Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Centralized Protection Automation and Control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3506 KiB  
Proceeding Paper
Automated Monitoring and Control System of Solar Greenhouse Using ESP32 and Blynk Application
by Meridith Lindsey Q. Galon, Michael Vincent R. Tumaliwan and Marianne M. Sejera
Eng. Proc. 2025, 92(1), 57; https://doi.org/10.3390/engproc2025092057 - 7 May 2025
Viewed by 147
Abstract
Greenhouse farming has brought a revolution in agriculture as it provides a climate favorable to crops all year round. Besides securing the production of foods of higher quality, it also extends the growing seasons and protects crops from pests and harsh weather. The [...] Read more.
Greenhouse farming has brought a revolution in agriculture as it provides a climate favorable to crops all year round. Besides securing the production of foods of higher quality, it also extends the growing seasons and protects crops from pests and harsh weather. The greenhouse is centrally controlled by the user due to the technological advancements of devices such as cell phones and a control system of temperature, which is important for the plant. To realize remote real-time automated monitoring of the greenhouse based on the user settings, an Android app was developed in this study. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

43 pages, 6738 KiB  
Review
Smart Grid Protection, Automation and Control: Challenges and Opportunities
by Sergio Rubio, Santiago Bogarra, Marco Nunes and Xavier Gomez
Appl. Sci. 2025, 15(6), 3186; https://doi.org/10.3390/app15063186 - 14 Mar 2025
Viewed by 1508
Abstract
The evolution of Protection and Control (P&C) systems has developed though analogue and digital generations, and is presently advancing towards the utilization of Virtualization of Protection, Automation and Control environments (VPAC). This article focuses on redefining the features of traditional and modern P&C [...] Read more.
The evolution of Protection and Control (P&C) systems has developed though analogue and digital generations, and is presently advancing towards the utilization of Virtualization of Protection, Automation and Control environments (VPAC). This article focuses on redefining the features of traditional and modern P&C systems, Centralized Protection Automation and Control (CPAC), and VPAC, focusing on the integration of Intelligent Electronic Devices (IEDs) with secure communication that is time-effective in the centralized distribution of power and prevention of network vulnerability. Though standards such as IEC 61850-9-2 LE have been adopted, the actualization of full interoperability between diverse IED manufacturers remains elusive. With the digitization of technologies, P&C systems are naturally transitioning to virtual environments, with timing precision, redundancy and security being imperative. Latency and resource management and allocation in VPAC systems are considerable global issues. This paper discusses the issues of maintaining low operational performance in virtual substation environments while satisfying the requirements for performance in real time. The impacts of large volumes of data and artificial intelligence on the management of the grid are studied, and AI-based analytics that predict system failures and automatically change load flows are shown, as they have the potential to increase the flexibility and stability of the grid. The use of big data enables electric power utilities to enhance their protection systems, anticipate disturbances and improve energy management methods. The paper presents a comparative analysis between traditional P&C and its virtualized counterparts, with strong emphasis placed on the flexibility and scaling of VPAC resources. Full article
(This article belongs to the Special Issue Design, Optimization and Control Strategy of Smart Grids)
Show Figures

Figure 1

34 pages, 1906 KiB  
Essay
A Secure Data Sharing Model Utilizing Attribute-Based Signcryption in Blockchain Technology
by Chaoyue Song, Lifeng Chen, Xuguang Wu and Yu Li
Sensors 2025, 25(1), 160; https://doi.org/10.3390/s25010160 - 30 Dec 2024
Viewed by 784
Abstract
With the rapid development of the Internet of Things (IoT), the scope of personal data sharing has significantly increased, enhancing convenience in daily life and optimizing resource management. However, this also poses challenges related to data privacy breaches and holdership threats. Typically, blockchain [...] Read more.
With the rapid development of the Internet of Things (IoT), the scope of personal data sharing has significantly increased, enhancing convenience in daily life and optimizing resource management. However, this also poses challenges related to data privacy breaches and holdership threats. Typically, blockchain technology and cloud storage provide effective solutions. Nevertheless, the centralized storage architecture of traditional cloud servers is susceptible to single points of failure, potentially leading to system outages. To achieve secure data sharing, access control, and verification auditing, we propose a data security sharing scheme based on blockchain technology and attribute-based encryption, applied within the InterPlanetary File System (IPFS). This scheme employs multi-agent systems and attribute-based signcryption algorithms to process data, thereby enhancing privacy protection and verifying data holdership. The encrypted data are then stored in the distributed IPFS, with the returned hash values and access control policies uploaded to smart contracts, facilitating automated fine-grained access control services. Finally, blockchain data auditing is performed to ensure data integrity and accuracy. The results indicate that this scheme is practical and effective compared to existing solutions. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

12 pages, 8609 KiB  
Proceeding Paper
Real-Time Cyber–Physical Power System Testbed for International Electrotechnical Commission 61850 Generic Object-Oriented Substation Event Transfer Time Measurements
by Le Nam Hai Pham, Veronica Rosero-Morillo, Anup Shukla, Francisco Gonzalez-Longatt and Viviana Meza-G
Eng. Proc. 2024, 77(1), 17; https://doi.org/10.3390/engproc2024077017 - 18 Nov 2024
Cited by 2 | Viewed by 632
Abstract
Towards the decarbonisation of the power system, digital substations have gradually increased in smart grids, where Ethernet cables have replaced large quantities of copper wires. With this transition, the standardised communication protocols through the LAN network play a central role in exchanging information [...] Read more.
Towards the decarbonisation of the power system, digital substations have gradually increased in smart grids, where Ethernet cables have replaced large quantities of copper wires. With this transition, the standardised communication protocols through the LAN network play a central role in exchanging information and data between the physical power system and the control centres. One of the well-known protocols in the digital substations is IEC 61850 GOOSE (Generic Object-Oriented Substation Event), which is used to share time-critical information related to protection, automation, and control. The transmission time of this protocol affects power system operation and raises various issues, such as communication latencies and incorrect information. Therefore, it is necessary to consider the protocol transmission time for further protection and control mechanisms to ensure the stability and efficiency of the power system. For this purpose, this paper contributes the implementation of a cyber–physical power system (CPPS) testbed to measure the transfer time of IEC 61850 GOOSE under the real-time domain using the real-time simulator, Typhoon HIL, and its toolchains. This paper can benefit scholars and researchers in the relevant domains in implementing a CPPS testbed and an approach for transfer time measurement of communication protocols within the laboratory, eliminating the need for real-world substation devices. Full article
(This article belongs to the Proceedings of The XXXII Conference on Electrical and Electronic Engineering)
Show Figures

Figure 1

23 pages, 2805 KiB  
Article
Intelligent Transportation Using Wireless Sensor Networks Blockchain and License Plate Recognition
by Fares Alharbi, Mohammed Zakariah, Reem Alshahrani, Ashwag Albakri, Wattana Viriyasitavat and Abdulrahman Abdullah Alghamdi
Sensors 2023, 23(5), 2670; https://doi.org/10.3390/s23052670 - 28 Feb 2023
Cited by 19 | Viewed by 3583
Abstract
License Plate Recognition (LPR) is essential for the Internet of Vehicles (IoV) since license plates are a necessary characteristic for distinguishing vehicles for traffic management. As the number of vehicles on the road continues to grow, managing and controlling traffic has become increasingly [...] Read more.
License Plate Recognition (LPR) is essential for the Internet of Vehicles (IoV) since license plates are a necessary characteristic for distinguishing vehicles for traffic management. As the number of vehicles on the road continues to grow, managing and controlling traffic has become increasingly complex. Large cities in particular face significant challenges, including concerns around privacy and the consumption of resources. To address these issues, the development of automatic LPR technology within the IoV has emerged as a critical area of research. By detecting and recognizing license plates on roadways, LPR can significantly enhance management and control of the transportation system. However, implementing LPR within automated transportation systems requires careful consideration of privacy and trust issues, particularly in relation to the collection and use of sensitive data. This study recommends a blockchain-based approach for IoV privacy security that makes use of LPR. A system handles the registration of a user’s license plate directly on the blockchain, avoiding the gateway. The database controller may crash as the number of vehicles in the system rises. This paper proposes a privacy protection system for the IoV using license plate recognition based on blockchain. When a license plate is captured by the LPR system, the captured image is sent to the gateway responsible for managing all communications. When the user requires the license plate, the registration is done by a system connected directly to the blockchain, without going through the gateway. Moreover, in the traditional IoV system, the central authority has full authority to manage the binding of vehicle identity and public key. As the number of vehicles increases in the system, it may cause the central server to crash. Key revocation is the process in which the blockchain system analyses the behaviour of vehicles to judge malicious users and revoke their public keys. Full article
(This article belongs to the Special Issue Machine Learning for Wireless Sensor Network and IoT Security)
Show Figures

Figure 1

26 pages, 2762 KiB  
Article
A Blockchain-Inspired Attribute-Based Zero-Trust Access Control Model for IoT
by Samia Masood Awan, Muhammad Ajmal Azad, Junaid Arshad, Urooj Waheed and Tahir Sharif
Information 2023, 14(2), 129; https://doi.org/10.3390/info14020129 - 16 Feb 2023
Cited by 38 | Viewed by 7433
Abstract
The connected or smart environment is the integration of smart devices (sensors, IoT devices, or actuator) into the Internet of Things (IoT) paradigm, in which a large number of devices are connected, monitoring the physical environment and processes and transmitting into the centralized [...] Read more.
The connected or smart environment is the integration of smart devices (sensors, IoT devices, or actuator) into the Internet of Things (IoT) paradigm, in which a large number of devices are connected, monitoring the physical environment and processes and transmitting into the centralized database for advanced analytics and analysis. This integrated and connected setup allows greater levels of automation of smart systems than is possible with just the Internet. While delivering services to the different processes and application within connected smart systems, these IoT devices perform an impeccably large number of device-to-device communications that allow them to access the selected subsets of device information and data. The sensitive and private nature of these data renders the smart infrastructure vulnerable to copious attacks which threat agents exploit for cyberattacks which not only affect critical services but probably bring threat to people’s lives. Hence, advanced measures need to be taken for securing smart environments, such as dynamic access control, advanced network screening, and monitoring behavioural anomalies. In this paper, we have discussed the essential cyberthreats and vulnerabilities in smart environments and proposed ZAIB (Zero-Trust and ABAC for IoT using Blockchain), a novel secure framework that monitors and facilitates device-to-device communications with different levels of access-controlled mechanisms based on environmental parameters and device behaviour. It is protected by zero-trust architecture and provides dynamic behavioural analysis of IoT devices by calculating device trust levels for each request. ZAIB enforces variable policies specifically generated for each scenario by using attribute-based access control (ABAC). We have used blockchain to ensure anonymous device and user registrations and immutable activity logs. All the attributes, trust level histories, and data generated by IoT devices are protected using IPFS. Finally, a security evaluation shows that ZAIB satisfies the needs of active defence and end-to-end security enforcement of data, users, and services involved in a smart grid network. Full article
(This article belongs to the Special Issue Pervasive Computing in IoT)
Show Figures

Figure 1

34 pages, 53240 KiB  
Article
Application of IIA Method and Virtual Bus Theory for Backup Protection of a Zone Using PMU Data in a WAMPAC System
by Aníbal Antonio Prada Hurtado, Eduardo Martinez Carrasco, Maria Teresa Villén Martínez and Jose Saldana
Energies 2022, 15(9), 3470; https://doi.org/10.3390/en15093470 - 9 May 2022
Cited by 10 | Viewed by 3007
Abstract
Many wide area monitoring, protection, and control (WAMPAC) systems are being deployed by grid operators to deal with critical operational conditions that may occur in power systems. Thanks to the real-time measurements provided by a set of distributed phasor measurement units (PMUs), different [...] Read more.
Many wide area monitoring, protection, and control (WAMPAC) systems are being deployed by grid operators to deal with critical operational conditions that may occur in power systems. Thanks to the real-time measurements provided by a set of distributed phasor measurement units (PMUs), different protection algorithms can be run in a central location. In this context, this article presents and validates a novel method that can be used as a backup protection for a selected area in a power system. It merges the integrated impedance angle (IIA) protection method with the theory of virtual buses in wide area electrical power systems. The backup protection works this way: once a fault is detected (pickup time), another delay (added to the pickup time) is defined in order to wait for the primary protection to act. If this does not happen, the algorithm generates its backup trip. The proposed method has been called the zone integrated impedance angle (Zone IIA). A real-time PMU laboratory has been used to test the proposed algorithm using a real-time digital simulator (RTDS). The algorithm has been programmed in a real-time automation controller (RTAC). It has been tested in two different simulated setups: first, a 400 kV transmission system, with and without the use of renewable energy sources (RES); second, a 150 kV submarine line between the Greece mainland and an island, which is currently the longest submarine alternating current connection in the world. The results obtained during the tests have yielded tripping times for area protection in the order of 48 ms, if no time delay is used between the fault detection and the trip order. According to the test results, the proposed method is stable, reliable, obedient, and secure, also with RES installed in the power system. Additionally, the method is selective, i.e., during the tests no trip was executed for external faults, no trip was executed in no-fault condition, and all the applied internal faults were detected and tripped correctly. Finally, the protection method is easy to implement. The method is also applicable to protection against short circuits in distribution systems. According to the trip times observed during the tests, it is clear that these algorithms are well suited to implement backup protections in transmission grids, even in scenarios with high penetration of renewable energies. Considering that backup trip times in transmission grids are usually set between 400 and 1000 ms, and that the actuation times obtained by the proposed algorithm are under 100 ms, the method is suitable for its use as a backup protection. Full article
(This article belongs to the Special Issue Wide Area Monitoring, Protection and Control of Modern Power Systems)
Show Figures

Figure 1

25 pages, 3820 KiB  
Article
Formal Modeling of IoT-Based Distribution Management System for Smart Grids
by Shaheen Kousar, Nazir Ahmad Zafar, Tariq Ali, Eman H. Alkhammash and Myriam Hadjouni
Sustainability 2022, 14(8), 4499; https://doi.org/10.3390/su14084499 - 10 Apr 2022
Cited by 16 | Viewed by 4347
Abstract
The smart grid is characterized as a power system that integrates real-time measurements, bi-directional communication, a two-way flow of electricity, and evolutionary computation. The power distribution system is a fundamental aspect of the electric power system in order to deliver safe, efficient, reliable, [...] Read more.
The smart grid is characterized as a power system that integrates real-time measurements, bi-directional communication, a two-way flow of electricity, and evolutionary computation. The power distribution system is a fundamental aspect of the electric power system in order to deliver safe, efficient, reliable, and resilient power to consumers. A distribution management system (DMS) begins with the extension of the Supervisory Control and Data Acquisition (SCADA) system through a transmission network beyond the distribution network. These transmission networks oversee the distribution of energy generated at power plants to consumers via a complex system of transformers, substations, transmission lines, and distribution lines. The major challenges that existing distribution management systems are facing, maintaining constant power loads, user profiles, centralized communication, and the malfunctioning of system equipment and monitoring huge amounts of data of millions of micro-transactions, need to be addressed. Substation feeder protection abruptly shuts down power on the whole feeder in the event of a distribution network malfunction, causing service disruption to numerous end-user clients, including industrial, hospital, commercial, and residential users. Although there are already many traditional systems with the integration of smart things at present, there are few studies of those systems reporting runtime errors during their implementation and real-time use. This paper presents the systematic model of a distribution management system comprised of substations, distribution lines, and smart meters with the integration of Internet-of-Things (IoT), Nondeterministic Finite Automata (NFA), Unified Modeling Language (UML), and formal modeling approaches. Non-deterministic finite automata are used for automating the system procedures. UML is used to represent the actors involved in the distribution management system. Formal methods from the perspective of the Vienna Development Method-Specification Language (VDM-SL) are used for modeling the system. The model will be analyzed using the facilities available in the VDM-SL toolbox. Full article
Show Figures

Figure 1

29 pages, 1537 KiB  
Article
Detection and Isolation of DoS and Integrity Cyber Attacks in Cyber-Physical Systems with a Neural Network-Based Architecture
by Carlos M. Paredes, Diego Martínez-Castro, Vrani Ibarra-Junquera and Apolinar González-Potes
Electronics 2021, 10(18), 2238; https://doi.org/10.3390/electronics10182238 - 12 Sep 2021
Cited by 23 | Viewed by 4451
Abstract
New applications of industrial automation request great flexibility in the systems, supported by the increase in the interconnection between its components, allowing access to all the information of the system and its reconfiguration based on the changes that occur during its operations, with [...] Read more.
New applications of industrial automation request great flexibility in the systems, supported by the increase in the interconnection between its components, allowing access to all the information of the system and its reconfiguration based on the changes that occur during its operations, with the purpose of reaching optimum points of operation. These aspects promote the Smart Factory paradigm, integrating physical and digital systems to create smarts products and processes capable of transforming conventional value chains, forming the Cyber-Physical Systems (CPSs). This flexibility opens a large gap that affects the security of control systems since the new communication links can be used by people to generate attacks that produce risk in these applications. This is a recent problem in the control systems, which originally were centralized and later were implemented as interconnected systems through isolated networks. To protect these systems, strategies that have presented acceptable results in other environments, such as office environments, have been chosen. However, the characteristics of these applications are not the same, and the results achieved are not as expected. This problem has motivated several efforts in order to contribute from different approaches to increase the security of control systems. Based on the above, this work proposes an architecture based on artificial neural networks for detection and isolation of cyber attacks Denial of Service (DoS) and integrity in CPS. Simulation results of two test benches, the Secure Water Treatment (SWaT) dataset, and a tanks system, show the effectiveness of the proposal. Regarding the SWaT dataset, the scores obtained from the recall and F1 score metrics was 0.95 and was higher than other reported works, while, in terms of precision and accuracy, it obtained a score of 0.95 which is close to other proposed methods. With respect to the interconnected tank system, scores of 0.96,0.83,0.81, and 0.83 were obtained for the accuracy, precision, F1 score, and recall metrics, respectively. The high true negatives rate in both cases is noteworthy. In general terms, the proposal has a high effectiveness in detecting and locating the proposed attacks. Full article
(This article belongs to the Special Issue Security of Cyber-Physical Systems)
Show Figures

Graphical abstract

23 pages, 3443 KiB  
Article
A Lightweight Authentication and Authorization Framework for Blockchain-Enabled IoT Network in Health-Informatics
by Muhammad Tahir, Muhammad Sardaraz, Shakoor Muhammad and Muhammad Saud Khan
Sustainability 2020, 12(17), 6960; https://doi.org/10.3390/su12176960 - 26 Aug 2020
Cited by 97 | Viewed by 7613
Abstract
Blockchain and IoT are being deployed at a large scale in various fields including healthcare for applications such as secure storage, transactions, and process automation. IoT devices are resource-constrained, have no capability of security and self-protection, and can easily be hacked or compromised. [...] Read more.
Blockchain and IoT are being deployed at a large scale in various fields including healthcare for applications such as secure storage, transactions, and process automation. IoT devices are resource-constrained, have no capability of security and self-protection, and can easily be hacked or compromised. Furthermore, Blockchain is an emerging technology with immutability features which provide secure management, authentication, and guaranteed access control to IoT devices. IoT is a cloud-based internet service in which processing and collection of user’s data are accomplished remotely. Smart healthcare also requires the facility to provide the diagnosis of patients located remotely. The smart health framework faces critical issues such as data security, costs, memory, scalability, trust, and transparency between different platforms. Therefore, it is important to handle data integrity and privacy as the user’s authenticity is in question due to an open internet environment. Several techniques are available that primarily focus on resolving security issues i.e., forgery, timing, denial of service and stolen smartcard attacks, etc. Blockchain technology follows the rules of absolute privacy to identify the users associated with transactions. The motivation behind the use of Blockchain in health informatics is the removal of the centralized third party, immutability, improved data sharing, enhanced security, and reduced overhead costs in distributed applications. Healthcare informatics has some specific requirements associated with the security and privacy along with the additional legal requirements. This paper presents a novel authentication and authorization framework for Blockchain-enabled IoT networks using a probabilistic model. The proposed framework makes use of random numbers in the authentication process which is further connected through joint conditional probability. Hence, it establishes a secure connection among IoT devices for further data acquisition. The proposed model is validated and evaluated through extensive simulations using the AVISPA tool and the Cooja simulator, respectively. Experimental results analyses show that the proposed framework provides robust mutual authenticity, enhanced access control, and lowers both the communication and computational overhead cost as compared to others. Full article
Show Figures

Figure 1

17 pages, 18686 KiB  
Communication
Neoadjuvant Metformin Added to Systemic Therapy Decreases the Proliferative Capacity of Residual Breast Cancer
by Eugeni Lopez-Bonet, Maria Buxó, Elisabet Cuyàs, Sonia Pernas, Joan Dorca, Isabel Álvarez, Susana Martínez, Jose Manuel Pérez-Garcia, Norberto Batista-López, César A. Rodríguez-Sánchez, Kepa Amillano, Severina Domínguez, Maria Luque, Idoia Morilla, Agostina Stradella, Gemma Viñas, Javier Cortés, Gloria Oliveras, Cristina Meléndez, Laura Castillo, Sara Verdura, Joan Brunet, Jorge Joven, Margarita Garcia, Samiha Saidani, Begoña Martin-Castillo and Javier A. Menendezadd Show full author list remove Hide full author list
J. Clin. Med. 2019, 8(12), 2180; https://doi.org/10.3390/jcm8122180 - 11 Dec 2019
Cited by 13 | Viewed by 5833
Abstract
The proliferative capacity of residual breast cancer (BC) disease indicates the existence of partial treatment resistance and higher probability of tumor recurrence. We explored the therapeutic potential of adding neoadjuvant metformin as an innovative strategy to decrease the proliferative potential of residual BC [...] Read more.
The proliferative capacity of residual breast cancer (BC) disease indicates the existence of partial treatment resistance and higher probability of tumor recurrence. We explored the therapeutic potential of adding neoadjuvant metformin as an innovative strategy to decrease the proliferative potential of residual BC cells in patients failing to achieve pathological complete response (pCR) after pre-operative therapy. We performed a prospective analysis involving the intention-to-treat population of the (Metformin and Trastuzumab in Neoadjuvancy) METTEN study, a randomized multicenter phase II trial of women with primary, non-metastatic (human epidermal growth factor receptor 2) HER2-positive BC evaluating the efficacy, tolerability, and safety of oral metformin (850 mg twice-daily) for 24 weeks combined with anthracycline/taxane-based chemotherapy and trastuzumab (arm A) or equivalent regimen without metformin (arm B), before surgery. We centrally evaluated the proliferation marker Ki67 on sequential core biopsies using visual assessment (VA) and an (Food and Drug Administration) FDA-cleared automated digital image analysis (ADIA) algorithm. ADIA-based pre-operative values of high Ki67 (≥20%), but not those from VA, significantly predicted the occurrence of pCR in both arms irrespective of the hormone receptor status (p = 0.024 and 0.120, respectively). Changes in Ki67 in residual tumors of non-pCR patients were significantly higher in the metformin-containing arm (p = 0.025), with half of all patients exhibiting high Ki67 at baseline moving into the low-Ki67 (<20%) category after neoadjuvant treatment. By contrast, no statistically significant changes in Ki67 occurred in residual tumors of the control treatment arm (p = 0.293). There is an urgent need for innovative therapeutic strategies aiming to provide the protective effects of decreasing Ki67 after neoadjuvant treatment even if pCR is not achieved. Metformin would be evaluated as a safe candidate to decrease the aggressiveness of residual disease after neoadjuvant (pre-operative) systemic therapy of BC patients. Full article
(This article belongs to the Section Oncology)
Show Figures

Graphical abstract

Back to TopTop