy presents an innovative, non-invasive approach to strengthening pelvic floor muscles (PFMs). Subjects and Methods: This retrospective, non-interventional [...] Read more.
Purpose: Urinary incontinence (UI) significantly impacts the quality of life, necessitating a range of treatments, from behavioral changes to surgical interventions. Electromagnetic muscle stimulation (HIFEM™) therapy presents an innovative, non-invasive approach to strengthening pelvic floor muscles (PFMs). Subjects and Methods: This retrospective, non-interventional case series study explores the efficacy and safety of HIFEM™ treatment in parous women experiencing stress (SUI) and mixed urinary incontinence (MUI). Nineteen women (mean age 54 ± 16) underwent six HIFEM™ sessions, with symptom progression tracked using the International Consultation on Incontinence Questionnaire-Urinary Incontinence Short Form (ICIQ-UI SF), along with comfort and satisfaction questionnaires. Results: At baseline, the mean ICIQ-UI SF score was 7.9 ± 4.2 points. By the final questionnaire administration, the average score had dropped to 4.7 ± 3.5, reflecting a 50.6% reduction from baseline (p < 0.001). According to ICIQ-UI SF Item 6, 21% of subjects achieved complete continence. Additionally, the percentage of subjects experiencing urine leakage before reaching the toilet declined by 40% after the sixth treatment. Post treatment, the number of subjects who leaked urine while coughing or sneezing decreased by 50%. Conclusions: The treatment has shown high efficacy in lowering the ICIQ-SF scores across the study group, with a significant number of subjects regaining entire continence. Full article
Show Figures

Figure 1

33 pages, 4777 KB  
Review
Biomass-Derived Syngas Chemical Looping Combustion Using Fluidizable Oxygen Carriers: A Review
by Hugo de Lasa and Nicolas Torres Brauer
Processes 2025, 13(4), 1053; https://doi.org/10.3390/pr13041053 - 1 Apr 2025
Cited by 1 | Viewed by 713
Abstract
This critical review evaluates chemical looping combustion using a syngas derived from gasified biomass (BMD Syngas). It is anticipated that establishing such a process will open new opportunities for CO2 sequestration and the use of highly concentrated CO2 in the manufacturing [...] Read more.
This critical review evaluates chemical looping combustion using a syngas derived from gasified biomass (BMD Syngas). It is anticipated that establishing such a process will open new opportunities for CO2 sequestration and the use of highly concentrated CO2 in the manufacturing and synthesis of fuels from entirely renewable feedstocks. This review focuses on the process conducted through using two interconnected fluidized bed units: a nickel oxide reduction unit (an endothermic Fuel Reactor) and a nickel oxidation unit (an exothermic Air Reactor). In this respect, a high-performance OC (HPOC) with Ni on a γ-Al2O3 fluidizable support (20wt% Ni, 1wt% Co, 5wt% La/γ-Al2O3) was developed at the CREC (Chemical Reactor Engineering Centre) of the University of Western Ontario, Canada. The HPOC was studied in a CREC Riser Simulator. The benefits of this mini-fluidized unit are that it can be operated at 2–40 s reaction times, 550–650 °C temperatures, 1.3–2.5 H2/CO ratios, and 0.5–1 biomass/syngas stoichiometric ratios, mimicking the conditions of industrial-scale CLC units. When using a syngas derived from biomass and the HPOC under these operating conditions, 90% CO, 92% H2, and 88% CH4 conversions, together with a 91% CO2 yield, were obtained. These results allowed the prediction of a 1.84–3.0 wt% (gO2 /gOC) oxygen transport capacity, with a 40–70% nickel oxide conversion. The experimental data acquired with the CREC Riser Simulator permitted the development of realistic kinetic models. The resulting kinetics were used in combination with Computational Particle Fluid Dynamics (CPFD) to demonstrate the operability of a large-scale industrial syngas CLC process in a downer fuel unit. In addition, these CPFD simulations were employed to corroborate that high CO2 yields are achievable in 12–15 m length downer fuel units. Full article
(This article belongs to the Special Issue Bioenergy Production from Biomass Feedstocks)
Show Figures

Graphical abstract

17 pages, 3198 KB  
Article
Untargeted Metabolomic Analyses and Antilipidemic Effects of Citrus Physiological Premature Fruit Drop
by Chao Wang, Mingfang Peng, Zhipeng Gao, Qi Han, Fuhua Fu, Gaoyang Li, Donglin Su, Lvhong Huang, Jiajing Guo and Yang Shan
Int. J. Mol. Sci. 2024, 25(3), 1876; https://doi.org/10.3390/ijms25031876 - 4 Feb 2024
Cited by 7 | Viewed by 2332
Abstract
Increasingly globally prevalent obesity and related metabolic disorders have underscored the demand for safe and natural therapeutic approaches, given the limitations of weight loss drugs and surgeries. This study compared the phytochemical composition and antioxidant activity of five different varieties of citrus physiological [...] Read more.
Increasingly globally prevalent obesity and related metabolic disorders have underscored the demand for safe and natural therapeutic approaches, given the limitations of weight loss drugs and surgeries. This study compared the phytochemical composition and antioxidant activity of five different varieties of citrus physiological premature fruit drop (CPFD). Untargeted metabolomics was employed to identify variations in metabolites among different CPFDs, and their antilipidemic effects in vitro were assessed. The results showed that Citrus aurantium L. ‘Daidai’ physiological premature fruit drop (DDPD) and Citrus aurantiumChangshan-huyou’ physiological premature fruit drop (HYPD) exhibited higher levels of phytochemicals and stronger antioxidant activity. There were 97 differential metabolites identified in DDPD and HYPD, including phenylpropanoids, flavonoids, alkaloids, organic acids, terpenes, and lipids. Additionally, DDPD and HYPD demonstrated potential antilipidemic effects against oleic acid (OA)-induced steatosis in HepG2 hepatocytes and 3T3-L1 adipocytes. In conclusion, our findings reveal the outstanding antioxidant activity and antilipidemic effects of CPFD, indicating its potential use as a natural antioxidant and health supplement and promoting the high-value utilization of this resource. Full article
Show Figures

Graphical abstract

17 pages, 8821 KB  
Article
Computational Particle Fluid Dynamics Simulation on Combustion Characteristics of Blended Fuels of Coal, Biomass, and Oil Sludge in a 130 t h−1 Circulating Fluidized Bed Boiler
by Yang Wang, Xiangyu Chen, Liping Xu, Mingwei Ma, Xiaole Huang, Feng Han, Yong Zhou, Chen Du, Yaodong Da and Lei Deng
Energies 2024, 17(1), 149; https://doi.org/10.3390/en17010149 - 27 Dec 2023
Cited by 4 | Viewed by 1581
Abstract
In this study, the co-combustion of coal and biomass, and the tri-combustion of coal, biomass, and oil sludge in a 130 t h−1 circulating fluidized bed (CFB) boiler are investigated via the computational particle fluid dynamics (CPFD) approach. Furthermore, the effect of [...] Read more.
In this study, the co-combustion of coal and biomass, and the tri-combustion of coal, biomass, and oil sludge in a 130 t h−1 circulating fluidized bed (CFB) boiler are investigated via the computational particle fluid dynamics (CPFD) approach. Furthermore, the effect of biomass feeding position is also comprehensively evaluated. The results show that for the co-combustion of coal and biomass, the O2 mole fraction at the furnace outlet rises from 0.0541 to 0.0640 as the biomass blending ratio enhances from 40% to 100%, while the CO2 mole fraction reduces from 0.1357 to 0.1267. The mole fraction of NOx and SO2 at the furnace outlet decreases from 4.5867 × 10−5 to 3.9096 × 10−5 and 2.8253 × 10−4 to 4.6635 × 10−5, respectively. For the tri-combustion of three fuels, the average NOx mole fraction initially grows quickly and then declines gradually, ranging from 4.1173 × 10−5 to 4.2556 × 10−5. The mole fraction of SO2 at the furnace outlet increases from 3.5176 × 10−4 to 4.7043 × 10−4 when the ratio of oil sludge rises from 10% to 20%. The uniformity of temperature and gas components distribution is “new inlet > secondary air inlet > feed inlet”. As for the three inlet positions, the mole fractions of NOx at the furnace outlet are between 3.9096 × 10−5 and 5.1537 × 10−5, while those for SO2 are between 2.5978 × 10−4 and 2.5278 × 10−4. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

25 pages, 4979 KB  
Article
Artificial Intelligence for Hybrid Modeling in Fluid Catalytic Cracking (FCC)
by Jansen Gabriel Acosta-López and Hugo de Lasa
Processes 2024, 12(1), 61; https://doi.org/10.3390/pr12010061 - 27 Dec 2023
Cited by 8 | Viewed by 3361
Abstract
This study reports a novel hybrid model for the prediction of six critical process variables of importance in an industrial-scale FCC (fluid catalytic cracking) riser reactor: vacuum gas oil (VGO) conversion, outlet riser temperature, light cycle oil (LCO), gasoline, light gases, and coke [...] Read more.
This study reports a novel hybrid model for the prediction of six critical process variables of importance in an industrial-scale FCC (fluid catalytic cracking) riser reactor: vacuum gas oil (VGO) conversion, outlet riser temperature, light cycle oil (LCO), gasoline, light gases, and coke yields. The proposed model is developed via the integration of a computational particle-fluid dynamics (CPFD) methodology with artificial intelligence (AI). The adopted methodology solves the first principle model (FPM) equations numerically using the CPFD Barracuda Virtual Reactor 22.0® software. Based on 216 of these CPFD simulations, the performance of an industrial-scale FCC riser reactor unit was assessed using VGO catalytic cracking kinetics developed at CREC-UWO. The dataset obtained with CPFD is employed for the training and testing of a machine learning (ML) algorithm. This algorithm is based on a multiple output feedforward neural network (FNN) selected to allow one to establish correlations between the riser reactor feeding conditions and its outcoming parameters, with a 0.83 averaged regression coefficient and an overall RMSE of 1.93 being obtained. This research underscores the value of integrating CPFD simulations with ML to optimize industrial processes and enhance their predictive accuracy, offering significant advancements in FCC riser reactor unit operations. Full article
(This article belongs to the Special Issue Chemical Process Modelling and Simulation)
Show Figures

Figure 1

16 pages, 1758 KB  
Article
Development of a Microbial-Assisted Process for Enhanced Astaxanthin Recovery from Crab Exoskeleton Waste
by Mohamed N. Abd El-Ghany, Salwa A. Hamdi, Reham M. Elbaz, Abeer S. Aloufi, Rana R. El Sayed, Ghadeer M. Ghonaim and Mohamed G. Farahat
Fermentation 2023, 9(6), 505; https://doi.org/10.3390/fermentation9060505 - 24 May 2023
Cited by 19 | Viewed by 4076
Abstract
Astaxanthin is a xanthophyll carotenoid possessing impressive nutraceutical, antioxidant, and bioactive merits. Traditionally, astaxanthin is extracted from crustacean wastes via solvent extraction methods. However, the rigid structure of shells that comprise complex proteins and chitin challenges the extraction process. This investigation addressed an [...] Read more.
Astaxanthin is a xanthophyll carotenoid possessing impressive nutraceutical, antioxidant, and bioactive merits. Traditionally, astaxanthin is extracted from crustacean wastes via solvent extraction methods. However, the rigid structure of shells that comprise complex proteins and chitin challenges the extraction process. This investigation addressed an efficient microbial-assisted method to facilitate astaxanthin recovery from crab exoskeleton waste utilizing chitinolytic and proteolytic microorganisms. Herein, we evaluated the effect of pretreatment of the exoskeleton waste with a newly isolated probiotic strain, Bacillus amyloliquefaciens CPFD8, showing remarkable protease and chitinase activity and a proteolytic Saccharomyces cerevisiae 006-001 before solvent extraction, using acetone/hexane, on astaxanthin recovery. Furthermore, the antioxidant and anti-inflammatory activities of the recovered astaxanthin were inspected. Results revealed that both strains boosted the astaxanthin yield from the crab (Callinectes sapidus) exoskeleton compared with solvent extraction using acetone/hexane. Under optimum conditions, astaxanthin yield was 217 and 91 µg/g crab exoskeleton in samples treated with B. amyloliquefaciens CPFD8 and S. cerevisiae 006-001, respectively. Interestingly, pretreatment of crab exoskeleton waste with B. amyloliquefaciens CPFD8 yielded more than 6-fold astaxanthin compared with the solvent extraction method that yielded just 35 µg/g. This increase could be attributed to the proteolytic activity of B. amyloliquefaciens CPFD8 that rendered deproteinized shell chitin accessible to chitinase, facilitating the penetration of solvents and the recovery of astaxanthin. The recovered astaxanthin exhibited excellent antioxidant activity in scavenging DPPH or ABTS free radicals with IC50 values of 50.93 and 17.56 µg/mL, respectively. In addition, the recovered astaxanthin showed a remarkable anti-inflammatory impact on LPS-induced murine macrophage RAW264.7 cells and significantly inhibited the production of nitric oxide, TNF-α, and IL-6 compared with the untreated control. These findings suggest the potential use of the developed microbial-assisted method utilizing chitinolytic and proteolytic B. amyloliquefaciens CPFD8 to maximize the recovery of bioactive astaxanthin from crab (C. sapidus) exoskeleton waste. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

15 pages, 5993 KB  
Article
Study on the Effect of Secondary Air Layout on CO Reduction Performance in a 75 t/h Biomass CFB Boiler Burning Wheat Straw
by Jun Zhang, Yanmin Li, Lin Mei, Xiaoliang Yu, Xun Lv, Jinping Wang, Jin Yan and Rongyue Sun
Energies 2023, 16(8), 3312; https://doi.org/10.3390/en16083312 - 7 Apr 2023
Cited by 2 | Viewed by 2280
Abstract
Biomass fuels play an important role in the field of fluidized bed combustion, but due to the diversity and uncertainty of fuels, there are usually some problems of high CO emission that cannot be directly solved by combustion adjustment. In this paper, a [...] Read more.
Biomass fuels play an important role in the field of fluidized bed combustion, but due to the diversity and uncertainty of fuels, there are usually some problems of high CO emission that cannot be directly solved by combustion adjustment. In this paper, a 75 t/h biomass fluidized bed was taken as the research object. It was observed from the field test that the gas incomplete combustion loss reached 12.13% when mono-combustion of wheat straw was conducted, and the CO concentration in the exhaust gas exceeded 30k ppm. Combined with the CPFD numerical simulation, the combustion characteristics and influence of secondary air layout on CO reduction performance were discussed in detail. The results revealed that the gas temperature gradually increased along furnace height under the initial condition, and the maximum temperature was more than 1000 °C at furnace outlet. The air curtain of the secondary air jets was insufficient, and the wheat straw rose rapidly as it entered into the furnace. By arranging adjacent secondary air ports above each fuel-feeding inlet, the residence time of particles in the furnace could be significantly increased, thus, the furnace temperature distribution was more reasonable and the CO emission was reduced by 58.6%. Full article
Show Figures

Figure 1

18 pages, 2534 KB  
Article
Image Processing and Measurement of the Bubble Properties in a Bubbling Fluidized Bed Reactor
by Rajan Jaiswal, Britt. M. E. Moldestad, Marianne S. Eikeland, Henrik K. Nielsen and Rajan Kumar Thapa
Energies 2022, 15(21), 7828; https://doi.org/10.3390/en15217828 - 22 Oct 2022
Cited by 4 | Viewed by 2975
Abstract
The efficiency of a fluidized bed reactor depends on the bed fluid dynamic behavior, which is significantly influenced by the bubble properties. This work investigates the bubble properties of a bubbling fluidized bed reactor using computational particle fluid dynamic (CPFD) simulations and electrical [...] Read more.
The efficiency of a fluidized bed reactor depends on the bed fluid dynamic behavior, which is significantly influenced by the bubble properties. This work investigates the bubble properties of a bubbling fluidized bed reactor using computational particle fluid dynamic (CPFD) simulations and electrical capacitance tomography (ECT) measurements. The two-dimensional images (along the reactor horizontal and vertical planes) of the fluidized bed are obtained from the CPFD simulations at different operating conditions. The CPFD model was developed in a commercial CPFD software Barracuda Virtual Reactor 20.0.1. The bubble behavior and bed fluidization behavior are characterized form the bubble properties: average bubble diameter, bubble rise velocity, and bubble frequency. The bubble properties were determined by processing the extracted images with script developed in MATLAB. The CPFD simulation results are compared with experimental data (obtained from the ECT sensors) and correlations in the literature. The results from the CPFD model and experimental measurement depicted that the average bubble diameter increased with an increase in superficial gas velocities up to 4.2 Umf and decreased with a further increase in gas velocities due to the onset of large bubbles (potential slugging regime). The bubble rise velocity increased as it moved from the lower region to the bed surface. The Fourier transform of the transient solid volume fraction illustrated that multiple bubbles pass the plane with varying amplitude and frequency in the range of 1–6 Hz. Further, the bubble frequency increased with an increase in superficial gas velocity up to 2.5Umf and decreased with a further increase in gas velocity. The CPFD model and method employed in this work can be useful for studying the influence of bubble properties on conversion efficiency of a gasification reactor operating at high temperatures. Full article
(This article belongs to the Topic Sustainable Energy Technology)
Show Figures

Figure 1

18 pages, 3138 KB  
Article
Numerical Simulation of the Operating Conditions for the Reduction of Iron Ore Powder in a Fluidized Bed Based on the CPFD Method
by Zi-wei Wan, Jin-yu Huang, Guo-min Zhu and Qi-yan Xu
Processes 2022, 10(9), 1870; https://doi.org/10.3390/pr10091870 - 16 Sep 2022
Cited by 5 | Viewed by 2493
Abstract
In this work, the computational particle fluid dynamics (CPFD) method is used to simulate the high-pressure visual fluidized bed experimental equipment independently designed and developed by the experimentation of the fluidized reduction process of iron ore powder. A numerical model for reducing iron [...] Read more.
In this work, the computational particle fluid dynamics (CPFD) method is used to simulate the high-pressure visual fluidized bed experimental equipment independently designed and developed by the experimentation of the fluidized reduction process of iron ore powder. A numerical model for reducing iron ore fines in a three-dimensional fluidized bed is established, and the model is verified by combining numerical simulation and experimental testing. Moreover, the influences of different reducing factors on the reduction effect in the process of the fluidized reduction of iron ore fines are simulated in detail. Via the CPFD simulation of the fluidized reduction of iron ore fines, the optimal reduction pressure is found to be 0.2 MPa, and the optimal reducing gas is found to be H2. Moreover, the optimal gas velocity is 0.6 m/s, and the optimal reduction temperature is 923 K. This conclusion is consistent with the experimental measurements, so the simulation results can be used to verify the reliability of the optimal operating conditions. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

24 pages, 5320 KB  
Article
Comparison of Experimental Results from Operating a Novel Fluidized Bed Classifier with CFD Simulations Applying Different Drag Models and Model Validation
by Chameera K. Jayarathna, Michael Balfe, Britt E. Moldestad and Lars-Andre Tokheim
Processes 2022, 10(9), 1855; https://doi.org/10.3390/pr10091855 - 14 Sep 2022
Cited by 4 | Viewed by 2656
Abstract
A cold-flow lab-scale cross-flow fluidized bed classifier was simulated using the CFD software Barracuda VR®. The purpose of the study was to identify the most suitable drag model and make the model adjustments that provide the best representation of the flow [...] Read more.
A cold-flow lab-scale cross-flow fluidized bed classifier was simulated using the CFD software Barracuda VR®. The purpose of the study was to identify the most suitable drag model and make the model adjustments that provide the best representation of the flow situation in the classifier when comparing the results with the experimental data. Two particle types were used in the simulations and in the experiments: zirconia (median diameter 69 µm, skeletal density 3830 kg/m3) and steel (290 µm, 7790 kg/m3). Ten different cases, with different solids loading values, were investigated: three with pure zirconia particles, three with pure steel particles, and four with a mixture of zirconia (28%) and steel (72%). Several different drag models were tried out in the simulations. However, none of the available models were able to predict the classification efficiency observed in experiments with their default settings. Although most of the drag models correctly predicted the inversely proportional behavior of the classification efficiency vs. solids loading, the classification efficiency was overpredicted. It was observed that a combined WenYu/Ergun drag model gave a wide range of accuracy, by being able to capture the behavior of both dense and dilute particle systems. Even though the predictions of the classification efficiency for steel particles were acceptable, a larger deviation was observed with Geldart A zirconia particles. CFD simulations with the WenYu and Ergun combined drag model were used for further validation against the experimental observations. In this case, previously published experimental data for fluidization of pure Zirconia particles were used. The fluidization of zirconia was modelled in Barracuda VR® with adjustment of the combined WenYu/Ergun drag model parameter (k1), to obtain a suitable validation. Furthermore, the effect of adding the blended acceleration model (BAM) for the fluidization simulations is discussed. It was observed that the fixed bed pressure drop was very accurate compared to the experimental observation, but the pressure drop after the fluidization was slightly overpredicted. Full article
(This article belongs to the Special Issue Multiphase Flows and Particle Technology)
Show Figures

Figure 1

15 pages, 5430 KB  
Article
Airflow Velocity Designing for Air Classifier of Manufactured Sand Based on CPFD Method
by Shuhua Peng, Yu Wu, Jing Tao and Jianbin Chen
Minerals 2022, 12(1), 90; https://doi.org/10.3390/min12010090 - 13 Jan 2022
Cited by 5 | Viewed by 3451
Abstract
Airflow classification is the key technology for the dry separation of manufactured sand. To solve the problem of low separation accuracy and poor gradation grade, the classification process of manufactured sand under different inlet and outlet airflow velocities changes in the multi-air inlet [...] Read more.
Airflow classification is the key technology for the dry separation of manufactured sand. To solve the problem of low separation accuracy and poor gradation grade, the classification process of manufactured sand under different inlet and outlet airflow velocities changes in the multi-air inlet classifier is simulated by using Barracuda based on Computational Particle Fluid Dynamics (CPFD) method. The influence of various airflow velocity in air inlets and outlet on the sand classification is analyzed. The optimal combination of airflow velocity that meets the design goals is obtained. The results show that the airflow velocity and location of the air inlet and outlet have a significant impact on medium-grained (0.15~1.18 mm) and fine-grained (0.075~0.3 mm) sand. Adjusting the airflow velocity at air inlet 2 and air outlet can most effectively change the overall sand separation effect, while 41 m/s (inlet 2) and 6 m/s (outlet) would be the best velocity combination. Full article
(This article belongs to the Topic Advances in Separation and Purification Techniques)
Show Figures

Figure 1

18 pages, 3065 KB  
Article
Chemical Composition, Antioxidant and Cytoprotective Potentials of Carica papaya Leaf Extracts: A Comparison of Supercritical Fluid and Conventional Extraction Methods
by Boon-Keat Khor, Nelson Jeng-Yeou Chear, Juzaili Azizi and Kooi-Yeong Khaw
Molecules 2021, 26(5), 1489; https://doi.org/10.3390/molecules26051489 - 9 Mar 2021
Cited by 29 | Viewed by 8278
Abstract
The leaves of Carica papaya (CP) are rich in natural antioxidants. Carica papaya has traditionally been used to treat various ailments, including skin diseases. This study aims to decipher the antioxidant effects and phytochemical content of different CP leaf extracts (CPEs) obtained using [...] Read more.
The leaves of Carica papaya (CP) are rich in natural antioxidants. Carica papaya has traditionally been used to treat various ailments, including skin diseases. This study aims to decipher the antioxidant effects and phytochemical content of different CP leaf extracts (CPEs) obtained using supercritical carbon dioxide (scCO2) and conventional extraction methods. The antioxidant activities of CPEs were evaluated by cell-free (1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric-reduced antioxidative power (FRAP)) and cell-based (H2O2) assay. Both C. papaya leaf scCO2 extract with 5% ethanol (CPSCE) and C. papaya leaf scCO2 extract (CPSC) exhibited stronger DPPH radical scavenging activity than conventional extracts. In the FRAP assay, two hydrophilic extracts (C. papaya leaf ethanol extract (CPEE) and C. papaya freeze-dried leaf juice (CPFD)) showed relatively stronger reducing power compared to lipophilic extracts. Cell-based assays showed that CPFD significantly protected skin fibroblasts from H2O2-induced oxidative stress in both pre-and post-treatment. CPEE protected skin fibroblasts from oxidative stress in a dose-dependent manner while CPSCE significantly triggered the fibroblast recovery after treatment with H2O2. GC-MS analysis indicated that CPSCE had the highest α-tocopherol and squalene contents. By contrast, both CP hydrophilic extracts (CPEE and CPFD) had a higher total phenolic content (TPC) and rutin content than the lipophilic extracts. Overall, CPEs extracted using green and conventional extraction methods showed antioxidative potential in both cell-based and cell-free assays due to their lipophilic and hydrophilic antioxidants, respectively. Full article
(This article belongs to the Special Issue Processing of Materials by Supercritical Fluids)
Show Figures

Graphical abstract

24 pages, 15329 KB  
Article
Study on Dynamic Characteristics of Residual Char of CFB Boiler Based on CPFD Method
by Xin Shen, Li Jia, Yanlin Wang, Baihe Guo, Haodong Fan, Xiaolei Qiao, Man Zhang and Yan Jin
Energies 2020, 13(22), 5883; https://doi.org/10.3390/en13225883 - 11 Nov 2020
Cited by 9 | Viewed by 2486
Abstract
When the load of Circulating Fluidized Bed (CFB) boiler changes dynamically, the accumulation and consumption of residual char causes a large inertia and hysteresis in the boiler combustion system. Therefore, accurate estimation of the residual char in the boiler is of great significance [...] Read more.
When the load of Circulating Fluidized Bed (CFB) boiler changes dynamically, the accumulation and consumption of residual char causes a large inertia and hysteresis in the boiler combustion system. Therefore, accurate estimation of the residual char in the boiler is of great significance to the control system and improve the combustion efficiency. Based on the Computational Particles Fluid Dynamics (CPFD) method, a numerical simulation of the variable load process of CFB boiler was carried out, and the dynamic changes of the residual char inventory were analyzed by combining the coal feed, ash discharge, and furnace calorific value. The results showed that after CFB boiler reached stable operation, the residual char fluctuated from 11,000 kg to 16,000 kg, accounting for about 3.7% of the total bed material, and the residual char was in a dynamic balance. During the load-up phase, the average residual char was 17,500 kg, and during the load-down phase, the average residual char was 15,000 kg. In the process of load dynamic change, reasonable residual char stock can ensure the boiler load from one steady state to another steady state rapid transition. Full article
Show Figures

Graphical abstract

20 pages, 17964 KB  
Article
FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity
by David Wünsch, Verena Sulzgruber, Markus Haider and Heimo Walter
Energies 2020, 13(17), 4298; https://doi.org/10.3390/en13174298 - 19 Aug 2020
Cited by 6 | Viewed by 2512
Abstract
Renewables should become more continuously available, reliable and cost-efficient to manage the challenges caused by the energy transition. Thus, analytic and numerical investigations for the layout of a pilot plant of a concept called Fluidisation-Based Particle Thermal Energy Storage (FP-TES)—a highly flexible, short- [...] Read more.
Renewables should become more continuously available, reliable and cost-efficient to manage the challenges caused by the energy transition. Thus, analytic and numerical investigations for the layout of a pilot plant of a concept called Fluidisation-Based Particle Thermal Energy Storage (FP-TES)—a highly flexible, short- to long-term fluidised bed regenerative heat storage utilising a pressure gradient for hot powder transport, and thus enabling minimal losses, high energy densities, compact construction and countercurrent heat exchange—are presented in this article. Such devices in decentralised set-up—being included in energy- and especially heat-intensive industries, storing latent or sensible heat or power-to-heat to minimise losses and compensate fluctuations—can help to achieve the above-stated goals. Part I of this article is focused on geometrical and fluidic design via numerical investigations utilising Computational Particle Fluid Dynamics (CPFD). In the process a controlled transient simulation method called co-simulation of FP-TES is developed forming the basis for test bench design and execution of further co-simulation. Within this process an advanced design of rotational symmetric hoppers with additional baffles in the heat exchanger (HEX) and internal pipes to stabilise the particle mass flow is developed. Moreover, a contribution bulk heat conductivity is presented to demonstrate low thermal losses and limited needs for thermal insulation by taking into account the thermal insulation of the outer layer of the hopper. Full article
Show Figures

Graphical abstract

Back to TopTop