Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = CPO panel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2995 KB  
Article
Comparison of Multiple Carbapenemase Tests Based on an Unbiased Colony-Selection Method
by Hsin-Yao Wang, Yi-Ju Tseng, Wan-Ying Lin, Yu-Chiang Wang, Ting-Wei Lin, Jen-Fu Hsu, Marie Yung-Chen Wu, Chiu-Hsiang Wu, Sriram Kalpana and Jang-Jih Lu
Biomedicines 2024, 12(9), 2134; https://doi.org/10.3390/biomedicines12092134 - 20 Sep 2024
Viewed by 1916
Abstract
Carbapenemase-producing organisms (CPOs) present a major threat to public health, demanding precise diagnostic techniques for their detection. Discrepancies among the CPO tests have raised concerns, partly due to limitations in detecting bacterial diversity within host specimens. We explored the impact of an unbiased [...] Read more.
Carbapenemase-producing organisms (CPOs) present a major threat to public health, demanding precise diagnostic techniques for their detection. Discrepancies among the CPO tests have raised concerns, partly due to limitations in detecting bacterial diversity within host specimens. We explored the impact of an unbiased colony selection on carbapenemase testing and assessed its relevance to various tests. Using the FirstAll method for unbiased colony selection to reduce bias, we compared the results from different methods, namely the modified carbapenem inactivation method/EDTA-modified carbapenem inactivation method (mCIM/eCIM), the Carba5, the CPO panel, and the multiplex PCR (MPCR). We compared the FirstAll method to the conventional colony selection for MPCR with seven CPO species. In addition, we evaluated the test performance on seven CPO species using MPCR as a reference and the FirstAll method as the colony-selection method. The results revealed that the selections from the FirstAll method have improved rates of carbapenemase detection, in comparison to approximately 11.2% of the CPO isolates that were noted to be false negatives in the conventional colony-selection methods. Both the Carba5 test and the CPO panel showed suboptimal performance (sensitivity/specificity: Carba5 74.6%/89.5%, CPO panel 77.2%/74.4%) in comparison to the FirstAll method. The Carba5 test provided specific carbapenemase class assignments, but the CPO panel failed in 18.7% of the cases. The Carba5 test and the CPO panel results correlated well with ceftazidime–avibactam minimal inhibitory concentrations (MICs). The concordance for Class A/D with MICs was 94.7% for Carba5 and 92.7% for the CPO panel; whereas for Class B, it was 86.5% for Carba5 and 75.9% for the CPO panel. In conclusion, FirstAll, as the unbiased colony-selection method, was shown to impact carbapenemase testing. With FirstAll, the diagnostic performance of both the Carba5 and the CPO panel was found to be lower. Furthermore, the utilization of ceftazidime–avibactam guided by either the CPO panel or Carba5 was appropriate. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

12 pages, 269 KB  
Article
Nutritional, Utility, and Sensory Quality and Safety of Sunflower Oil on the Central European Market
by Kristina Nakonechna, Vojtech Ilko, Markéta Berčíková, Vladimír Vietoris, Zdeňka Panovská and Marek Doležal
Agriculture 2024, 14(4), 536; https://doi.org/10.3390/agriculture14040536 - 28 Mar 2024
Cited by 12 | Viewed by 8822
Abstract
In the quality monitoring of 18 sunflower oil samples from the EU market, 14 were refined and 4 were cold-pressed. They demonstrated high quality of technological processing with low values of trans-unsaturated fatty acids, acid value, and peroxide value and also met [...] Read more.
In the quality monitoring of 18 sunflower oil samples from the EU market, 14 were refined and 4 were cold-pressed. They demonstrated high quality of technological processing with low values of trans-unsaturated fatty acids, acid value, and peroxide value and also met the limits set by legislation in the content of process contaminants 3-monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters. Measurements of oxidative stability showed a difference in utility value. The average induction period of the oils from the traditional varieties was 2.6 h, predisposing them to cold cooking or short-term frying, while the 11.8 h of the four high oleic sunflower oils (HOSO) indicates the possibility of long-term heat stress. The nutritional benefit is the average vitamin E content of 663 mg/kg oil. The overall sensory quality of the samples was evaluated by a 12-member panel of trained assessors. On the seven-point category scale, the oils were of good to exceptional quality. The cold-pressed oils (CPOs) differed in having, on average, lower trans-unsaturated fatty acid content, process contaminants at unmeasurable levels, and, on average, higher vitamin E concentrations. The specific organoleptic properties of the CPOs were characterized by a pleasant nutty and sunflower seed flavor. Full article
(This article belongs to the Special Issue Feature Papers in Agricultural Product Quality and Safety)
11 pages, 658 KB  
Article
Evaluation of the BD Phoenix Carbapenemase-Producing Organism Panels for the Detection of Carbapenemase Producers in Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa
by Yoselin Paola Correa-León, José Miguel Pérez-Hernández, Bernardo Alfonso Martinez-Guerra, Eduardo Rodríguez-Noriega, Juan Pablo Mena-Ramírez, Eduardo López-Gutiérrez, Luis Esaú López-Jácome, Víctor Antonio Monroy-Colin, Christian Daniel Mireles-Davalos, Cecilia Padilla-Ibarra, María Angelina Quevedo-Ramos, José Manuel Feliciano-Guzmán, Talía Pérez-Vicelis, María del Consuelo Velázquez-Acosta, Melissa Hernández-Durán and Elvira Garza-González
Diagnostics 2023, 13(22), 3417; https://doi.org/10.3390/diagnostics13223417 - 9 Nov 2023
Cited by 4 | Viewed by 2367
Abstract
The classification of carbapenemases can help guide therapy. The present study evaluated the performance of the CPO detection test, included in the BD Phoenix NMIC-501 panel for the detection and classification of carbapenemases on the representative molecularly characterized strains collection from Mexico. [...] Read more.
The classification of carbapenemases can help guide therapy. The present study evaluated the performance of the CPO detection test, included in the BD Phoenix NMIC-501 panel for the detection and classification of carbapenemases on the representative molecularly characterized strains collection from Mexico. Carbapenem non-susceptible isolates collected in Mexico were included. The clinical isolates (n = 484) comprised Klebsiella pneumoniae (n = 154), Escherichia coli (n = 150), and P. aeruginosa (n = 180). BD Phoenix CPO NMIC-504 and NMIC-501 panels were used for the identification of species, antimicrobial susceptibility tests, and detection of CPOs. For the detection of carbapenemase-encoding genes, E. coli and K. pneumoniae were evaluated using PCR assays for blaNDM-1, blaKPC, blaVIM, blaIMP, and blaOXA-48-like. For P. aeruginosa, blaVIM, blaIMP, and blaGES were detected using PCR. Regarding E. coli, the CPO panels had a sensitivity of 70% and specificity of 83.33% for the detection of a class B carbapenemase (blaNDM in the molecular test). Regarding K. pneumoniae, the panels had a sensitivity of 75% and specificity of 100% for the detection of a class A carbapenemase (blaKPC in the molecular test). The Phoenix NMIC-501 panels are reliable for detecting class B carbapenemases in E. coli. The carbapenemase classification in K. pneumoniae for class A carbapenemases has a high specificity and PPV; thus, a positive result is of high value. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

10 pages, 447 KB  
Article
Evaluation of the BD Phoenix CPO Detect Panel for Detection and Classification of Carbapenemase Producing Enterobacterales
by Harshad Lade, Seri Jeong, Kibum Jeon, Han-Sung Kim, Hyun Soo Kim, Wonkeun Song and Jae-Seok Kim
Antibiotics 2023, 12(7), 1215; https://doi.org/10.3390/antibiotics12071215 - 21 Jul 2023
Cited by 3 | Viewed by 2604
Abstract
Carbapenem-resistant Enterobacterales (CRE) pose a serious public health threat due to their resistance to most antibiotics. Rapid and correct detection of carbapenemase producing organisms (CPOs) can help inform clinician decision making on antibiotic therapy. The BD Phoenix™ CPO detect panel, as part of [...] Read more.
Carbapenem-resistant Enterobacterales (CRE) pose a serious public health threat due to their resistance to most antibiotics. Rapid and correct detection of carbapenemase producing organisms (CPOs) can help inform clinician decision making on antibiotic therapy. The BD Phoenix™ CPO detect panel, as part of antimicrobial susceptibility testing (AST), detects carbapenemase activity (P/N) and categorizes CPOs according to Ambler classes. We evaluated a CPO detect panel against 109 carbapenemase producing Enterobacterales (CPE) clinical isolates from Korea. The panel correctly detected carbapenemases production in 98.2% (n = 107/109) isolates and identified 78.8% (n = 26/33) class A, 65.9% (n = 29/44) class B, and 56.3% (n = 18/32) class D carbapenemase producers as harboring their corresponding Ambler classes. Specifically, the panel correctly classified 81.3% (n = 13/16) of K. pneumoniae KPC isolates to class A. However, the panel failed to classify 40.0% (n = 4/10) IMP and 63.6% (n = 7/11) VIM isolates to class B. Despite 27.5% (n = 30/109) CPE not being assigned Ambler classes, all of them tested carbapenemase positive. Our results demonstrate that the CPO detect panel is a sensitive test for detecting CPE and classifying KPC as class A, helping with antibiotics selection, but one-third of CPE remained unclassified for Ambler classes. Full article
Show Figures

Figure 1

10 pages, 1872 KB  
Article
Conventional and Real-Time PCR Targeting blaOXA Genes as Reliable Methods for a Rapid Detection of Carbapenem-Resistant Acinetobacter baumannii Clinical Strains
by Dagmara Depka, Agnieszka Mikucka, Tomasz Bogiel, Mateusz Rzepka, Patryk Zawadka and Eugenia Gospodarek-Komkowska
Antibiotics 2022, 11(4), 455; https://doi.org/10.3390/antibiotics11040455 - 28 Mar 2022
Cited by 7 | Viewed by 4105
Abstract
Multidrug-resistant Acinetobacter baumannii, particularly those producing carbapenemases, are spread worldwide. A reliable detection of carbapenemases is essential to choose the appropriate antimicrobial therapy and, consequently, prevent the dissemination of carbapenem-resistant strains. The aim of this study is to examine the molecular basis [...] Read more.
Multidrug-resistant Acinetobacter baumannii, particularly those producing carbapenemases, are spread worldwide. A reliable detection of carbapenemases is essential to choose the appropriate antimicrobial therapy and, consequently, prevent the dissemination of carbapenem-resistant strains. The aim of this study is to examine the molecular basis of the carbapenem resistance mechanism and estimation of conventional PCR and real-time PCR usefulness for the detection of oxacillinases when compared to phenotypic carbapenemases detection. The following methods were evaluated: the CarbAcineto NP test, Carbapenem Inactivation Method, CPO panels of semiautomated antimicrobial susceptibility testing method on the BD Phoenix™ M50 system, conventional Polymerase Chain Reaction and real-time PCR. The eazyplex® SuperBug complete A assay was used as the reference method. Among the tested strains, 39 (67.2%) carried the blaOXA-40 gene, while the blaOXA-23 gene was noted amongst 19 (32.8%) isolates. The diagnostic sensitivities of the studied assays were as follows: CarbAcineto NP—65.5%; CIM—100%; CPO—100%; conventional PCR—100%; real-time PCR—100%. Full article
Show Figures

Figure 1

9 pages, 247 KB  
Article
Performance Evaluation of Diagnostic Assays for Detection and Classification of Carbapenemase-Producing Organisms
by Anru Zhang, Xiaojuan Wang, Xinyue Liang, Chaoe Zhou, Qi Wang, Jiangang Zhang and Hui Wang
Antibiotics 2021, 10(12), 1457; https://doi.org/10.3390/antibiotics10121457 - 26 Nov 2021
Cited by 10 | Viewed by 3055
Abstract
Rapid and accurate detection can help optimize patient treatment and improve infection control against nosocomial carbapenemase-producing organisms (CPO). In this study, a total of 217 routine clinical isolates (Enterobacterales and A. baumannii), including 178 CPOs and 39 non-CPOs, were tested to [...] Read more.
Rapid and accurate detection can help optimize patient treatment and improve infection control against nosocomial carbapenemase-producing organisms (CPO). In this study, a total of 217 routine clinical isolates (Enterobacterales and A. baumannii), including 178 CPOs and 39 non-CPOs, were tested to evaluate the performance of six phenotypic carbapenemase detection and classification assays, i.e., BD Phoenix CPO detect panel, Rapidec Carba-NP, O.K.N detection kit, and three carbapenem inactivation methods (CIMs; mCIM, eCIM, sCIM). The overall detection sensitivity and specificity were 98.78% (95.21–99.79%) and 79.49% (63.06–90.13%), respectively, for the BD phoenix CPO P/N test; 91.93% (86.30–95.45%) and 100% (88.83–100%), respectively, for the Rapidec Carba-NP; 98.06% (94.00–99.50%) and 97.44% (84.92–99.87%), respectively, for mCIM; and 96.89% (92.52–98.85%) and 94.87% (81.37–99.11%), respectively, for sCIM. The classification sensitivity and specificity for the BD phoenix CPO Ambler test, the O.K.N detection kit, and the mCIM and eCIM were 56.71% (48.75–64.34%) and 94.87% (81.37–99.11%), 99.28% (95.43–99.96%) and 100% (88.83–100%), and 92.90% (87.35–96.23%) and 97.44% (84.92–99.87%), respectively. All detection assays were reliable in detecting carbapenemase. However, the Rapidec Carba-NP and mCIM were insufficient in detecting OXA-48-like enzymes. The BD phoenix CPO detect panel had a strong ability to detect carbapenemase but failed to classify 48/59 (81.36%) KPC, 8/52 (15.38%) NDM, 8/22 (36.36%) OXA-23-like, and 6/11 (54.55%) dual enzymes. The O.K.N detection kit accurately detected and differentiated KPC, NDM, and OXA-48-like enzymes existing alone or in combination. The results of this study will support reliable laboratory work tools and promote therapeutic and infection control decisions. Full article
Back to TopTop