Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Cephalothrix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 13715 KiB  
Article
Levels and Profile of Tetrodotoxins in Spawning Cephalothrix mokievskii (Palaeonemertea, Nemertea): Assessing the Potential Toxic Pressure on Marine Ecosystems
by Grigorii V. Malykin, Peter V. Velansky and Timur Yu. Magarlamov
Toxins 2025, 17(1), 25; https://doi.org/10.3390/toxins17010025 - 6 Jan 2025
Viewed by 802
Abstract
The ribbon worms of the closely related species Cephalothrix simula, Cephalothrix cf. simula, and Cephalothrix mokievskii, representing the C. simula species complex, possess high concentrations of tetrodotoxin (TTX) and its analogues in all developmental stages from eggs to adults. It [...] Read more.
The ribbon worms of the closely related species Cephalothrix simula, Cephalothrix cf. simula, and Cephalothrix mokievskii, representing the C. simula species complex, possess high concentrations of tetrodotoxin (TTX) and its analogues in all developmental stages from eggs to adults. It has recently been suggested that the eggs and larvae of these animals can be a source of tetrodotoxins (TTXs) for other aquatic organisms. In the current study, TTXs in mature and post-spawning individuals and in the eggs of C. mokievskii were identified using high-performance liquid chromatography–tandem mass spectrometry. For the first time, the quantity and profile of TTXs that these nemerteans released into the environment during spawning were estimated. We showed that the spawning C. mokievskii females released significant amounts of TTX and 5,6,11-trideoxyTTX with their eggs; these levels were sufficient for the potential toxification of marine bioresources. The issues surrounding the monitoring of TTXs in commercial marine animals, and collecting at the sites of the spawning of nemerteans from the C. simula species complex, are discussed. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Graphical abstract

24 pages, 3380 KiB  
Article
Investigating Non-Native Ribbon Worm Cephalothrix simula as a Potential Source of Tetrodotoxin in British Bivalve Shellfish
by Monika Dhanji-Rapkova, Robert G. Hatfield, David I. Walker, Chantelle Hooper, Sarah Alewijnse, Craig Baker-Austin, Andrew D. Turner and Jennifer M. Ritchie
Mar. Drugs 2024, 22(10), 458; https://doi.org/10.3390/md22100458 - 5 Oct 2024
Cited by 2 | Viewed by 1733
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin found in several phylogenetically diverse organisms, some of which are sought as seafood. Since 2015, TTX has been reported in bivalve shellfish from several estuarine locations along the Mediterranean and European Atlantic coasts, posing an emerging [...] Read more.
Tetrodotoxin (TTX) is a potent marine neurotoxin found in several phylogenetically diverse organisms, some of which are sought as seafood. Since 2015, TTX has been reported in bivalve shellfish from several estuarine locations along the Mediterranean and European Atlantic coasts, posing an emerging food safety concern. Although reports on spatial and temporal distribution have increased in recent years, processes leading to TTX accumulation in European bivalves are yet to be described. Here, we explored the hypothesis that the ribbon worm species Cephalothrix simula, known to contain high levels of TTX, could play a role in the trophic transfer of the toxin into shellfish. During a field study at a single location in southern England, we confirmed C. simula DNA in seawater adjacent to trestle-farmed Pacific oysters Magallana gigas (formerly Crassostrea gigas) with a history of TTX occurrence. C. simula DNA in seawater was significantly higher in June and July during the active phase of toxin accumulation compared to periods of either no or continually decreasing TTX concentrations in M. gigas. In addition, C. simula DNA was detected in oyster digestive glands collected on 15 June 2021, the day with the highest recorded C. simula DNA abundance in seawater. These findings show evidence of a relationship between C. simula and TTX occurrence, providing support for the hypothesis that bivalves may acquire TTX through filter-feeding on microscopic life forms of C. simula present in the water column at particular periods each year. Although further evidence is needed to confirm such feeding activity, this study significantly contributes to discussions about the biological source of TTX in European bivalve shellfish. Full article
(This article belongs to the Special Issue Emerging Toxins Accumulation in Shellfish)
Show Figures

Figure 1

21 pages, 2683 KiB  
Article
Anti-Inflammatory Activity of Cyanobacteria Pigment Extracts: Physiological Free Radical Scavenging and Modulation of iNOS and LOX Activity
by Lécia Rodrigues, Janaína Morone, Guilherme Scotta Hentschke, Vitor Vasconcelos and Graciliana Lopes
Mar. Drugs 2024, 22(3), 131; https://doi.org/10.3390/md22030131 - 12 Mar 2024
Cited by 8 | Viewed by 4118
Abstract
Cyanobacteria are among the oldest organisms colonizing Earth. Their great biodiversity and ability to biosynthesize secondary metabolites through a variety of routes makes them attractive resources for biotechnological applications and drug discovery. In this pioneer study, four filamentous cyanobacteria (Cephalothrix lacustris LEGE [...] Read more.
Cyanobacteria are among the oldest organisms colonizing Earth. Their great biodiversity and ability to biosynthesize secondary metabolites through a variety of routes makes them attractive resources for biotechnological applications and drug discovery. In this pioneer study, four filamentous cyanobacteria (Cephalothrix lacustris LEGE 15493, Leptolyngbya boryana LEGE 15486, Nodosilinea nodulosa LEGE 06104 and Leptothoe sp. LEGE 11479) were explored for their anti-inflammatory potential in cell and cell-free in vitro bioassays, involving different inflammatory mediators and enzymes. Extracts of different polarities were sequentially prepared and chemically characterized for their content of phycobiliproteins (PBPs) and carotenoids. HPLC-PDA analysis of the acetone extracts revealed β-carotene to be the dominant carotenoid (18.4–44.3 mg/g) and zeaxanthin as the dominant xanthophyll (52.7–192.9 mg/g), with Leptothoe sp. LEGE 11479 and Nodosilinea nodulosa LEGE 06104, respectively, being the richest strains. The PBP profile was in accordance with the color presented by the aqueous extracts, with Leptolyngbya boryana LEGE 15486 being the richest in phycocyanin (204.5 μg/mg) and Leptothoe sp. LEGE 11479 the richest in phycoerythrin (78.5 μg/mg). Aqueous extracts were more effective in superoxide anion radical scavenging, while acetone ones were more effective in scavenging nitric oxide radical (NO) and in inhibiting lipoxygenase. Acetone extracts also reduced NO production in lipopolysaccharide-stimulated RAW 264.7 macrophages, with the mechanistic study suggesting a downregulation of the inducible nitric oxide synthase expression. Nodosilinea nodulosa LEGE 06104 and Leptothoe sp. LEGE 11479 acetone extracts presented the lowest IC50 values for the mentioned assays, pointing them out as promising resources for the development of new multi-target anti-inflammatory therapies. Full article
(This article belongs to the Special Issue Antiphotoaging and Photoprotective Compounds from Marine Environments)
Show Figures

Figure 1

15 pages, 2938 KiB  
Communication
Tetrodotoxin and Its Analogues (TTXs) in the Food-Capture and Defense Organs of the Palaeonemertean Cephalothrix cf. simula
by Grigorii V. Malykin, Peter V. Velansky and Timur Yu. Magarlamov
Toxins 2024, 16(1), 43; https://doi.org/10.3390/toxins16010043 - 12 Jan 2024
Cited by 3 | Viewed by 2204
Abstract
Tetrodotoxin (TTX), an extremely potent low-molecular-weight neurotoxin, is widespread among marine animals including ribbon worms (Nemertea). Previously, studies on the highly toxic palaeonemertean Cephalothrix cf. simula showed that toxin-positive structures are present all over its body and are mainly associated with glandular cells [...] Read more.
Tetrodotoxin (TTX), an extremely potent low-molecular-weight neurotoxin, is widespread among marine animals including ribbon worms (Nemertea). Previously, studies on the highly toxic palaeonemertean Cephalothrix cf. simula showed that toxin-positive structures are present all over its body and are mainly associated with glandular cells and epithelial tissues. The highest TTXs concentrations were detected in a total extract from the intestine of the anterior part of the body and also in a total extract from the proboscis. However, many questions as to the TTXs distribution in the organs of the anterior part of the worm’s body and the functions of the toxins in these organs are still unanswered. In the present report, we provide additional results of a detailed and comprehensive analysis of TTXs distribution in the nemertean’s proboscis, buccal cavity, and cephalic gland using an integrated approach including high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS), confocal laser scanning microscopy with anti-TTX antibodies, light and electron microscopies, and observations of feeding behavior. For the proboscis, we have found a TTXs profile different from that characteristic of other organs and tissues. We have also shown for the first time that the major amount of TTXs is localized in the anterior part of the proboscis that is mainly involved in hunting. TTX-containing glandular cells, which can be involved in the prey immobilization, have been found in the buccal cavities of the nemerteans. A significant contribution of the cephalic gland to the toxicity of this animal has been shown for the first time, and the role of the gland is hypothesized to be involved not only in protection against potential enemies but also in immobilizing prey. The data obtained have made it possible to extend the understanding of the role and features of the use of TTXs in the organs of the anterior part of nemertean’s body. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

19 pages, 17737 KiB  
Article
Limnonema gen. nov. (Aerosakkonemataceae, Cyanobacteria): Two Novel Species from Republic of Korea Characterized by Morphological and Molecular Analyses
by Ji-Ho Song, So-Won Kim, Nam-Ju Lee, Do-Hyun Kim, Hye-Ryeung Wang and Ok-Min Lee
Diversity 2023, 15(12), 1174; https://doi.org/10.3390/d15121174 - 27 Nov 2023
Cited by 1 | Viewed by 1591
Abstract
In this study, 18 strains of cyanobacteria were isolated from seven sites, including the Han River and Anseong Stream in Republic of Korea, and we propose these isolated strains as Limnonema gen. nov., belonging to the Aerosakkonemataceae family of the Oscillatoriales order, and [...] Read more.
In this study, 18 strains of cyanobacteria were isolated from seven sites, including the Han River and Anseong Stream in Republic of Korea, and we propose these isolated strains as Limnonema gen. nov., belonging to the Aerosakkonemataceae family of the Oscillatoriales order, and also, as L. hangangris sp. nov. and L. anseonga sp. nov. These strains were identified based on morphological data using a light microscope and a transmission electron microscope, and molecular data using 16S rRNA and 16S–23S ITS gene sequences. The genus Limnonema was mainly collected as planktons, and some L. hangangris (ACKU-695–697) appeared as epilithic cyanobacteria. The genus Limnonema showed filamentous trichomes, intracellular gas vacuoles, and irregular thylakoids arrangement, which was distinct from genera Cephalothrix, Microseira, and Potamosiphon belonging to the family Aerosakkonemataceae. Moreover, the cell widths of genus Limnonema were narrower than those of genus Aerosakkonema, which is the type genus of the family Aerosakkonemataceae, and L. anseonga contained more cells with wider widths than those of L. hangangris. In the 16S rRNA gene sequence phylogeny, genus Limnonema belonged to the family Aerosakkonemataceae and was distinguished from its close relatives, genera Aerosakkonema and Cephalothrix, and L. hangangris and L. anseonga formed different branches. In 16S rRNA gene sequence similarity, genus Limnonema showed 95.4–95.9% and 93.6–94.4% similarity with genera Aerosakkonema and Cephalothrix, respectively, and L. hangangris and L. anseonga showed 97.6–97.7% similarity between each other. In the 16S–23S ITS secondary structure, the D1–D1′, Box-B, and V3 helices of genus Limnonema were distinguished from genera belonging to the family Aerosakkonemataceae, and the V3 helices of L. hangangris and L. anseonga were also different from each other. Full article
Show Figures

Figure 1

10 pages, 1790 KiB  
Communication
Tetrodotoxins in Ribbon Worms Cephalothrix cf. simula and Kulikovia alborostrata from Peter the Great Bay, Sea of Japan
by Anna E. Vlasenko and Timur Yu. Magarlamov
Toxins 2023, 15(1), 16; https://doi.org/10.3390/toxins15010016 - 27 Dec 2022
Cited by 7 | Viewed by 1969
Abstract
Tetrodotoxin, an extremely potent low-molecular-weight neurotoxin, and its analogues (TTXs) are widely distributed in aquatic and terrestrial ecosystems. Most investigations concerning TTXs have been conducted mainly on puffer fish, octopus, and mollusks, without paying due attention to various non-edible animals including nemerteans, a [...] Read more.
Tetrodotoxin, an extremely potent low-molecular-weight neurotoxin, and its analogues (TTXs) are widely distributed in aquatic and terrestrial ecosystems. Most investigations concerning TTXs have been conducted mainly on puffer fish, octopus, and mollusks, without paying due attention to various non-edible animals including nemerteans, a small group of marine worms, several species of which have been shown to possess high amounts of TTXs. In this study, for the first time, variations in TTX and its analogues, in 32 specimens of Cephalothrix cf. simula and 36 specimens of Kulikovia alborostrata, from Peter the Great Bay Sea of Japan were investigated, which may contribute to elucidation of TTXs migration pathways in ecosystems. Using high performance liquid chromatography with tandem mass spectrometry (HPLC–MS/MS), it was found that the total TTXs concentrations within both species vary by one to several orders of magnitude, 85.75–7108.26 µg/g and 0.35–8.11 ng/g in C. cf. simula and K. alborostrata, respectively. The intra- and interspecies similarities in proportions of TTXs in both species were observed; based on the results, a possible way of their toxification was discussed. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

19 pages, 2193 KiB  
Article
Investigation of Peptide Toxin Diversity in Ribbon Worms (Nemertea) Using a Transcriptomic Approach
by Anna E. Vlasenko, Vasiliy G. Kuznetsov and Timur Yu. Magarlamov
Toxins 2022, 14(8), 542; https://doi.org/10.3390/toxins14080542 - 8 Aug 2022
Cited by 3 | Viewed by 2507
Abstract
Nemertea is a phylum of nonsegmented worms (supraphylum: Spiralia), also known as ribbon worms. The members of this phylum contain various toxins, including peptide toxins. Here, we provide a transcriptomic analysis of peptide toxins in 14 nemertean species, including Cephalothrix cf. simula, [...] Read more.
Nemertea is a phylum of nonsegmented worms (supraphylum: Spiralia), also known as ribbon worms. The members of this phylum contain various toxins, including peptide toxins. Here, we provide a transcriptomic analysis of peptide toxins in 14 nemertean species, including Cephalothrix cf. simula, which was sequenced in the current study. The summarized data show that the number of toxin transcripts in the studied nemerteans varied from 12 to 82. The most represented groups of toxins were enzymes and ion channel inhibitors, which, in total, reached a proportion of 72% in some species, and the least represented were pore-forming toxins and neurotoxins, the total proportion of which did not exceed 18%. The study revealed that nemerteans possess a much greater variety of toxins than previously thought and showed that these animals are a promising object for the investigation of venom diversity and evolution, and in the search for new peptide toxins. Full article
(This article belongs to the Special Issue Evolution, Genomics and Proteomics of Venom)
Show Figures

Figure 1

19 pages, 1563 KiB  
Article
Cyanobacteria Secondary Metabolites as Biotechnological Ingredients in Natural Anti-Aging Cosmetics: Potential to Overcome Hyperpigmentation, Loss of Skin Density and UV Radiation-Deleterious Effects
by Rita Favas, Janaína Morone, Rosário Martins, Vitor Vasconcelos and Graciliana Lopes
Mar. Drugs 2022, 20(3), 183; https://doi.org/10.3390/md20030183 - 1 Mar 2022
Cited by 26 | Viewed by 6892
Abstract
The loss of density and elasticity, the appearance of wrinkles and hyperpigmentation are among the first noticeable signs of skin aging. Beyond UV radiation and oxidative stress, matrix metalloproteinases (MMPs) assume a preponderant role in the process, since their deregulation results in the [...] Read more.
The loss of density and elasticity, the appearance of wrinkles and hyperpigmentation are among the first noticeable signs of skin aging. Beyond UV radiation and oxidative stress, matrix metalloproteinases (MMPs) assume a preponderant role in the process, since their deregulation results in the degradation of most extracellular matrix components. In this survey, four cyanobacteria strains were explored for their capacity to produce secondary metabolites with biotechnological potential for use in anti-aging formulations. Leptolyngbya boryana LEGE 15486 and Cephalothrix lacustris LEGE 15493 from freshwater ecosystems, and Leptolyngbya cf. ectocarpi LEGE 11479 and Nodosilinea nodulosa LEGE 06104 from marine habitats were sequentially extracted with acetone and water, and extracts were analyzed for their toxicity in cell lines with key roles in the skin context (HaCAT, 3T3L1, and hCMEC). The non-toxic extracts were chemically characterized in terms of proteins, carotenoids, phenols, and chlorophyll a, and their anti-aging potential was explored through their ability to scavenge the physiological free radical superoxide anion radical (O2•−), to reduce the activity of the MMPs elastase and hyaluronidase, to inhibit tyrosinase and thus avoid melanin production, and to block UV-B radiation (sun protection factor, SPF). Leptolyngbya species stood out for anti-aging purposes: L. boryana LEGE 15486 presented a remarkable SPF of 19 (at 200 µg/mL), being among the best species regarding O2•− scavenging, (IC50 = 99.50 µg/mL) and also being able to inhibit tyrosinase (IC25 = 784 µg/mL), proving to be promising against UV-induced skin-aging; L. ectocarpi LEGE 11479 was more efficient in inhibiting MMPs (hyaluronidase, IC50 = 863 µg/mL; elastase, IC50 = 391 µg/mL), thus being the choice to retard dermal density loss. Principal component analysis (PCA) of the data allowed the grouping of extracts into three groups, according to their chemical composition; the correlation of carotenoids and chlorophyll a with MMPs activity (p < 0.01), O2•− scavenging with phenolic compounds (p < 0.01), and phycocyanin and allophycocyanin with SPF, pointing to these compounds in particular as responsible for UV-B blockage. This original survey explores, for the first time, the biotechnological potential of these cyanobacteria strains in the field of skin aging, demonstrating the promising, innovative, and multifactorial nature of these microorganisms. Full article
Show Figures

Figure 1

18 pages, 5695 KiB  
Article
Intrabody Tetrodotoxin Distribution and Possible Hypothesis for Its Migration in Ribbon Worms Cephalothrix cf. simula (Palaeonemertea, Nemertea)
by Grigorii V. Malykin, Alexei V. Chernyshev and Timur Yu. Magarlamov
Mar. Drugs 2021, 19(9), 494; https://doi.org/10.3390/md19090494 - 29 Aug 2021
Cited by 17 | Viewed by 3380
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin found in many marine and terrestrial animals, but only a few species, such as the ribbon worms of the genus Cephalothrix, accumulate it in extremely high concentrations. The intrabody distribution of TTX in highly toxic organisms [...] Read more.
Tetrodotoxin (TTX) is a potent neurotoxin found in many marine and terrestrial animals, but only a few species, such as the ribbon worms of the genus Cephalothrix, accumulate it in extremely high concentrations. The intrabody distribution of TTX in highly toxic organisms is of great interest because it helps researchers to understand the pathways by which the toxin migrates, accumulates, and functions in tissues. Using immunohistochemistry with anti-TTX antibodies, the authors of this study investigated the toxin’s distribution inside the organs, tissues, and cells of Cephalothrix cf. simula. The cell types of TTX-positive tissues were identified by light microscopy. The main sites of TTX accumulation occurred in the secretory cells of the integuments, the microvilli of the epidermal ciliary cells, cephalic glands, the glandular epithelia of the proboscises, the enterocytes of the digestive systems, and nephridia. Obtained data suggest the toxin migrates from the digestive system through blood vessels to target organs. TTX is excreted from the body through the nephridia and mucus of epidermal cells. Full article
(This article belongs to the Special Issue Marine Toxins in Non-traditional Vectors)
Show Figures

Figure 1

9 pages, 1329 KiB  
Communication
The First Data on the Complete Genome of a Tetrodotoxin-Producing Bacterium
by Daria I. Melnikova, Reindert Nijland and Timur Yu. Magarlamov
Toxins 2021, 13(6), 410; https://doi.org/10.3390/toxins13060410 - 9 Jun 2021
Cited by 4 | Viewed by 4791
Abstract
Tetrodotoxin (TTX)-producing bacteria have attracted great interest as a model system for study of the TTX biosynthetic route. Here, we report the complete genome of the TTX-producing bacterium Bacillus sp. 1839. The genome of the strain Bacillus sp. 1839, previously isolated from the [...] Read more.
Tetrodotoxin (TTX)-producing bacteria have attracted great interest as a model system for study of the TTX biosynthetic route. Here, we report the complete genome of the TTX-producing bacterium Bacillus sp. 1839. The genome of the strain Bacillus sp. 1839, previously isolated from the TTX-bearing marine ribbon worm Cephalothrix cf. simula, was obtained using second generation Illumina and third generation nanopore sequencing technologies. Phylogenetic analysis has classified this strain as Cytobacillus gottheilii. Full article
(This article belongs to the Special Issue Analysis and Evaluation of Tetrodotoxin)
Show Figures

Figure 1

14 pages, 1438 KiB  
Article
Tetrodotoxin and Its Analogues in Cephalothrix cf. simula (Nemertea: Palaeonemertea) from the Sea of Japan (Peter the Great Gulf): Intrabody Distribution and Secretions
by Anna E. Vlasenko and Timur Yu. Magarlamov
Toxins 2020, 12(12), 745; https://doi.org/10.3390/toxins12120745 - 26 Nov 2020
Cited by 17 | Viewed by 2615
Abstract
Some nemertean species from the genus Cephalothrix accumulate tetrodotoxin (TTX) in extremely high concentrations. The current study is the first to provide high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) data on tetrodotoxin and its analogues (TTXs) profile and concentration in different regions and organs [...] Read more.
Some nemertean species from the genus Cephalothrix accumulate tetrodotoxin (TTX) in extremely high concentrations. The current study is the first to provide high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) data on tetrodotoxin and its analogues (TTXs) profile and concentration in different regions and organs of Cephalothrix cf. simula, and its secretions produced in response to stimulation. Different specimens of C. cf. simula possessed 7–11 analogues, including nine previously found in this species and two new for nemerteans—4,9-anhydro-8-epi-5,6,11-trideoxyTTX and 1-hydroxy-8-epi-5,6,11-trideoxyTTX. The study of the toxins’ distribution in different regions and organs of nemerteans revealed the same qualitative composition of TTXs throughout the body but differences in the total concentration of the toxins. The total concentration of TTXs was highest in the anterior region of the body and decreased towards the posterior; the ratio of the analogues also differed between regions. The data obtained suggest a pathway of TTXs uptake in C. cf. simula and the role of toxins in the life activity of nemerteans. Full article
(This article belongs to the Special Issue Isolation and Characterization of Marine Toxins)
Show Figures

Figure 1

20 pages, 3220 KiB  
Article
New Invasive Nemertean Species (Cephalothrix Simula) in England with High Levels of Tetrodotoxin and a Microbiome Linked to Toxin Metabolism
by Andrew D. Turner, David Fenwick, Andy Powell, Monika Dhanji-Rapkova, Charlotte Ford, Robert G. Hatfield, Andres Santos, Jaime Martinez-Urtaza, Tim P. Bean, Craig Baker-Austin and Paul Stebbing
Mar. Drugs 2018, 16(11), 452; https://doi.org/10.3390/md16110452 - 16 Nov 2018
Cited by 47 | Viewed by 9950
Abstract
The marine nemertean Cephalothrix simula originates from the Pacific Ocean but in recent years has been discovered in northern Europe. The species has been associated with high levels of the marine neurotoxin Tetrodotoxin, traditionally associated with Pufferfish Poisoning. This study reports the first [...] Read more.
The marine nemertean Cephalothrix simula originates from the Pacific Ocean but in recent years has been discovered in northern Europe. The species has been associated with high levels of the marine neurotoxin Tetrodotoxin, traditionally associated with Pufferfish Poisoning. This study reports the first discovery of two organisms of C. simula in the UK, showing the geographical extent of this species is wider than originally described. Species identification was initially conducted morphologically, with confirmation by Cox 1 DNA sequencing. 16S gene sequencing enabled the taxonomic assignment of the microbiome, showing the prevalence of a large number of bacterial genera previously associated with TTX production including Alteromonas, Vibrio and Pseudomonas. LC-MS/MS analysis of the nemertean tissue revealed the presence of multiple analogues of TTX, dominated by the parent TTX, with a total toxin concentration quantified at 54 µg TTX per g of tissue. Pseudomonas luteola isolated from C. simula, together with Vibrio alginolyticus from the native nemertean Tubulanus annulatus, were cultured at low temperature and both found to contain TTX. Overall, this paper confirms the high toxicity of a newly discovered invasive nemertean species with links to toxin-producing marine bacteria and the potential risk to human safety. Further work is required to assess the geographical extent and toxicity range of C. simula along the UK coast in order to properly gauge the potential impacts on the environment and human safety. Full article
(This article belongs to the Special Issue Marine Bacterial Toxins)
Show Figures

Figure 1

20 pages, 758 KiB  
Review
Highly Toxic Ribbon Worm Cephalothrix simula Containing Tetrodotoxin in Hiroshima Bay, Hiroshima Prefecture, Japan
by Manabu Asakawa, Katsutoshi Ito and Hiroshi Kajihara
Toxins 2013, 5(2), 376-395; https://doi.org/10.3390/toxins5020376 - 20 Feb 2013
Cited by 50 | Viewed by 14059
Abstract
In 1998, during a toxicological surveillance of various marine fouling organisms in Hiroshima Bay, Japan, specimens of the ribbon worm, Cephalothrix simula (Nemertea: Palaeonemertea) were found. These ribbon worms contained toxins with extremely strong paralytic activity. The maximum toxicity in terms of tetrodotoxin [...] Read more.
In 1998, during a toxicological surveillance of various marine fouling organisms in Hiroshima Bay, Japan, specimens of the ribbon worm, Cephalothrix simula (Nemertea: Palaeonemertea) were found. These ribbon worms contained toxins with extremely strong paralytic activity. The maximum toxicity in terms of tetrodotoxin (TTX) was 25,590 mouse units (MU) per gram for the whole worm throughout the monitoring period. The main toxic component was isolated and recrystallized from an acidified methanolic solution. The crystalline with a specific toxicity of 3520 MU/mg was obtained and identified as TTX by high performance liquid chromatography (HPLC)-fluorescent detection (FLD) (HPLC-FLD), electrospray ionization-mass spectrometry (ESI-MS), infrared (IR), nuclear magnetic resonance (NMR) and gas chromatography–mass spectrometry (GC-MS). The highest toxicity of C. simula exceeded the human lethal dose per a single worm. A toxicological surveillance of C. simula from 1998 to 2005 indicated approximately 80% of the individuals were ranked as “strongly toxic” (≥1000 MU/g). Forty-eight percent of the specimens possessed toxicity scores of more than 2000 MU/g. Seasonal variations were observed in the lethal potency of C. simula. Specimens collected on January 13, 2000 to December 26, 2000 showed mean toxicities of 665–5300 MU/g (n = 10). These data prompted a toxicological surveillance of ribbon worms from other localities with different habitats in Japan, including Akkeshi Bay (Hokkaido) under stones on rocky intertidal beaches, as well as Otsuchi (Iwate) among calcareous tubes of serpulid polychaetes on rocky shores. Within twelve species of ribbon worms examined, only C. simula possessed extremely high toxicity. Therefore, C. simula appears to show generally high toxicity irrespective of their locality and habitat. Full article
(This article belongs to the Special Issue Toxins from Aquatic Organisms)
Show Figures

Figure 1

Back to TopTop