Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = CeO2 NPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6628 KB  
Article
An Analysis of the Different Salt-Tolerance Mechanisms in Rice Cultivars Induced by Cerium Oxide Nanoparticles
by Chunmei Yang, Qing Bu, Tao Su, Tian Wang, Zaid Khan, Mingwei Li, Juntian Wu, Xiaodan Di, Yong Chen and Jing An
Antioxidants 2025, 14(8), 994; https://doi.org/10.3390/antiox14080994 - 13 Aug 2025
Viewed by 579
Abstract
Cerium oxide nanoparticles (CeO2NPs) can boost crops’ salt tolerance, yet their regulatory mechanisms in rice cultivars with contrasting salt tolerance remain unclear. This study investigated the regulatory differences in poly (acrylic acid)-coated nanoceria (PNC)-primed in salt-sensitive (Huanghuazhan, H) and salt-tolerant (Xiangliangyou900, [...] Read more.
Cerium oxide nanoparticles (CeO2NPs) can boost crops’ salt tolerance, yet their regulatory mechanisms in rice cultivars with contrasting salt tolerance remain unclear. This study investigated the regulatory differences in poly (acrylic acid)-coated nanoceria (PNC)-primed in salt-sensitive (Huanghuazhan, H) and salt-tolerant (Xiangliangyou900, X) rice. The results showed that PNC priming improved salt tolerance in two cultivars, but the underlying mechanisms differed. In the H cultivar, the enhanced tolerance was primarily attributed to enhanced photosynthesis (net photosynthesis and transpiration rates were 53.27% and 20.52% higher than the X cultivar); increased abscisic acid (ABA) content (up by 18.80% compared to the X cultivar), and activated stress-responsive signaling. Metabolomics further revealed that the differential metabolites were enriched in galactose metabolism, ascorbate, and aldarate metabolism, synergistically maintaining intracellular redox balance. In the X cultivar, PNC boosted reactive oxygen species’ (ROS) scavenging capacity (catalase (CAT) increased 36.07%, H2O2 and malondialdehyde (MDA) decreased 27.31% and 48.61% compared to H); elevated endogenous indole-3-acetic acid (IAA) and gibberellic acid3 (GA3) levels by 9.55% and 9.08%; and specifically activated cellular defense response and glutathione metabolism. Transcriptome analysis further revealed that the expression of IAA/GA3 signal-responsive genes (OsARGOS/OsGASR2) and antioxidant genes (OsCatA, OsAPX1) were significantly higher in the X cultivar than the H cultivar (p < 0.05), whereas the H cultivar showed higher expression of GST and ABA-related genes. This study provides a new perspective for the mechanism of PNC-enhanced salt tolerance in rice. Full article
Show Figures

Figure 1

20 pages, 1716 KB  
Article
Enhancing Antioxidants Performance of Ceria Nanoparticles in Biological Environment via Surface Engineering with o-Quinone Functionalities
by Pierluigi Lasala, Tiziana Latronico, Umberto Mattia, Rosa Maria Matteucci, Antonella Milella, Matteo Grattieri, Grazia Maria Liuzzi, Giuseppe Petrosillo, Annamaria Panniello, Nicoletta Depalo, Maria Lucia Curri and Elisabetta Fanizza
Antioxidants 2025, 14(8), 916; https://doi.org/10.3390/antiox14080916 - 25 Jul 2025
Viewed by 776
Abstract
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized [...] Read more.
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized in a non-polar solvent and phase-transfer to an aqueous environment through ligand-exchange reactions using citric acid (CeO2−x@Cit) and post-treatment with dopamine hydrochloride (CeO2−x@Dopa). The concept behind this work is to enhance via surface engineering the intrinsic antioxidant properties of CeO2−x NPs. For this purpose, thanks to electron transfer reactions between dopamine and CeO2−x, the CeO2−x@Dopa was obtained, characterized by increased surface Ce3+ sites and surface functionalized with polydopamine bearing o-quinone structures as demonstrated by complementary spectroscopic (UV–vis, FT-IR, and XPS) characterizations. To test the antioxidant properties of CeO2−x NPs, the scavenging activity before and after dopamine treatment against artificial radical 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and the ability to reduce the reactive oxygen species in Diencephalic Immortalized Type Neural Cell line 1 were evaluated. CeO2−x@Dopa demonstrated less efficiency in DPPH· scavenging (%radical scavenging activity 13% versus 42% for CeO2−x@Cit before dopamine treatment at 33 μM DPPH· and 0.13 mg/mL loading of NPs), while it markedly reduced intracellular ROS levels (ROS production 35% compared to 66% of CeO2−x@Cit before dopamine treatment with respect to control—p < 0.001 and p < 0.01, respectively). While steric hindrance from the dopamine-derived polymer layer limited direct electron transfer from CeO2−x NP surface to DPPH·, within cells the presence of o-quinone groups contributed with CeO2−x NPs to break the autoxidation chain of organic substrates, enhancing the antioxidant activity. The functionalization of NPs with o-quinone structures represents a valuable approach to increase the inherent antioxidant properties of CeO2−x NPs, enhancing their effectiveness in biological systems by promoting additional redox pathways. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

21 pages, 2440 KB  
Article
Dual-Purpose Utilization of Sri Lankan Apatite for Rare Earth Recovery Integrated into Sustainable Nitrophosphate Fertilizer Manufacturing
by D. B. Hashini Indrachapa Bandara, Avantha Prasad, K. D. Anushka Dulanjana and Pradeep Wishwanath Samarasekere
Sustainability 2025, 17(14), 6353; https://doi.org/10.3390/su17146353 - 11 Jul 2025
Viewed by 1804
Abstract
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction [...] Read more.
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction of REEs from ERP is technically challenging and economically unfeasible. This study introduces a novel, integrated approach for recovering REEs from ERP as a by-product of nitrophosphate fertilizer production. The process involves nitric acid-based acidolysis of apatite, optimized at 10 M nitric acid for 2 h at 70 °C with a pulp density of 2.4 mL/g. During cooling crystallization, 42 wt% of calcium was removed as Ca(NO3)2.4H2O while REEs remained in the solution. REEs were then selectively precipitated as REE phosphates via pH-controlled addition of ammonium hydroxide, minimizing the co-precipitation with calcium. Further separation was achieved through selective dissolution in a sulfuric–phosphoric acid mixture, followed by precipitation as sodium rare earth double sulfates. The process achieved over 90% total REE recovery with extraction efficiencies in the order of Pr > Nd > Ce > Gd > Sm > Y > Dy. Samples were characterized for their phase composition, elemental content, and morphology. The fertilizer results confirmed the successful production of a nutrient-rich nitrophosphate (NP) with 18.2% nitrogen and 13.9% phosphorus (as P2O5) with a low moisture content (0.6%) and minimal free acid (0.1%), indicating strong agronomic value and storage stability. This study represents one of the pioneering efforts to valorize Sri Lanka’s apatite through a novel, dual-purpose, and circular approach, recovering REEs while simultaneously producing high-quality fertilizer. Full article
(This article belongs to the Special Issue Technologies for Green and Sustainable Mining)
Show Figures

Figure 1

24 pages, 8368 KB  
Article
Aligned Electrospun PCL/PLA Nanofibers Containing Green-Synthesized CeO2 Nanoparticles for Enhanced Wound Healing
by Yen-Chen Le and Wen-Ta Su
Int. J. Mol. Sci. 2025, 26(13), 6087; https://doi.org/10.3390/ijms26136087 - 25 Jun 2025
Cited by 1 | Viewed by 899
Abstract
Wound healing is a complex biological process that benefits from advanced biomaterials capable of modulating inflammation and promoting tissue regeneration. In this study, cerium oxide nanoparticles (CeO2NPs) were green-synthesized using Hemerocallis citrina extract, which served as both a reducing and stabilizing [...] Read more.
Wound healing is a complex biological process that benefits from advanced biomaterials capable of modulating inflammation and promoting tissue regeneration. In this study, cerium oxide nanoparticles (CeO2NPs) were green-synthesized using Hemerocallis citrina extract, which served as both a reducing and stabilizing agent. The CeO2NPs exhibited a spherical morphology, a face-centered cubic crystalline structure, and an average size of 9.39 nm, as confirmed by UV-Vis spectroscopy, FTIR, XRD, and TEM analyses. These nanoparticles demonstrated no cytotoxicity and promoted fibroblast migration, while significantly suppressing the production of inflammatory mediators (TNF-α, IL-6, iNOS, NO, and ROS) in LPS-stimulated RAW264.7 macrophages. Gene expression analysis indicated M2 macrophage polarization, with upregulation of Arg-1, IL-10, IL-4, and TGF-β. Aligned polycaprolactone/polylactic acid (PCL/PLA) nanofibers embedded with CeO2NPs were fabricated using electrospinning. The composite nanofibers exhibited desirable physicochemical properties, including porosity, mechanical strength, swelling behavior, and sustained cerium ions release. In a rat full-thickness wound model, the CeO2 nanofiber-treated group showed a 22% enhancement in wound closure compared to the control on day 11. Histological evaluation revealed reduced inflammation, enhanced granulation tissue, neovascularization, and increased collagen deposition. These results highlight the therapeutic potential of CeO2-incorporated nanofiber scaffolds for accelerated wound repair and inflammation modulation. Full article
(This article belongs to the Special Issue Nanofibrous Biomaterials for Biomedicine and Medical Applications)
Show Figures

Figure 1

24 pages, 1710 KB  
Review
Impacts of Cerium Dioxide Nanoparticles on the Soil–Plant System and Their Potential Agricultural Applications
by Nadeesha L. Ukwattage and Zhang Zhiyong
Nanomaterials 2025, 15(12), 950; https://doi.org/10.3390/nano15120950 - 19 Jun 2025
Cited by 1 | Viewed by 808
Abstract
Cerium dioxide nanoparticles (CeO2-NPs) are increasingly used in various industrial applications, leading to their inevitable release into the environment including the soil ecosystem. In soil, CeO2-NPs are taken up by plants, translocated, and accumulated in plant tissues. Within plant [...] Read more.
Cerium dioxide nanoparticles (CeO2-NPs) are increasingly used in various industrial applications, leading to their inevitable release into the environment including the soil ecosystem. In soil, CeO2-NPs are taken up by plants, translocated, and accumulated in plant tissues. Within plant tissues, CeO2-NPs have been shown to interfere with critical metabolic pathways, which may affect plant health and productivity. Moreover, their presence in soil can influence soil physico-chemical and biological properties, including microbial communities within the rhizosphere, where they can alter microbial physiology, diversity, and enzymatic activities. These interactions raise concerns about the potential disruption of plant–microbe symbiosis essential for plant nutrition and soil health. Despite these challenges, CeO2-NPs hold potential as tools for enhancing crop productivity and resilience to stress, such as drought or heavy metal contamination. However, understanding the balance between their beneficial and harmful effects is crucial for their safe application in agriculture. To date, the overall impact of CeO2-NPs on soil -plant system and the underlying mechanism remains unclear. Therefore, this review analyses the recent research findings to provide a comprehensive understanding of the fate of CeO2-NPs in soil–plant systems and the implications for soil health, plant growth, and agricultural productivity. As the current research is limited by inconsistent findings, often due to variations in experimental conditions, it is essential to study CeO2-NPs under more ecologically relevant settings. This review further emphasizes the need for future research to assess the long-term environmental impacts of CeO2-NPs in soil–plant systems and to develop guidelines for their responsible use in sustainable agriculture. Full article
(This article belongs to the Special Issue Interplay between Nanomaterials and Plants)
Show Figures

Figure 1

20 pages, 6287 KB  
Article
Analysis of the Wear and Corrosion Resistance on Cu-Ni-Al Composites Reinforced with CeO2 Nanoparticles
by Carola Martínez, Bárbara Valverde, Aurora Del Valle-Rodríguez, Brennie Bustos-De La Fuente, Izabel Fernanda Machado and Francisco Briones
Materials 2025, 18(11), 2438; https://doi.org/10.3390/ma18112438 - 23 May 2025
Cited by 1 | Viewed by 652
Abstract
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by [...] Read more.
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by the mechanical alloying method and spark plasma sintering (SPS). The samples were evaluated using a single scratch test with a cone-spherical diamond indenter under progressive normal loading conditions. A non-contact 3D surface profiler characterized the scratched surfaces to support the analysis. Progressive loading tests indicated a reduction of up to 50% in COF with 1% NPs, with specific values drop-ping from 0.48 in the unreinforced alloy to 0.25 in the CeO2-doped composite at 15 N of applied load. Furthermore, the introduction of CeO2 decreased scratch depths by 25%, indicating enhanced wear resistance. The electrochemical behavior of the samples was evaluated by electrochemical impedance spectroscopy (EIS) in a molten carbonate medium under a H2/N2 atmosphere at 550 °C for 120 h. Subsequently, the corrosion products were characterized using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the CeO2-reinforced alloy exhibits superior electro-chemical stability in molten carbonate environments (Li2CO3-K2CO3) under an H2/N2 atmosphere at 550 °C for 120 h. A marked reduction in polarization resistance and a pronounced re-passivation effect were observed, suggesting enhanced anodic protection. This effect is attributed to the formation of aluminum and copper oxides in both compositions, together with the appearance of NiO as the predominant phase in the materials reinforced with nanoparticles in a hydrogen-reducing atmosphere. The addition of CeO2 nanoparticles significantly improves wear resistance and corrosion performance. Recognizing this effect is vital for creating strategies to enhance the material’s durability in challenging environments like MCFC. Full article
Show Figures

Figure 1

16 pages, 5140 KB  
Article
Foliar Spray of Cerium Oxide Nanoparticles (CeO2 NPs) Improves Lead (Pb) Resistance in Rice
by Hang Zhou, Junjie Liu, Ziyang Chen, Jing An, Jingxin Huo, Qing Bu, Tao Su, Liming Zhao, Xuefeng Shen, Yingbin Xue, Gangshun Rao, Naijie Feng, Dianfeng Zheng and Rui Zhang
Antioxidants 2025, 14(5), 552; https://doi.org/10.3390/antiox14050552 - 7 May 2025
Cited by 2 | Viewed by 1193
Abstract
The widespread use of lead (Pb) has led to serious environmental and human health problems worldwide. The application of oxide nanoparticles (CeO2 NPs) in alleviating abiotic stress in plants has received extensive attention. In this study, 50 mg·L−1 CeO2 NPs [...] Read more.
The widespread use of lead (Pb) has led to serious environmental and human health problems worldwide. The application of oxide nanoparticles (CeO2 NPs) in alleviating abiotic stress in plants has received extensive attention. In this study, 50 mg·L−1 CeO2 NPs can improve Pb resistance and promote rice growth. Specifically, this study observed that CeO2 NPs increased the activity of antioxidant enzymes peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), but the difference did not reach a significant level. At the same time, CeO2 NPs upregulated antioxidant metabolites alpha-linolenic acid, linoleic acid, ferulic acid, and kaempferol under Pb stress. In addition, CeO2 NPs upregulated multiple defense response-related genes, such as OsOPR1 and OsPR10a; RPR10a, and improved rice carbon flow and energy supply by upregulating sucrose and D-glucose. The results of this study provided technical support for alleviating Pb stress in rice. Full article
Show Figures

Figure 1

24 pages, 10960 KB  
Article
Bacterial Cellulose-Based Nanocomposites for Wound Healing Applications
by Alexandra-Ionela Dogaru, Ovidiu-Cristian Oprea, Gabriela-Olimpia Isopencu, Adela Banciu, Sorin-Ion Jinga and Cristina Busuioc
Polymers 2025, 17(9), 1225; https://doi.org/10.3390/polym17091225 - 29 Apr 2025
Cited by 3 | Viewed by 1633
Abstract
Bacterial cellulose (BC) is a polysaccharide produced by Gram-positive and Gram-negative bacteria with a strictly aerobic metabolism, having a huge number of significant applications in the biomedical field. This study investigates the development of bacterial cellulose (BC)-based composite systems that incorporate cerium dioxide [...] Read more.
Bacterial cellulose (BC) is a polysaccharide produced by Gram-positive and Gram-negative bacteria with a strictly aerobic metabolism, having a huge number of significant applications in the biomedical field. This study investigates the development of bacterial cellulose (BC)-based composite systems that incorporate cerium dioxide nanoparticles (CeO2 NPs) used as antibacterial agents to enhance wound healing, particularly for burn treatments. The innovation of this study resides in the integration of CeO2 NPs synthesized by using a precipitation method using both chemical and green reducing agents, ammonium hydroxide (NH4OH) and turmeric extract (TE), in BC membranes composed of ultrathin nanofibers interwoven into a three-dimensional network appearing as a hydrogel mass. Characterization by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) confirmed the effective deposition of this agent onto the BC matrix. Antibacterial activity tests against E. coli and B. subtilis indicated strong inhibition for the composites synthesized following these routes, particularly for the BC-CeO2-TE-OH sample, processed by employing both precipitating agents. Cytotoxicity evaluations showed no inhibition of cell activity. Additionally, loading the composites with dexamethasone endowed them with analgesic release over 4 h, as observed through ultraviolet–visible spectroscopy (UV-Vis), while the FTIR spectra revealed a sustained drug presence post-release. These findings highlight BC-based films as promising candidates for advanced wound care and tissue engineering applications. Full article
Show Figures

Figure 1

18 pages, 8555 KB  
Article
AgNPs@CeO2/Nafion Nanocomposite-Modified Electrode for the Sensitive Detection of Trace Lead (II) in Water Samples
by Zhengying Guo, Peng Xu, Shiqing Zhou and Ruoxi Wu
Sensors 2025, 25(9), 2655; https://doi.org/10.3390/s25092655 - 23 Apr 2025
Viewed by 994
Abstract
Excessive levels of heavy metal pollutants in the environment pose significant threats to human health and ecosystem stability. Consequently, the accurate and rapid detection of heavy metal ions is critically important. A AgNPs@CeO2/Nafion composite was prepared by dispersing nano-ceria (CeO2 [...] Read more.
Excessive levels of heavy metal pollutants in the environment pose significant threats to human health and ecosystem stability. Consequently, the accurate and rapid detection of heavy metal ions is critically important. A AgNPs@CeO2/Nafion composite was prepared by dispersing nano-ceria (CeO2) in a Nafion solution and incorporating silver nanoparticles (AgNPs). The morphology, microstructure, and electrochemical properties of the modified electrode materials were systematically characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and cyclic voltammetry (CV). By leveraging the oxygen vacancies and high electron transfer efficiency of CeO2, the strong adsorption capacity of Nafion, and the superior conductivity of AgNPs, an AgNPs@CeO2/Nafion/GCE electrochemical sensor was developed. Under optimized conditions, trace Pb2+ in water was detected using square wave anodic stripping voltammetry (SWASV). The sensor demonstrated a linear response for Pb2+ within the concentration range of 1–100 μg·L−1, with a detection limit of 0.17 μg·L−1 (S/N = 3). When applied to real water samples, the method achieved recovery rates between 93.7% and 110.3%, validating its reliability and practical applicability. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

17 pages, 6354 KB  
Article
Developing a Multi-Method Approach for Understanding Cellular Uptake and Biological Response: Investigating Co-Exposure of Macrophage-like Differentiated THP-1 Cells to Al2O3 and CeO2 Nanoparticles
by Yves Uwe Hachenberger, Benjamin Christoph Krause, Fabian Lukas Kriegel, Philipp Reichardt, Jutta Tentschert, Harald Jungnickel, Frank Stefan Bierkandt, Peter Laux, Ulrich Panne and Andreas Luch
Molecules 2025, 30(7), 1647; https://doi.org/10.3390/molecules30071647 - 7 Apr 2025
Viewed by 682
Abstract
The use of different nanoparticles (NPs) is increasing in a wide variety of everyday products. Nevertheless, most studies concerning NP risk assessment have evaluated exposure scenarios involving a single kind of NP. A stepwise study distinguishing between the effects resulting from exposure to [...] Read more.
The use of different nanoparticles (NPs) is increasing in a wide variety of everyday products. Nevertheless, most studies concerning NP risk assessment have evaluated exposure scenarios involving a single kind of NP. A stepwise study distinguishing between the effects resulting from exposure to one kind of NP and those resulting from different co-exposure scenarios to Al2O3 and CeO2 NPs at concentrations below acute toxicity was conducted with different analytical techniques. As a starting point, WST-1 viability assays were performed to assess whether the chosen exposure concentrations resulted in any acute loss of viability, which would hamper further insight into the cellular response to NP exposure. Then, data on NP dissolution and uptake were obtained via single-particle inductively coupled plasma–mass spectrometry (spICP-MS) and microwave-assisted ICP-MS. Additionally, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was performed to check for differences in the biological response to the exposure scenarios at the single-cell level. It was found that the proposed combined techniques provide insight into changes in biological responses as well as cellular metal contents among the exposure scenarios. In this work, a comprehensive tiered analytical strategy for evaluating the biological responses to challenging exposure scenarios is provided. The results highlight the necessity of selecting situations more closely resembling real life—including concentrations below acute toxicity and potential interactions due to multiple NPs—when estimating potential health risks. These findings thus provide a foundation and an incentive for further research into the complex processes leading to the observed effects. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

12 pages, 3972 KB  
Article
Anticancer Activity of Cerium Oxide Nanoparticles Towards Human Lung Cancer Cells
by Nithin Krisshna Gunasekaran, Nicole Nazario Bayon, Prathima Prabhu Tumkur, Krishnan Prabhakaran, Joseph C. Hall and Govindarajan T. Ramesh
Nanomanufacturing 2025, 5(2), 6; https://doi.org/10.3390/nanomanufacturing5020006 - 3 Apr 2025
Cited by 2 | Viewed by 1143
Abstract
Cerium oxide nanoparticles (CeO2 NPs) have gained significant attention in various fields, including biomedicine, semiconductors, cosmetics, and fuel cells, due to their unique physico-chemical properties. Notably, green-synthesized CeO2 NPs have demonstrated enhanced potential as drug carriers, particularly in biomedical applications such [...] Read more.
Cerium oxide nanoparticles (CeO2 NPs) have gained significant attention in various fields, including biomedicine, semiconductors, cosmetics, and fuel cells, due to their unique physico-chemical properties. Notably, green-synthesized CeO2 NPs have demonstrated enhanced potential as drug carriers, particularly in biomedical applications such as anti-inflammatory, anticancer, antimicrobial, and anti-oxidant therapies. This study aimed to investigate the anticancer effects of cerium oxide nanoparticles synthesized using turmeric rhizomes on human lung cancer cells. The cytotoxicity and proliferation inhibition of these nanoparticles were assessed using MTT and Live/Dead assays, revealing a dose-dependent reduction in cell viability. Additionally, reactive oxygen species (ROS) generation was quantified through ROS assays, confirming oxidative stress induction as a key mechanism of cytotoxicity. Cell proliferation analysis further demonstrated that increasing concentrations of CeO2 NPs significantly reduced the multiplication of healthy lung cancer cells. These findings highlight the potential of turmeric-derived CeO2 NPs as a promising therapeutic agent for lung cancer treatment, warranting further exploration of their mechanism of action and in vivo efficacy. Full article
Show Figures

Figure 1

15 pages, 2613 KB  
Article
The Influence of Energy Levels and Defects on the Thermoluminescence of LiF: SiO5 Phosphors Doped with Ce3+
by Habtamu F. Etefa, Xolani G. Mbuyise, Fikadu T. Geldasa, Genene T. Mola, Makaiko L. Chithambo and Francis B. Dejene
Int. J. Mol. Sci. 2025, 26(7), 3183; https://doi.org/10.3390/ijms26073183 - 29 Mar 2025
Cited by 1 | Viewed by 670
Abstract
The morphological, structural, and thermoluminescence (TL) properties of LiF:SiO5 doped with Ce3+ solid powder phosphor were systematically analyzed. X-ray diffraction (XRD) confirmed the crystalline nature of single-phase LiF:SiO5:Ce3+ nanoparticles (NPs), with crystalline size (D) determined using the Williamson–Hall [...] Read more.
The morphological, structural, and thermoluminescence (TL) properties of LiF:SiO5 doped with Ce3+ solid powder phosphor were systematically analyzed. X-ray diffraction (XRD) confirmed the crystalline nature of single-phase LiF:SiO5:Ce3+ nanoparticles (NPs), with crystalline size (D) determined using the Williamson–Hall (W–H) and Scherrer methods. Ce3+ doping induced structural modifications, reflected in variations of full width at half maximum (FWHM), strain, and stress values. The TL glow curve revealed two distinct peaks at approximately 64 °C and 134 °C, shedding light on the electron capture and release mechanisms following beta irradiation. A dose-dependent study demonstrated that TL intensity increased proportionally with radiation exposure, showing a superlinearity relationship up to 6 Gy. Additionally, investigations into different heating rates indicated only a slight shift in peak of the temperature, confirming the thermal stability of the materials. This study provides valuable insights into the TL behavior of LiF:SiO5:Ce3+, making it a promising candidate for radiation dosimetry and luminescence applications. Full article
(This article belongs to the Special Issue Research on Luminescent Materials and Their Luminescence Mechanism)
Show Figures

Figure 1

13 pages, 4681 KB  
Article
Eco-Friendly Synthesis of Cerium Oxide Nanoparticles from Lycium cooperi
by Jhonathan Castillo-Saenz, Jorge Salomón-Carlos, Ernesto Beltrán-Partida and Benjamín Valdez-Salas
Reactions 2025, 6(1), 14; https://doi.org/10.3390/reactions6010014 - 11 Feb 2025
Viewed by 1614
Abstract
Cerium oxide nanoparticles (CeO2-NPs) offer promising advantages in semiconductors and biomedical applications due to their optical, electrical, antioxidant, and antibacterial properties. However, the widely reported synthetic strategies for CeO2-NPs demand toxic precursors and intermediary pollutants, representing a major limitation [...] Read more.
Cerium oxide nanoparticles (CeO2-NPs) offer promising advantages in semiconductors and biomedical applications due to their optical, electrical, antioxidant, and antibacterial properties. However, the widely reported synthetic strategies for CeO2-NPs demand toxic precursors and intermediary pollutants, representing a major limitation to CeO2-NPs applications. Therefore, it is necessary to develop greener strategies that implicate ecological precursors to reduce the negative impact on the scalability of CeO2-NPs. In this regard, we applied Lycium cooperi (L. cooperi) aqueous extracts as an unexplored potential green reducing agent for the eco-friendly synthesis of CeO2-NPs. The L. cooperi extract showed the presence of alkaloids, flavonoids, cardiac glycosides, and carbohydrate-derived families, which were assessed for spherical monodispersed CeO2-NPs under a rapid chemical reduction. Moreover, the elemental composition revealed Ce and O, indicating highly pure CeO2-NPs characterized by an interplanar cubic crystalline structure. Furthermore, we detected the presence of stabilizing functional groups from L. cooperi, which, after a controlled annealing process, resulted in a band gap energy of 3.9 eV, which was optimal for the CeO2-NPs. Thus, the results indicate that L. cooperi is an environmentally friendly synthesis method that can open a new route for CeO2-NPs in biomedical and industrial applications. Full article
Show Figures

Figure 1

39 pages, 2817 KB  
Review
Advances in Biosensor Applications of Metal/Metal-Oxide Nanoscale Materials
by Md Abdus Subhan, Newton Neogi, Kristi Priya Choudhury and Mohammed M. Rahman
Chemosensors 2025, 13(2), 49; https://doi.org/10.3390/chemosensors13020049 - 3 Feb 2025
Cited by 6 | Viewed by 4061
Abstract
Biosensing shows promise in detecting cancer, renal disease, and other illnesses. Depending on their transducing processes, varieties of biosensors can be divided into electrochemical, optical, piezoelectric, and thermal biosensors. Advancements in material production techniques, enzyme/protein designing, and immobilization/conjugation approaches can yield novel nanoparticles [...] Read more.
Biosensing shows promise in detecting cancer, renal disease, and other illnesses. Depending on their transducing processes, varieties of biosensors can be divided into electrochemical, optical, piezoelectric, and thermal biosensors. Advancements in material production techniques, enzyme/protein designing, and immobilization/conjugation approaches can yield novel nanoparticles with further developed functionality. Research in cutting-edge biosensing with multifunctional nanomaterials, and the advancement of practical biochip plans utilizing nano-based sensing material, are of current interest. The miniaturization of electronic devices has enabled the growth of ultracompact, compassionate, rapid, and low-cost sensing technologies. Some sensors can recognize analytes at the molecule, particle, and single biological cell levels. Nanomaterial-based sensors, which can be used for biosensing quickly and precisely, can replace toxic materials in real-time diagnostics. Many metal-based NPs and nanocomposites are favorable for biosensing. Through direct and indirect labeling, metal-oxide NPs are extensively employed in detecting metabolic disorders, such as cancer, diabetes, and kidney-disease biomarkers based on electrochemical, optical, and magnetic readouts. The present review focused on recent developments across multiple biosensing modalities using metal/metal-oxide-based NPs; in particular, we highlighted the specific advancements of biosensing of key nanomaterials like ZnO, CeO2, and TiO2 and their applications in disease diagnostics and environmental monitoring. For example, ZnO-based biosensors recognize uric acid, glucose, cholesterol, dopamine, and DNA; TiO2 is utilized for SARS-CoV-19; and CeO2 for glucose detection. Full article
Show Figures

Figure 1

18 pages, 2952 KB  
Article
Tailoring Metal–Oxide Interfaces via Selectively CeO2-Decorated Pd Nanocatalysts with Enhanced Catalytic Performance
by Ziwen Liu, Guizhen Zhang, Lijuan Niu, Zaicheng Sun, Zhenguo Li and Hong He
Nanomaterials 2025, 15(3), 197; https://doi.org/10.3390/nano15030197 - 27 Jan 2025
Cited by 1 | Viewed by 1078
Abstract
Metal–oxide interfaces play a prominent role in heterogeneous catalysis. Tailoring the metal–oxide interfaces effectively enhance the catalytic activities and thermal stability of noble metal catalysts. In this work, polyvinyl alcohol-protected reduction and L-arginine induction methods are adopted to prepare Pd catalysts (Pd/Al2 [...] Read more.
Metal–oxide interfaces play a prominent role in heterogeneous catalysis. Tailoring the metal–oxide interfaces effectively enhance the catalytic activities and thermal stability of noble metal catalysts. In this work, polyvinyl alcohol-protected reduction and L-arginine induction methods are adopted to prepare Pd catalysts (Pd/Al2O3-xCeO2) that are selectively decorated by CeO2, which form core–shell-like structures and generate more Pd-CeO2 interfacial sites, so that the three-way catalytic activity of Pd/Al2O3-xCeO2 catalysts is obviously significantly enhanced due to more adsorption oxygen at the interface of Pd-CeO2 and good low-temperature reducibility. At the moment, the Pd/Al2O3-xCeO2 catalysts exhibit excellent thermal stability after being calcined at 900 °C for 5 h, owing to the Pd species being highly redispersed on CeO2 and part of the Pd species being incorporated into the lattice of CeO2. This is a major reason for the Pd/Al2O3-xCeO2 catalysts to maintain high catalytic activity after aging at high temperatures. It is concluded that the metal–oxide interfaces and the interaction between Pd NPs and CeO2 are responsible for the excellent catalytic performance and stability of Pd/Al2O3-xCeO2 catalysts in three-way reactions. Full article
Show Figures

Figure 1

Back to TopTop