Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = CaAlg hydrogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6786 KB  
Article
Alginate/PVA Hydrogel Incorporating HA-Liposomes and Aronia-Derived Silver Nanoparticles for Advanced Wound Management
by Anca-Elena Țăin (Anastasiu), Alexandra Cătălina Bîrcă, Ana Maria Isabela Naulea, Adelina-Gabriela Niculescu, Alexandru Mihai Grumezescu and George-Alexandru Croitoru
Int. J. Mol. Sci. 2025, 26(18), 9203; https://doi.org/10.3390/ijms26189203 - 20 Sep 2025
Viewed by 170
Abstract
Chronic wounds remain a persistent clinical challenge due to delayed healing, recurrent infections, and limited effectiveness of conventional dressings. To address these unmet needs, we designed a multifunctional hydrogel system based on poly(vinyl alcohol) (PVA) and alginate (ALG), incorporating hyaluronic acid (HA)-loaded dipalmitoylphosphatidylcholine [...] Read more.
Chronic wounds remain a persistent clinical challenge due to delayed healing, recurrent infections, and limited effectiveness of conventional dressings. To address these unmet needs, we designed a multifunctional hydrogel system based on poly(vinyl alcohol) (PVA) and alginate (ALG), incorporating hyaluronic acid (HA)-loaded dipalmitoylphosphatidylcholine (DPPC) liposomes for regenerative stimulation and Aronia-mediated silver nanoparticles (Ag_Aro) for antimicrobial protection. Physicochemical analyses (DLS, SEM, FTIR) confirmed the successful assembly of the system and demonstrated distinct particle sizes, pore morphologies, and structural interactions. Swelling and degradation studies revealed favorable hydration capacity and stability under physiologically relevant conditions. In vitro assays with HaCaT keratinocytes indicated excellent biocompatibility, with HA-liposomes enhancing cell viability to ~190% and Ag_Aro showing minimal cytotoxicity, likely due to polyphenolic surface capping. The combined formulation achieved a balanced swelling profile, controlled degradation, and the highest biocompatibility (~195% viability), underscoring the synergistic benefits of the dual-agent design. This study introduces, to our knowledge, the first PVA–ALG bilayer hydrogel integrating HA-liposomes and phytosynthesized AgNPs, offering a promising platform for advanced wound management. Further in vivo studies are warranted to validate its therapeutic performance. Full article
Show Figures

Figure 1

21 pages, 5038 KB  
Article
Fabrication and Anti-Swelling Properties of Gelatin/Sodium Alginate–Carboxymethyl Chitosan-Based Cationic Coordination Hydrogels
by Haixin Zhao, Jinlong Li, Shuang Cong, Hongman Hou, Gongliang Zhang and Jingran Bi
Foods 2025, 14(18), 3149; https://doi.org/10.3390/foods14183149 - 9 Sep 2025
Viewed by 552
Abstract
In this study, the effect of cationic participation on the swelling behavior and pH-responsive release characteristics of polyelectrolyte hydrogel based on gelatin (Gel), sodium alginate (Alg), and carboxymethyl chitosan (CMCS) was explored. The shell–core morphology of the cationic coordination hydrogels was prepared by [...] Read more.
In this study, the effect of cationic participation on the swelling behavior and pH-responsive release characteristics of polyelectrolyte hydrogel based on gelatin (Gel), sodium alginate (Alg), and carboxymethyl chitosan (CMCS) was explored. The shell–core morphology of the cationic coordination hydrogels was prepared by introducing Na+, Ca2+, and Fe3+ into the crosslinking system, which significantly altered the inherent pH-responsive swelling properties of Gel/Alg-CMCS hydrogel. The modified hydrogel demonstrated a release resistance of carvacrol (CAR) under acidic conditions while facilitating rapid release under neutral conditions. Notably, the CAR release profile was substantially modified by the distinct anti-swelling properties of cationic coordination hydrogels. In particular, Gel/Alg-CMCS-Fe3+ hydrogel exhibited high accumulative release of 58.34% at pH 1.0 while maintaining a minimal release degree of merely 7% in weakly acidic and neutral environments. These intriguing findings provide valuable insights into intelligent active delivery for future applications. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

25 pages, 4527 KB  
Article
New Antimicrobial Gels Based on Clove Essential Oil–Cyclodextrin Complex and Plant Extracts for Topical Use
by Alina Ionela Stancu, Lia Mara Dițu, Eliza Oprea, Anton Ficai, Irinel Adriana Badea, Mihaela Buleandră, Oana Brîncoveanu, Anca Gabriela Mirea, Sorina Nicoleta Voicu, Adina Magdalena Musuc, Ludmila Aricov, Daniela Cristina Culita and Magdalena Mititelu
Gels 2025, 11(8), 653; https://doi.org/10.3390/gels11080653 - 18 Aug 2025
Viewed by 686
Abstract
This study aimed to develop and characterise novel hydrogels based on natural bioactive compounds for topical antimicrobial applications. Four gel systems were formulated using different polymers, namely polyacrylic acid (Carbopol 940, CBP-G), chitosan with high and medium molecular weights (CTH-G and CTM-G), and [...] Read more.
This study aimed to develop and characterise novel hydrogels based on natural bioactive compounds for topical antimicrobial applications. Four gel systems were formulated using different polymers, namely polyacrylic acid (Carbopol 940, CBP-G), chitosan with high and medium molecular weights (CTH-G and CTM-G), and sodium alginate (ALG-G), incorporating tinctures of Verbena officinalis and Aloysia triphylla, Laurus nobilis essential oil, and a β-cyclodextrin–clove essential oil complex. All gels displayed a homogeneous macroscopic appearance and maintained stability for over 90 days. Rheological studies demonstrated gel-like behaviour for CBP-G and ALG-G, with well-defined linear viscoelastic regions and distinct yield points, while CTM-G exhibited viscoelastic liquid-like properties. SEM imaging confirmed uniform and continuous matrices, supporting controlled active compound distribution. Thermogravimetric analysis (TG-DTA) revealed a two-step degradation profile for all gels, characterised by high thermal stability up to 230 °C and near-total decomposition by 500 °C. FTIR spectra confirmed the incorporation of bioactive compounds and products and highlighted varying interaction strengths with polymer matrices, which were stronger in CBP-G and CTH-G. Antimicrobial evaluation demonstrated that chitosan-based gels exhibited the most potent inhibitory and antibiofilm effects (MIC = 2.34 mg/mL) and a cytocompatibility assessment on HaCaT keratinocytes showed enhanced cell viability for chitosan gels and dose-dependent cytotoxicity for alginate formulations at high concentrations. Overall, chitosan-based gels displayed the most favourable combination of stability, antimicrobial activity, and biocompatibility, suggesting their potential for topical pharmaceutical use. Full article
Show Figures

Figure 1

19 pages, 2575 KB  
Article
Formulation-Dependent Extrudability of Highly Filled Alginate System for Vaginal Drug Delivery
by Arianna Chiappa, Alice Fusari, Marco Uboldi, Fabiana Cavarzan, Paola Petrini, Lucia Zema, Alice Melocchi and Francesco Briatico Vangosa
Gels 2025, 11(7), 510; https://doi.org/10.3390/gels11070510 - 1 Jul 2025
Viewed by 519
Abstract
The incorporation of solid particles as a filler to a hydrogel is a strategy to modulate its properties for specific applications, or even to introduce new functionalities to the hydrogel itself. The efficacy of such a modification depends on the filler content and [...] Read more.
The incorporation of solid particles as a filler to a hydrogel is a strategy to modulate its properties for specific applications, or even to introduce new functionalities to the hydrogel itself. The efficacy of such a modification depends on the filler content and its interaction with the hydrogel matrix. In drug delivery applications, solid particles can be added to hydrogels to improve drug loading capacity, enable the inclusion of poorly soluble drugs, and modulate release kinetics. This work focuses on the case of alginate (ALG)-based hydrogels, obtained following an internal gelation procedure using CaCO3 as the Ca2+ source and containing a high solid volume fraction (up to 50%) of metronidazole (MTZ), a drug with low water solubility, as a potential extrusion-based drug delivery system. The impact of the hydrogel precursor composition (ALG and MTZ content) on the rheological behavior of the filled hydrogel and precursor suspension were investigated, as well as the hydrogel stability and MTZ dissolution. In the absence of solid MTZ, the precursor solutions showed a slightly shear thinning behavior, more accentuated with the increase in ALG concentration. The addition of drugs exceeding the saturation concentration in the precursor suspension resulted in a substantial increase (about one order of magnitude) in the low-shear viscosity and, for the highest MTZ loadings, a yield stress. Despite the significant changes, precursor formulations retained their extrudability, as confirmed by both numerical estimates and experimental validation. MTZ particles did not affect the crosslinking of the precursors to form the hydrogel, but they did control its viscoelastic behavior. In unfilled hydrogels, the ALG concentration controls stability (from 70 h for the lowest concentration to 650 h for the highest) upon immersion in acetate buffer at pH 4.5, determining the MTZ release/hydrogel dissolution behavior. The correlations between composition and material properties offer a basis for building predictive models for fine-tuning their composition of highly filled hydrogel systems. Full article
(This article belongs to the Special Issue Recent Research on Alginate Hydrogels in Bioengineering Applications)
Show Figures

Figure 1

21 pages, 3960 KB  
Article
The Effect of Alginate/Hyaluronic Acid Proportion on Semi-Interpenetrating Hydrogel Properties for Articular Cartilage Tissue Engineering
by Izar Gorroñogoitia, Sheila Olza, Ana Alonso-Varona and Ane Miren Zaldua
Polymers 2025, 17(4), 528; https://doi.org/10.3390/polym17040528 - 18 Feb 2025
Cited by 2 | Viewed by 1719
Abstract
One of the emergent regenerative treatments for the restoration of the articular cartilage is tissue engineering (TE), in which hydrogels can functionally imitate the extracellular matrix (ECM) of the native tissue and create an optimal microenvironment for the restoration of the defective tissue. [...] Read more.
One of the emergent regenerative treatments for the restoration of the articular cartilage is tissue engineering (TE), in which hydrogels can functionally imitate the extracellular matrix (ECM) of the native tissue and create an optimal microenvironment for the restoration of the defective tissue. Hyaluronic acid (HA) is known for its potential in the field of TE as a regenerative material for many tissues. It is one of the major components of the articular cartilage ECM contributing to cell proliferation and migration. HA is the only non-sulphated glycosaminoglycan (GAG). However, herein, we use a HA presenting a high amount of sulphated glycosaminoglycans (sGAGs), altering the intrinsic properties of the material particularly in terms of biological response. Alginate (Alg) is another polysaccharide widely used in TE that allows stiff and stable hydrogels to be obtained when crosslinked with CaCl2. Taking the benefit of the favourable characteristics of each biomaterial, semi-interpenetrating (semi-IPN) hydrogels had been developed by the combination of both materials, in which alginate is gelled, and HA remains uncrosslinked within the hydrogel. Varying the concentration of alginate and HA, the final rheological, viscoelastic, and mechanical properties of the hydrogel can be tailored, always seeking a trade-off between biological and physico-mechanical properties. All developed semi-IPN hydrogels have great potential for biomedical applications. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Graphical abstract

19 pages, 6572 KB  
Article
Calcium Alginate/Laponite Nanocomposite Hydrogels: Synthesis, Swelling, and Sorption Properties
by Yurii Samchenko, Konrad Terpilowski, Kateryna Samchenko, Lyudmila Golovkova, Olena Oranska and Olena Goncharuk
Coatings 2024, 14(12), 1519; https://doi.org/10.3390/coatings14121519 - 2 Dec 2024
Cited by 3 | Viewed by 1865
Abstract
This study presents the synthesis, characterization, and evaluation of hybrid hydrogels based on calcium alginate (Ca-Alg) and synthetic nanoclay LaponiteRD (Lap), with an emphasis on their swelling and sorption properties. The motivation behind the development of these hybrid hydrogels stems from the need [...] Read more.
This study presents the synthesis, characterization, and evaluation of hybrid hydrogels based on calcium alginate (Ca-Alg) and synthetic nanoclay LaponiteRD (Lap), with an emphasis on their swelling and sorption properties. The motivation behind the development of these hybrid hydrogels stems from the need for sustainable materials with enhanced mechanical strength, swelling properties, and sorption capacity for environmental remediation and controlled-release applications. Synthesis methods for the ionotropically cross-linked Ca-Alg hydrogel and Alg–Lap composite hydrogels, based on Alg and Lap in the form of granules and fibres, have been developed. The Fourier-transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses of composite hydrogels confirmed the successful incorporation of Lap into the Ca-Alg matrix, indicating strong interactions between the polymer and clay, which enhanced the structural integrity of the hydrogels. The morphology of the surface and pore structure of nanocomposites were studied using Scanning Electron Microscopy (SEM). The swelling behaviour of the nanocomposites was largely dependent on the concentrations of Lap and the cross-linking agent (CaCl2), with higher concentrations leading to more rigid, less swellable structures due to the increased cross-linking density. The sorption studies, specifically with Fe(II) ions, demonstrated that the hybrid hydrogels possess a large sorption capacity, with Lap contributing to selective sorption at lower Fe(II) ion concentrations and Alg enhancing overall capacity at higher concentrations. This suggests that the synergistic interaction between Alg and Lap not only improves mechanical stability but also tailors the sorption properties of the hydrogels. These findings position the Alg-Lap hydrogels as promising materials for a range of environmental applications, including wastewater treatment, heavy metal ion removal, and the design of advanced filtration systems. The study’s insights into the tunability of these hydrogels pave the way for further research into their use in diverse fields such as biomedicine, agriculture, and industrial water management. Full article
Show Figures

Figure 1

19 pages, 4100 KB  
Article
Design of Alginate/Gelatin Hydrogels for Biomedical Applications: Fine-Tuning Osteogenesis in Dental Pulp Stem Cells While Preserving Other Cell Behaviors
by Zied Ferjaoui, Roberto López-Muñoz, Soheil Akbari, Fatiha Chandad, Diego Mantovani, Mahmoud Rouabhia and Roberto D. Fanganiello
Biomedicines 2024, 12(7), 1510; https://doi.org/10.3390/biomedicines12071510 - 8 Jul 2024
Cited by 13 | Viewed by 3193
Abstract
Alginate/gelatin (Alg-Gel) hydrogels have been used experimentally, associated with mesenchymal stromal/stem cells (MSCs), to guide bone tissue formation. One of the main challenges for clinical application is optimizing Alg-Gel stiffness to guide osteogenesis. In this study, we investigated how Alg-Gel stiffness could modulate [...] Read more.
Alginate/gelatin (Alg-Gel) hydrogels have been used experimentally, associated with mesenchymal stromal/stem cells (MSCs), to guide bone tissue formation. One of the main challenges for clinical application is optimizing Alg-Gel stiffness to guide osteogenesis. In this study, we investigated how Alg-Gel stiffness could modulate the dental pulp stem cell (DPSC) attachment, morphology, proliferation, and osteogenic differentiation, identifying the optimal conditions to uncouple osteogenesis from the other cell behaviors. An array of Alg-Gel hydrogels was prepared by casting different percentages of alginate and gelatin cross-linked with 2% CaCl2. We have selected two hydrogels: one with a stiffness of 11 ± 1 kPa, referred to as “low-stiffness hydrogel”, formed by 2% alginate and 8% gelatin, and the other with a stiffness of 55 ± 3 kPa, referred to as “high-stiffness hydrogel”, formed by 8% alginate and 12% gelatin. Hydrogel analyses showed that the average swelling rates were 20 ± 3% for the low-stiffness hydrogels and 35 ± 2% for the high-stiffness hydrogels. The degradation percentage was 47 ± 5% and 18 ± 2% for the low- and high-stiffness hydrogels, respectively. Both hydrogel types showed homogeneous surface shape and protein (Alg-Gel) interaction with CaCl2 as assessed by physicochemical characterization. Cell culture showed good adhesion of the DPSCs to the hydrogels and proliferation. Furthermore, better osteogenic activity, determined by ALP activity and ARS staining, was obtained with high-stiffness hydrogels (8% alginate and 12% gelatin). In summary, this study confirms the possibility of characterizing and optimizing the stiffness of Alg-Gel gel to guide osteogenesis in vitro without altering the other cellular properties of DPSCs. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

16 pages, 3428 KB  
Article
Ion-Cross-Linked Hybrid Photochromic Hydrogels with Enhanced Mechanical Properties and Shape Memory Behaviour
by Shijun Long, Fan Chen, Han Ren, Yali Hu, Chao Chen, Yiwan Huang and Xuefeng Li
Polymers 2024, 16(8), 1031; https://doi.org/10.3390/polym16081031 - 10 Apr 2024
Cited by 2 | Viewed by 1454
Abstract
Shape-shifting polymers usually require not only reversible stimuli-responsive ability, but also strong mechanical properties. A novel shape-shifting photochromic hydrogel system was designed and fabricated by embedding hydrophobic spiropyran (SP) into double polymeric network (DN) through micellar copolymerisation. Here, sodium alginate (Alg) and poly [...] Read more.
Shape-shifting polymers usually require not only reversible stimuli-responsive ability, but also strong mechanical properties. A novel shape-shifting photochromic hydrogel system was designed and fabricated by embedding hydrophobic spiropyran (SP) into double polymeric network (DN) through micellar copolymerisation. Here, sodium alginate (Alg) and poly acrylate-co-methyl acrylate-co-spiropyran (P(SA-co-MA-co-SPMA)) were employed as the first network and the second network, respectively, to realise high mechanical strength. After being soaked in the CaCl2 solution, the carboxyl groups in the system underwent metal complexation with Ca2+ to enhance the hydrogel. Moreover, after the hydrogel was exposed to UV-light, the closed isomer of spiropyran in the hydrogel network could be converted into an open zwitterionic isomer merocyanine (MC), which was considered to interact with Ca2+ ions. Interestingly, Ca2+ and UV-light responsive programmable shape of the copolymer hydrogel could recover to its original form via immersion in pure water. Given its excellent metal ion and UV light stimuli-responsive and mechanical properties, the hydrogel has potential applications in the field of soft actuators. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

13 pages, 13050 KB  
Article
Injectable In Situ Crosslinking Hydrogel for Autologous Fat Grafting
by Kristin Oskarsdotter, Catherine T. Nordgård, Peter Apelgren, Karin Säljö, Anita A. Solbu, Edwin Eliasson, Sanna Sämfors, Henriette E. M. Sætrang, Lise Cathrine Asdahl, Eric M. Thompson, Christofer Troedsson, Stina Simonsson, Berit L. Strand, Paul Gatenholm and Lars Kölby
Gels 2023, 9(10), 813; https://doi.org/10.3390/gels9100813 - 12 Oct 2023
Cited by 2 | Viewed by 2506
Abstract
Autologous fat grafting is hampered by unpredictable outcomes due to high tissue resorption. Hydrogels based on enzymatically pretreated tunicate nanocellulose (ETC) and alginate (ALG) are biocompatible, safe, and present physiochemical properties capable of promoting cell survival. Here, we compared in situ and ex [...] Read more.
Autologous fat grafting is hampered by unpredictable outcomes due to high tissue resorption. Hydrogels based on enzymatically pretreated tunicate nanocellulose (ETC) and alginate (ALG) are biocompatible, safe, and present physiochemical properties capable of promoting cell survival. Here, we compared in situ and ex situ crosslinking of ETC/ALG hydrogels combined with lipoaspirate human adipose tissue (LAT) to generate an injectable formulation capable of retaining dimensional stability in vivo. We performed in situ crosslinking using two different approaches; inducing Ca2+ release from CaCO3 microparticles (CMPs) and physiologically available Ca2+ in vivo. Additionally, we generated ex situ-crosslinked, 3D-bioprinted hydrogel-fat grafts. We found that in vitro optimization generated a CMP-crosslinking system with comparable stiffness to ex situ-crosslinked gels. Comparison of outcomes following in vivo injection of each respective crosslinked hydrogel revealed that after 30 days, in situ crosslinking generated fat grafts with less shape retention than 3D-bioprinted constructs that had undergone ex situ crosslinking. However, CMP addition improved fat-cell distribution and cell survival relative to grafts dependent on physiological Ca2+ alone. These findings suggested that in situ crosslinking using CMP might promote the dimensional stability of injectable fat-hydrogel grafts, although 3D bioprinting with ex situ crosslinking more effectively ensured proper shape stability in vivo. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (2nd Edition))
Show Figures

Figure 1

14 pages, 3893 KB  
Article
Bovine Serum Albumin Molecularly Imprinted Electrochemical Sensors Modified by Carboxylated Multi-Walled Carbon Nanotubes/CaAlg Hydrogels
by Letian Cheng, Zhilong Guo, Yuansheng Lin, Xiujuan Wei, Kongyin Zhao and Zhengchun Yang
Gels 2023, 9(8), 673; https://doi.org/10.3390/gels9080673 - 20 Aug 2023
Cited by 5 | Viewed by 2175
Abstract
In this paper, sodium alginate (NaAlg) was used as functional monomers, bovine serum albumin (BSA) was used as template molecules, and calcium chloride (CaCl2) aqueous solution was used as a cross-linking agent to prepare BSA molecularly imprinted carboxylated multi-wall carbon nanotubes [...] Read more.
In this paper, sodium alginate (NaAlg) was used as functional monomers, bovine serum albumin (BSA) was used as template molecules, and calcium chloride (CaCl2) aqueous solution was used as a cross-linking agent to prepare BSA molecularly imprinted carboxylated multi-wall carbon nanotubes (CMWCNT)/CaAlg hydrogel films (MIPs) and non-imprinted hydrogel films (NIPs). The adsorption capacity of the MIP film for BSA was 27.23 mg/g and the imprinting efficiency was 2.73. The MIP and NIP hydrogel film were loaded on the surface of the printed electrode, and electrochemical performance tests were carried out by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) using the electrochemical workstation. The loaded MIP film and NIP film effectively improved the electrochemical signal of the bare carbon electrode. When the pH value of the Tris HCl elution solution was 7.4, the elution time was 15 min and the adsorption time was 15 min, and the peak currents of MIP-modified electrodes and NIP-modified electrodes reached their maximum values. There was a specific interaction between MIP-modified electrodes and BSA, exhibiting specific recognition for BSA. In addition, the MIP-modified electrodes had good anti-interference, reusability, stability, and reproducibility. The detection limit (LOD) was 5.6 × 10−6 mg mL−1. Full article
(This article belongs to the Special Issue Alginate-Based Gels: Preparation, Characterization and Application)
Show Figures

Figure 1

18 pages, 5303 KB  
Article
Hydrogels Based on Polyacrylamide and Calcium Alginate: Thermodynamic Compatibility of Interpenetrating Networks, Mechanical, and Electrical Properties
by Alexander P. Safronov, Nadezhda M. Kurilova, Lidiya V. Adamova, Tatyana F. Shklyar, Felix A. Blyakhman and Andrey Yu. Zubarev
Biomimetics 2023, 8(3), 279; https://doi.org/10.3390/biomimetics8030279 - 28 Jun 2023
Cited by 6 | Viewed by 2538
Abstract
The synthesis and physicochemical properties of hydrogels with interpenetrated physical and chemical networks were considered in relation to their prospective application as biomimetic materials in biomedicine and bioengineering. The study was focused on combined hydrogels based on natural polysaccharide—calcium alginate (CaAlg) and a [...] Read more.
The synthesis and physicochemical properties of hydrogels with interpenetrated physical and chemical networks were considered in relation to their prospective application as biomimetic materials in biomedicine and bioengineering. The study was focused on combined hydrogels based on natural polysaccharide—calcium alginate (CaAlg) and a synthetic polymer–polyacrylamide (PAAm). The series of hydrogels with varying proportions among alginate and polyacrylamide have been synthesized, and their water uptake has been characterized depending on their composition. The equilibrium swelling and re-swelling in water after drying were considered. The compatibility of alginate and polyacrylamide in the combined blend was studied by the thermodynamic approach. It showed a controversial combination of negative enthalpy of mixing among PAAm and CaAlg with positive Gibbs energy of mixing. Mechanical and electrical properties of the combined gels with double networking were studied as relevant for their prospective use as scaffolds for tissue regeneration and working bodies in actuators. The storage modulus and the loss modulus were determined in the oscillatory compression mode as a function of proportions among natural and synthetic polymers. Both moduli substantially increased with the content of CaAlg and PAAm. The electrical (Donnan) potential of hydrogels was measured using the capillary electrode technique. The Donnan potential was negative at all compositions of hydrogels, and its absolute values increased with the content of CaAlg and PAAm. Full article
(This article belongs to the Special Issue Fabrication of Polymeric Hydrogels)
Show Figures

Figure 1

20 pages, 27532 KB  
Article
3D-Printed Bioactive Scaffold Loaded with GW9508 Promotes Critical-Size Bone Defect Repair by Regulating Intracellular Metabolism
by Fangli Huang, Xiao Liu, Xihong Fu, Yan Chen, Dong Jiang, Tingxuan Wang, Rongcheng Hu, Xuenong Zou, Hao Hu and Chun Liu
Bioengineering 2023, 10(5), 535; https://doi.org/10.3390/bioengineering10050535 - 27 Apr 2023
Cited by 9 | Viewed by 2925
Abstract
The process of bone regeneration is complicated, and it is still a major clinical challenge to regenerate critical-size bone defects caused by severe trauma, infection, and tumor resection. Intracellular metabolism has been found to play an important role in the cell fate decision [...] Read more.
The process of bone regeneration is complicated, and it is still a major clinical challenge to regenerate critical-size bone defects caused by severe trauma, infection, and tumor resection. Intracellular metabolism has been found to play an important role in the cell fate decision of skeletal progenitor cells. GW9508, a potent agonist of the free fatty acid receptors GPR40 and GPR120, appears to have a dual effect of inhibiting osteoclastogenesis and promoting osteogenesis by regulating intracellular metabolism. Hence, in this study, GW9508 was loaded on a scaffold based on biomimetic construction principles to facilitate the bone regeneration process. Through 3D printing and ion crosslinking, hybrid inorganic-organic implantation scaffolds were obtained after integrating 3D-printed β-TCP/CaSiO3 scaffolds with a Col/Alg/HA hydrogel. The 3D-printed β-TCP/CaSiO3 scaffolds had an interconnected porous structure that simulated the porous structure and mineral microenvironment of bone, and the hydrogel network shared similar physicochemical properties with the extracellular matrix. The final osteogenic complex was obtained after GW9508 was loaded into the hybrid inorganic-organic scaffold. To investigate the biological effects of the obtained osteogenic complex, in vitro studies and a rat cranial critical-size bone defect model were utilized. Metabolomics analysis was conducted to explore the preliminary mechanism. The results showed that 50 μM GW9508 facilitated osteogenic differentiation by upregulating osteogenic genes, including Alp, Runx2, Osterix, and Spp1 in vitro. The GW9508-loaded osteogenic complex enhanced osteogenic protein secretion and facilitated new bone formation in vivo. Finally, the results from metabolomics analysis suggested that GW9508 promoted stem cell differentiation and bone formation through multiple intracellular metabolism pathways, including purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, and taurine and hypotaurine metabolism. This study provides a new approach to address the challenge of critical-size bone defects. Full article
(This article belongs to the Special Issue Novel 3D Printing Methods and Applications in Biomedicine)
Show Figures

Figure 1

22 pages, 3310 KB  
Article
Caffeine Release from Magneto-Responsive Hydrogels Controlled by External Magnetic Field and Calcium Ions and Its Effect on the Viability of Neuronal Cells
by Emilli C. G. Frachini, Jéssica S. G. Selva, Paula C. Falcoswki, Jean B. Silva, Daniel R. Cornejo, Mauro Bertotti, Henning Ulrich and Denise F. S. Petri
Polymers 2023, 15(7), 1757; https://doi.org/10.3390/polym15071757 - 31 Mar 2023
Cited by 5 | Viewed by 2355
Abstract
Caffeine (CAF) is a psychostimulant present in many beverages and with rapid bioabsorption. For this reason, matrices that effectuate the sustained release of a low amount of CAF would help reduce the intake frequency and side effects caused by high doses of this [...] Read more.
Caffeine (CAF) is a psychostimulant present in many beverages and with rapid bioabsorption. For this reason, matrices that effectuate the sustained release of a low amount of CAF would help reduce the intake frequency and side effects caused by high doses of this stimulant. Thus, in this study, CAF was loaded into magnetic gelatin/alginate (Gel/Alg/MNP) hydrogels at 18.5 mg/ghydrogel. The in vitro release of CAF was evaluated in the absence and presence of an external magnetic field (EMF) and Ca2+. In all cases, the presence of Ca2+ (0.002 M) retarded the release of CAF due to favorable interactions between them. Remarkably, the release of CAF from Gel/Alg/MNP in PBS/CaCl2 (0.002 M) at 37 °C under an EMF was more sustained due to synergic effects. In PBS/CaCl2 (0.002 M) and at 37 °C, the amounts of CAF released after 45 min from Gel/Alg and Gel/Alg/MNP/EMF were 8.3 ± 0.2 mg/ghydrogel and 6.1 ± 0.8 mg/ghydrogel, respectively. The concentration of CAF released from Gel/Alg and Gel/Alg/MNP hydrogels amounted to ~0.35 mM, thereby promoting an increase in cell viability for 48 h. Gel/Alg and Gel/Alg/MNP hydrogels can be applied as reservoirs to release CAF at suitable concentrations, thus forestalling possible side effects and improving the viability of SH-SY5Y cells. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials towards the Sustainable Development Goals)
Show Figures

Graphical abstract

21 pages, 16631 KB  
Article
H2O2-PLA-(Alg)2Ca Hydrogel Enriched in Matrigel® Promotes Diabetic Wound Healing
by Alexandra Cătălina Bîrcă, Cristina Chircov, Adelina Gabriela Niculescu, Herman Hildegard, Cornel Baltă, Marcel Roșu, Bianca Mladin, Oana Gherasim, Dan Eduard Mihaiescu, Bogdan Ștefan Vasile, Alexandru Mihai Grumezescu, Ecaterina Andronescu and Anca Oana Hermenean
Pharmaceutics 2023, 15(3), 857; https://doi.org/10.3390/pharmaceutics15030857 - 6 Mar 2023
Cited by 16 | Viewed by 3619
Abstract
Hydrogel-based dressings exhibit suitable features for successful wound healing, including flexibility, high water-vapor permeability and moisture retention, and exudate absorption capacity. Moreover, enriching the hydrogel matrix with additional therapeutic components has the potential to generate synergistic results. Thus, the present study centered on [...] Read more.
Hydrogel-based dressings exhibit suitable features for successful wound healing, including flexibility, high water-vapor permeability and moisture retention, and exudate absorption capacity. Moreover, enriching the hydrogel matrix with additional therapeutic components has the potential to generate synergistic results. Thus, the present study centered on diabetic wound healing using a Matrigel-enriched alginate hydrogel embedded with polylactic acid (PLA) microspheres containing hydrogen peroxide (H2O2). The synthesis and physicochemical characterization of the samples, performed to evidence their compositional and microstructural features, swelling, and oxygen-entrapping capacity, were reported. For investigating the three-fold goal of the designed dressings (i.e., releasing oxygen at the wound site and maintaining a moist environment for faster healing, ensuring the absorption of a significant amount of exudate, and providing biocompatibility), in vivo biological tests on wounds of diabetic mice were approached. Evaluating multiple aspects during the healing process, the obtained composite material proved its efficiency for wound dressing applications by accelerating wound healing and promoting angiogenesis in diabetic skin injuries. Full article
Show Figures

Figure 1

19 pages, 4942 KB  
Article
TiO2-Embedded Biocompatible Hydrogel Production Assisted with Alginate and Polyoxometalate Polyelectrolytes for Photocatalytic Application
by Renat Mansurov, Irina Pavlova, Pavel Shabadrov, Anastasiya Levchenko, Alexey Krinochkin, Dmitry Kopchuk, Igor Nikonov, Anna Prokofyeva, Alexander Safronov and Kirill Grzhegorzhevskii
Inorganics 2023, 11(3), 92; https://doi.org/10.3390/inorganics11030092 - 21 Feb 2023
Cited by 3 | Viewed by 2859
Abstract
The hybrid hydrogel materials meet important social challenges, including the photocatalytic purification of water and bio-medical applications. Here, we demonstrate two scenarios of polyacrylamide-TiO2 (PAAm@TiO2) composite hydrogel design using calcium alginate (Alg-Ca) or Keplerate-type polyoxometalates (POMs) {Mo132} tuning [...] Read more.
The hybrid hydrogel materials meet important social challenges, including the photocatalytic purification of water and bio-medical applications. Here, we demonstrate two scenarios of polyacrylamide-TiO2 (PAAm@TiO2) composite hydrogel design using calcium alginate (Alg-Ca) or Keplerate-type polyoxometalates (POMs) {Mo132} tuning the polymer network structure. Calcium alginate molding allowed us to produce polyacrylamide-based beads with an interpenetrating network filled with TiO2 nanoparticles Alg-Ca@PAAm@TiO2, demonstrating the photocatalytic activity towards the methyl orange dye bleaching. Contrastingly, in the presence of the POM, the biocompatible PAAm@TiO2@Mo132 composite hydrogel was produced through the photo-polymerization approach (under 365 nm UV light) using vitamin B2 as initiator. For both types of the synthesized hydrogels, the thermodynamic compatibility, swelling and photocatalytic behavior were studied. The influence of the hydrogel composition on its structure and the mesh size of its network were evaluated using the Flory–Rehner equation. The proposed synthetic strategies for the composite hydrogel production can be easily scaled up to the industrial manufacturing of the photocatalytic hydrogel beads suitable for the water treatment purposes or the biocompatible hydrogel patch for medical application. Full article
Show Figures

Figure 1

Back to TopTop