Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = Crimson Seedless

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2030 KB  
Article
Evaluation of Photosynthetic Performance and Adaptability of Grape Varieties in Arid Regions
by Runze Wang, Haixia Zhong, Fuchun Zhang, Xiaoming Zhou, Meijuan Cheng, Hengde Liu, Shuping Lin, Liping Wang, Xinyu Wu and Liqiang Liu
Horticulturae 2025, 11(9), 1041; https://doi.org/10.3390/horticulturae11091041 - 2 Sep 2025
Viewed by 548
Abstract
Photosynthetic characteristics are critical for grape growth and development. Drought conditions in arid regions significantly affect these characteristics. To identify grape varieties better suited for cultivation in arid environments, this study evaluated the leaf phenotypes and photosynthetic characteristics of 27 table grape varieties [...] Read more.
Photosynthetic characteristics are critical for grape growth and development. Drought conditions in arid regions significantly affect these characteristics. To identify grape varieties better suited for cultivation in arid environments, this study evaluated the leaf phenotypes and photosynthetic characteristics of 27 table grape varieties in Hotan Prefecture, China. Results revealed significant variations in leaf phenotypes and chlorophyll content (SPAD) among varieties under Hotan’s drought conditions. ‘Kyoho’ exhibited the largest leaf area (254.34 cm2), while ‘Munage’ had the smallest (112.43 cm2), and ‘Manaizi’ showed the highest chlorophyll content (SPAD = 44.21). ‘Munage’ and ‘Flame Seedless’ recorded the highest net photosynthetic rates (PNmax = 16.24 and 16.23 μmol·m−2·s−1, respectively), while ‘Thompson Seedless’ had the lowest respiratory loss (RD = 1.15 μmol·m−2·s−1) and light compensation point (Ic = 22.41 μmol·m−2·s−1), with a highly significant positive correlation between RD and Ic. ‘Crimson Seedless’ exhibited the highest light saturation point (Isat = 2745.15 μmol·m−2·s−1). Chlorophyll fluorescence analysis indicated that ‘Autumn Black’ had the highest PSII photochemical yield (Fv/Fm = 0.84), while ‘Zicuiwuhe’ showed high energy transfer indices (PIabs = 1.78, PItotal = 1.66) and electron transfer efficiency (φEo = 0.39). PIabs was significantly correlated with Fv/Fm, Fv/Fo, and energy flux parameters. ‘Molixiang’ demonstrated superior energy utilization, with the highest light absorption (ABS/CSm = 2440.8) and electron transfer flux (ETo/CSm = 874) and the lowest energy dissipation (DIo/CSm = 455.8), supported by a negative correlation between energy dissipation (DIo/CSm) and photochemical efficiency (φEo). Principal component analysis revealed that ‘Molixiang’ had the highest comprehensive photosynthetic adaptability score (0.97), followed by ‘Zicuiwuhe’ (0.79) and ‘Hetianhong’ (0.73), under Hotan’s drought stress conditions. These findings provide valuable insights for selecting and breeding grape varieties adapted to arid environments and climate change. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

30 pages, 4274 KB  
Article
Titanium Nanoparticles (TiO2-NPs) as Catalysts for Enhancing Drought Tolerance in Grapevine Saplings
by Selda Daler, Ozkan Kaya, Nesrin Korkmaz, Tuğba Kılıç, Ahmet Karadağ and Harlene Hatterman-Valenti
Horticulturae 2024, 10(10), 1103; https://doi.org/10.3390/horticulturae10101103 - 17 Oct 2024
Cited by 9 | Viewed by 2194
Abstract
Drought is a major stress that hinders plant growth and causes water stress, posing a significant threat to global food security. While nanotechnology, particularly the use of nanoparticles such as TiO2, offers a promising solution by enhancing plants’ resilience to drought [...] Read more.
Drought is a major stress that hinders plant growth and causes water stress, posing a significant threat to global food security. While nanotechnology, particularly the use of nanoparticles such as TiO2, offers a promising solution by enhancing plants’ resilience to drought stress, improving nutrient absorption, and promoting growth under adverse conditions, its application in viticulture remains underexplored. The objective of this research was to investigate the effects of titanium dioxide nanoparticles (TiO2-NPs; 100, 10, 1, and 0 ppm (control)) on various physiological, biochemical, and morphological parameters in grapevine saplings. Three different rootstock varieties, 41 B/Crimson Seedless (CS), 1103 P/CS, and 5 BB/CS, were included in the experiment to assess how rootstock variety influences the response of grapevine saplings to TiO2-NPs under drought stress (40–50%) and well-irrigated (90–100%) conditions. Young vines grown in pots under greenhouse conditions were used in this study. Applications of 10 ppm TiO2-NPs improved growth parameters and the SPAD index and enhanced stomatal conductance, relative water content, and protein content in grapevine saplings under both drought and well-irrigated conditions. Conversely, oxidative stress parameters, including the membrane damage index, hydrogen peroxide, drought index, and lipid peroxidation levels, were significantly reduced following 10 ppm TiO2-NP applications under drought conditions. Furthermore, total phenolic content, proline content, and ascorbate peroxidase, catalase, and superoxide dismutase activities, which increased significantly with drought stress, were reduced to lower levels, paralleling the alleviation of drought-induced oxidative stress. Our results suggest that the primary role of TiO2 nanoparticles in enhancing drought tolerance is due to their beneficial effects in alleviating damage caused by drought stress. This finding applies not only to grapevines but may also be relevant for other agricultural crops. Full article
(This article belongs to the Special Issue Advances in Rootstocks for Grape Production)
Show Figures

Figure 1

11 pages, 2892 KB  
Article
Enhancing Red Table Grape Coloration Using Tsikoudia: A Novel and Sustainable Approach
by Emmanouil Kontaxakis, Dimitrios Lydakis and Ioannis Fisarakis
Plants 2024, 13(19), 2689; https://doi.org/10.3390/plants13192689 - 25 Sep 2024
Cited by 1 | Viewed by 1407
Abstract
Achieving optimal coloration in red table grapes, especially in warm-climate regions, presents significant challenges due to high temperatures that inhibit anthocyanin biosynthesis. Conventional methods to enhance grape coloration, including the use of abscisic acid (ABA), ethephon, foliar nutrient supplementation, and viticultural practices like [...] Read more.
Achieving optimal coloration in red table grapes, especially in warm-climate regions, presents significant challenges due to high temperatures that inhibit anthocyanin biosynthesis. Conventional methods to enhance grape coloration, including the use of abscisic acid (ABA), ethephon, foliar nutrient supplementation, and viticultural practices like cluster trimming and girdling, have limitations related to cost, regulatory restrictions, and potential adverse effects on grapes quality. This study proposes the application of tsikoudia, a traditional Greek alcoholic beverage, as a novel, sustainable, and cost-effective alternative to conventional practices. Tsikoudia, applied during the veraison stage, significantly improved the coloration of ‘Crimson Seedless’ and ‘Red Globe’ grapes by enhancing anthocyanin accumulation and altering color parameters. Specifically, lightness (L*), chroma (C*), and hue angle (h), measured using the CIE-Lab color system, were reduced, while the Color Index for Red Grapes (CIRG) was increased. Additionally, total anthocyanin content, determined through spectrophotometric analysis, also showed an increase. These changes indicate a more intense red coloration. This research highlights the effectiveness of tsikoudia in improving grape coloration and contributes to the development of more sustainable viticultural practices. Full article
Show Figures

Figure 1

21 pages, 1509 KB  
Article
Improving Water Use Efficiency, Yield, and Fruit Quality of Crimson Seedless Grapevines under Drought Stress
by Mohamed E. A. El-Sayed, Amr A. Hammam, Ahmed S. K. Fayed, Nazih Y. Rebouh and Rasha M. Badr Eldin
Horticulturae 2024, 10(6), 576; https://doi.org/10.3390/horticulturae10060576 - 1 Jun 2024
Viewed by 2067
Abstract
Drought stress is a group of abiotic stresses that affects plant growth and yield production. A field experiment over two successive seasons (2021–2022 and 2022–2023) in sand soil was conducted to investigate the integration effect of deficit irrigation, soil amendment “hundzsoil”, and the [...] Read more.
Drought stress is a group of abiotic stresses that affects plant growth and yield production. A field experiment over two successive seasons (2021–2022 and 2022–2023) in sand soil was conducted to investigate the integration effect of deficit irrigation, soil amendment “hundzsoil”, and the spraying of proline on the water use efficiency (WUE), yield, and fruit quality of 8-year-old Crimson seedless table grapes. Four application rates of soil amendment (0, 2, 4, and 6 kg hundzsoil /vine) were added during the dormancy period, and four irrigation levels at 125, 100, 75, and 60% of the field capacity were applied just before flowering until harvest. Proline at two levels (0 and 500 ppm) was applied as a foliar spray. Parameters such as bud fertility, weight of 100 berries, juice volume, and cluster number were positively affected by irrigation at 75% FC along with applying hundzsoil at 2 and 4 kg/vine under proline spray in both seasons. Irrigation at the 125% FC level with a 6 kg hundzsoil application under proline spray resulted in the highest yield, berries number, cluster length, cluster weight, and total anthocyanin in both seasons. The TSS/acidity ratio was significantly and positively affected by deficit irrigation (60% FC level) under hundzsoil at a rate of 4 kg alongside proline spray. Reducing irrigation to 60% FC without hundzsoil and proline spray negatively affected numerous growth parameters and the yield. However, irrigation at 60% FC alongside 6 kg of hundzsoil and proline showed the highest IWUE in both seasons. Proline spray was a key factor in conserving water used for irrigation. This study recommends using deficit irrigation alongside hundzsoil application under proline spray as an adequate strategy for water use efficiency and improving the yield and fruit quality of Crimson seedless grapevines cultivated in sand soil. Full article
Show Figures

Figure 1

23 pages, 3497 KB  
Article
Plant Biostimulants Enhance Bud Break in Vitis vinifera Crimson Seedless Using Combination Treatments
by Nicole C. Venter, Eunice Avenant, Theunis N. Kotze, Paul N. Hills and John P. Moore
Horticulturae 2024, 10(5), 471; https://doi.org/10.3390/horticulturae10050471 - 4 May 2024
Viewed by 3101
Abstract
The rest-breaking agent, hydrogen cyanamide (HC), can substitute insufficient chill unit accumulation in Vitis vinifera and induce uniform bud-break; however, due to its toxicity it is being banned. In South Africa, red seedless grapes, including V. vinifera Crimson Seedless (CS), are the largest [...] Read more.
The rest-breaking agent, hydrogen cyanamide (HC), can substitute insufficient chill unit accumulation in Vitis vinifera and induce uniform bud-break; however, due to its toxicity it is being banned. In South Africa, red seedless grapes, including V. vinifera Crimson Seedless (CS), are the largest table grape export group; therefore, replacing HC in V. vinifera CS is crucial. This study aimed to confirm the molecular triggers induced by HC and assess the bud-break-enhancing abilities of commercial plant biostimulants. Forced bud-break assay experiments using V. vinifera CS single-node cuttings and a small-scale field trial were performed. Results demonstrated that increased chill unit accumulation (CUA) reduced HC efficacy. Bud-break started between 10 and 20 days after treatment, irrespective of final CUA. The small-scale field trial found that HC 3% and biostimulants were similar to the negative control. The treatment of dormant grapevine compound buds with nitric oxide (NO), hydrogen peroxide (H2O2), and hypoxia trigger dormancy release to a certain extent, supporting the molecular models proposed for HC action. NO, H2O2, and hypoxia, in combination with PBs, may potentially replace HC; however, this needs to be confirmed in future experiments. Full article
(This article belongs to the Special Issue The Role of Biostimulants in Horticultural Crops)
Show Figures

Figure 1

17 pages, 2063 KB  
Article
Viticultural Climate Indexes and Their Role in The Prediction of Anthocyanins and Other Flavonoids Content in Seedless Table Grapes
by Pasquale Crupi, Vittorio Alba, Giovanni Gentilesco, Marica Gasparro, Giuseppe Ferrara, Andrea Mazzeo and Antonio Coletta
Horticulturae 2024, 10(1), 28; https://doi.org/10.3390/horticulturae10010028 - 28 Dec 2023
Cited by 3 | Viewed by 2012
Abstract
Background: Viticulture bioclimatic indexes like the Heliothermal Index (HI), Cool Night Index (CI), and Dryness Index (DI), can be used to assess the influence of climate on grapes’ quality. Methods: HI, CI, and DI + total seasonal irrigation were utilized to assess the [...] Read more.
Background: Viticulture bioclimatic indexes like the Heliothermal Index (HI), Cool Night Index (CI), and Dryness Index (DI), can be used to assess the influence of climate on grapes’ quality. Methods: HI, CI, and DI + total seasonal irrigation were utilized to assess the effect of climate on the flavonoids content and composition of two Vitis vinifera seedless varieties, ‘Summer Royal’ and ‘Crimson Seedless’, both grown in Apulia (Southern Italy). Results: The flavonoids content was significantly affected by variety and climate conditions on the base of HI, CI, and DI + total seasonal irrigation. Factor analysis applied to climate indexes and flavonoids showed that anthocyanins and flavonols were negatively and positively correlated to CI in both varieties, respectively. Additionally, warmer night temperatures determined higher fla-van-3-ols. HI increase promoted anthocyanins, flavonols, and flavan-3-ols content in Crimson Seedless, whilst it induced an opposite trend in Summer Royal. Finally, DI + total seasonal irrigation showed to be positively linked to flavonols content and negatively linked to anthocyanins content just in the case of Crimson Seedless. Significant regression models were also determined between climate indexes and productive parameters (i.e., yield, TSS, TA, pH, bunch, and berry weight). Conclusions: Climate indexes HI, CI, and DI + total seasonal irrigation showed an effect on quality grape parameters like flavonoids and contributed to building predictive models when new climatic zones are going to be evaluated for the production of table grapes. Full article
(This article belongs to the Special Issue Vine Cultivation in an Increasingly Warming World)
Show Figures

Figure 1

17 pages, 3371 KB  
Article
IoT for Monitoring Fungal Growth and Ochratoxin A Development in Grapes Solar Drying in Tunnel and in Open Air
by Charalampos Templalexis, Paola Giorni, Diamanto Lentzou, Francesco Mozzoni, Paola Battilani, Dimitrios I. Tsitsigiannis and Georgios Xanthopoulos
Toxins 2023, 15(10), 613; https://doi.org/10.3390/toxins15100613 - 15 Oct 2023
Cited by 1 | Viewed by 2384
Abstract
Optimisation of solar drying to reduce fungal growth and Ochratoxin A (OTA) contamination is a crucial concern in raisin and currant production. Stochastic and deterministic analysis has been utilized to investigate environmental indicators and drying characteristics. The analysis was performed using two seedless [...] Read more.
Optimisation of solar drying to reduce fungal growth and Ochratoxin A (OTA) contamination is a crucial concern in raisin and currant production. Stochastic and deterministic analysis has been utilized to investigate environmental indicators and drying characteristics. The analysis was performed using two seedless grape varieties (Crimson—red and Thompson—white) that were artificially inoculated with Aspergillus carbonarius during open-air and tunnel drying. Air temperature (T) and relative humidity (RH) were measured and analysed during the drying experiment, along with grape surface temperature (Ts), and water activity (aw). The grape moisture content, fungal colonization, and OTA contamination were estimated, along with the water diffusivity (Deff) and peel resistance (rpeel) to water transfer. Monitoring the surface temperature of grapes is essential in the early detection of fungal growth and OTA contamination. As surface temperature should be carried out continuously, remote sensing protocols, such as infrared sensors, provide the most efficient means to achieve this. Furthermore, data collection and analysis could be conducted through the Internet of Things (IoT), thereby enabling effortless accessibility. The average Ts of the grapes was 6.5% higher in the tunnel than in the open-air drying. The difference between the RH of air and that in the plastic crates was 16.26–17.22%. In terms of CFU/mL, comparison between white and red grapes in the 2020 and 2021 experiments showed that the red grapes exhibited significantly higher values than the white grapes. Specifically, the values for red grapes were 4.3 in 2021 to 3.4 times in 2020 higher compared to the white grapes. On the basis of the conducted analysis, it was concluded that tunnel drying provided some advantages over open-air drying, provided that hygienic and managerial requirements are met. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

14 pages, 2384 KB  
Article
Maturity Assessment of Different Table Grape Cultivars Grown at Six Different Altitudes in Lebanon
by Najwane Hamie, Diana Nacouzi, Mariam Choker, Maya Salameh, Linda Darwiche and Walid El Kayal
Plants 2023, 12(18), 3237; https://doi.org/10.3390/plants12183237 - 12 Sep 2023
Cited by 8 | Viewed by 4055
Abstract
Table grapes are harvested based on well-known maturity indices that must be monitored after fruit veraison. The aim of this study was to assess these indices across multiple locations and environmental conditions, encompassing different table grape cultivars such as Black Pearl, Crimson Seedless, [...] Read more.
Table grapes are harvested based on well-known maturity indices that must be monitored after fruit veraison. The aim of this study was to assess these indices across multiple locations and environmental conditions, encompassing different table grape cultivars such as Black Pearl, Crimson Seedless, Superior Seedless, and Red Globe. For this reason, grape sampling was conducted across six distinct locations characterized by varying altitudes above sea level (m asl) and environmental conditions over the ripening season. The main maturity indices, including pH, sugar content, titratable acidity, berry firmness, and other parameters were monitored over the growing season. Moreover, the quantification of total polyphenols, total anthocyanins, and antioxidant activity was determined using spectrophotometric assays at harvesting. The study has examined the effect of the vineyard’s location on grape quality and its interaction with the cultivar and environment. Crimson Seedless maintained a relatively high level of acidity with altitude near harvesting. Black Pearl exhibited a notable decline in both sugar content and berry firmness as elevation increased, whereas Red Globe demonstrated contrasting outcomes. The optimal maturity of Superior Seedless was observed at an elevation of 1000 m asl. Black Pearl and Crimson Seedless exhibited better adaptability to intermediate elevations (650 and 950 m asl), while Red Globe and Superior Seedless showed better adaptability to higher elevations (1000–1150 m asl). Among the studied cultivars, Black Pearl exhibited significantly higher levels of total polyphenols and anthocyanins, while close values were noticed between red and green cultivars. Full article
Show Figures

Figure 1

22 pages, 6522 KB  
Article
Anthocyanin Accumulation and Its Corresponding Gene Expression, Total Phenol, Antioxidant Capacity, and Fruit Quality of ‘Crimson Seedless’ Grapevine (Vitis vinifera L.) in Response to Grafting and Pre-Harvest Applications
by Abdel-Moety Salama, Mohamed A. Abdelsalam, Medhat Rehan, Mohamed Elansary and Ali El-Shereif
Horticulturae 2023, 9(9), 1001; https://doi.org/10.3390/horticulturae9091001 - 4 Sep 2023
Cited by 10 | Viewed by 2967
Abstract
The color of grapevine berries is one of the most important quality parameters that define the appearance, attracts the consumer, and determines the price, especially in red grape cultivars. Some grape varieties show less color development due to many factors such as temperature, [...] Read more.
The color of grapevine berries is one of the most important quality parameters that define the appearance, attracts the consumer, and determines the price, especially in red grape cultivars. Some grape varieties show less color development due to many factors such as temperature, light intensity, and agricultural management. The present study aimed to evaluate diverse phytohormones coupled with grafting on quality and fruit coloration of ’Crimson Seedless‘ grapes. Pre-harvest foliar treatments of abscisic acid (ABA) at 400 mg L−1, methyl jasmonate (MeJ) at 1 mM L−1, ethephon (Eth) at 480 mg L−1, and melatonin (Mel) at 100 μmol were applied after 7 days and repeated after 21 days of ‘Veraison’ (beginning of the coloring phase). The results exposed that the ABA application provided the best anthocyanin accumulation with grafted grapevines whereas Eth displayed the maximum anthocyanin accumulation with ungrafted grapevines. Moreover, the expression of anthocyanin biosynthesis genes (chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and flavanol 3-O-glucosyl transferase (UFGT)) was consistent with the anthocyanin concentration in berry peel. Moreover, Eth treatment revealed the highest total phenols and antioxidant capacity for both grafted and ungrafted grapevines. MeJ phytohormone exhibited the largest total yield, whereas the treatment of Eth increased the weight of 50 berries and the bunch. Furthermore, ABA induced the uppermost firmness and removal force. Regarding the chemical attributes, the Mel treatment revealed the minimum value of titratable acidity (TA) and the highest polyphenol oxidase (PPO) activity, while the MeJ treatment recorded the superior soluble solids content (SSC), in addition to phenylalanine ammonia-lyase (PAL) and catalase (CAT) enzymes activities. Eth treatment produced the highest activity of the peroxidase (POD) enzyme. Finally, the grafting treatment improved most of the studied fruit attributes. Full article
(This article belongs to the Collection Advances in Fruit Quality Formation and Regulation)
Show Figures

Figure 1

21 pages, 2777 KB  
Article
Phenolic, Polysaccharides Composition, and Texture Properties during Ripening and Storage Time of New Table Grape Cultivars in Chile
by Alvaro Peña-Neira, Mariona Gil i Cortiella, Cristina Ubeda, Claudio Pastenes, Luís Villalobos, Loreto Contador, Rodrigo Infante and Camila Gómez
Plants 2023, 12(13), 2488; https://doi.org/10.3390/plants12132488 - 29 Jun 2023
Cited by 14 | Viewed by 2638
Abstract
The aim of this study is to determine the phenolic and polysaccharidic composition, texture properties, and gene expression of new seedless table grape cultivars Timco™ and Krissy™ and compare them to the traditional table grape variety Crimson Seedless (Vitis vinifera L.), during [...] Read more.
The aim of this study is to determine the phenolic and polysaccharidic composition, texture properties, and gene expression of new seedless table grape cultivars Timco™ and Krissy™ and compare them to the traditional table grape variety Crimson Seedless (Vitis vinifera L.), during ripening and in commercial postharvest conditions. According to the results, phenolic compounds were present in very different proportions. The total anthocyanins responsible for skin color increased during maturation and the majority anthocyanin in the three cultivars was peonidin-3-glucoside, followed by malvidin-3-glucoside. The phenolic compounds presented a different behavior (decreasing or increasing) during postharvest. The total skin soluble polysaccharides decreased during ripening and postharvest in Crimson Seedless and Krissy™ and remained constant from technological maturity to postharvest storage in Timco™. In all cultivars, the majority soluble polysaccharide fraction was that with a molecular mass between 500 and 35 KDa. The skin mechanical properties of table grapes were good parameters for differentiating varieties, with better results for the new cultivars, compared to the traditional Crimson Seedless, especially in postharvest. Genes involved in the flavonoid pathway and cell wall metabolism in skins exhibited an increase in expression from veraison to remaining constant at the end of the berry ripening. Full article
(This article belongs to the Special Issue Qualitative and Quantitative Changes in Plant Metabolite Contents)
Show Figures

Figure 1

17 pages, 2226 KB  
Article
Assessment of the Type of Deficit Irrigation Applied during Berry Development in ‘Crimson Seedless’ Table Grapes
by María R. Conesa, Pablo Berríos, Abdelmalek Temnani and Alejandro Pérez-Pastor
Water 2022, 14(8), 1311; https://doi.org/10.3390/w14081311 - 17 Apr 2022
Cited by 10 | Viewed by 3322
Abstract
This work assessed the effects of the sustained (during the whole berry growth) and regulated (at post-veraison) practices of deficit irrigation on water relations, yield components and berry quality in a commercial vineyard of ‘Crimson Seedless’ table grapes. For this, five irrigation treatments [...] Read more.
This work assessed the effects of the sustained (during the whole berry growth) and regulated (at post-veraison) practices of deficit irrigation on water relations, yield components and berry quality in a commercial vineyard of ‘Crimson Seedless’ table grapes. For this, five irrigation treatments were established during a complete irrigation season (from April to October): (i) Control (CTL) irrigated to 110% crop evapotranspiration (ETc); (ii) Regulated Deficit Irrigation (RDI) irrigated at 50% of CTL during the non-critical period of post-veraison; (iii) Sustained Deficit Irrigation (SDI), irrigated at 50% of CTL throughout the entire berry growing season; (iv) Partial Root-Zone Drying (PRD), irrigated similar to RDI but alternating the irrigation applied on the dry side every 10–14 days; (v) Sustained Partial Root-Zone Drying (SPRD), irrigated as SDI but alternating the irrigation on the dry side every 10–14 days. RDI and PRD received 24% and 28% less water than CTL, respectively. These reductions were higher in SDI and SPRD (65% and 53%, respectively). Total yield was not affected by any DI strategy. Only significantly lower productive values were observed in the weight and height of the berries as compared to CTL. However, the color parameters evaluated increased in all the DI treatments, being slightly higher in SDI and SPRD as compared with RDI and PRD. In addition, total soluble solids (TSS) were significantly higher in SDI, compared to other irrigated counterparts. Our findings showed that the application of water deficit during the entire period of berry growth using SDI and SPRD can be considered for irrigation scheduling in ‘Crimson Seedless’ table grapes when the aim is to solve the trouble of insufficient reddish color of the berries. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

19 pages, 5550 KB  
Article
On the Biochemical and Physiological Responses of ‘Crimson Seedless’ Grapes Coated with an Edible Composite of Pectin, Polyphenylene Alcohol, and Salicylic Acid
by A. A. Lo’ay, M. M. Rabie, Haifa A. S. Alhaithloul, Suliman M. S. Alghanem, Aly M. Ibrahim, Mohamed A. Abdein and Zinab A. Abdelgawad
Horticulturae 2021, 7(11), 498; https://doi.org/10.3390/horticulturae7110498 - 15 Nov 2021
Cited by 9 | Viewed by 3878
Abstract
The ‘Crimson seedless’ grape encountered several difficulties during shelf life, including weight loss, rachis browning, and berry shattering. The effect of exogenous pectin (PE) and polyphenol alcohol (PVA) with supporting salicylic acid (SA) at different concentrations (0, 1, and 2 mM) was applied. [...] Read more.
The ‘Crimson seedless’ grape encountered several difficulties during shelf life, including weight loss, rachis browning, and berry shattering. The effect of exogenous pectin (PE) and polyphenol alcohol (PVA) with supporting salicylic acid (SA) at different concentrations (0, 1, and 2 mM) was applied. The coating was applied to bunches for 5 min and stored at room temperature (26 ± 1 °C and RH 65 ± 3%) for 4 days. In this study, postharvest application of PE + PVA-SA can significantly reduce the cell wall degradation enzyme activities of ‘Crimson seedless’ grape during shelf life. ‘Crimson seedless’ bunches, treated with PE + PVA-SA 2 mmol L−1, had a lowered rachis browning index (RB index), weight loss (WL%), and berry shattering percentage (BS%) and preserved berry color hue angle (ho) compared to untreated bunches during shelf-life duration. Moreover, the PE + PVA-SA 2 mM improved berry firmness (BF) and removal force (BRF). It also improved the soluble solid content (SSC%), titratable acidity (TA%), and SSC: TA-ratio, for assessing berry maturity. The cellular metabolism enzyme activities (CMEAs) of the cell wall such as polygalacturonase (PG), cellulase (CEL), xylanase (XYL), and pectinase (PT) were minimized by applying PE + PVA-SA 2 mM coatings throughout storage duration. The accumulation of malondialdehyde (MDA) and cell wall damage, as well as the electrolyte leakage percentage (EL%), was reduced. PE + PVA-SA 2 mM maintained DPPH radical quenching activities and minimized O2 and H2O2 production rates. Collectively, these findings suggest that PE + PVA with the presence of SA as a coating treatment preserved ‘Crimson seedless’ bunches during shelf life. PE + PVA-SA 2 mM might be at least partially ascribed to the enhancement of bunches’ quality traits as well as inhibiting cell wall damage during the shelf-life period. Full article
Show Figures

Figure 1

14 pages, 3580 KB  
Article
Using Zinc Oxide Nanoparticles to Improve the Color and Berry Quality of Table Grapes Cv. Crimson Seedless
by Mohamed K. Abou El-Nasr, Hussein M. El-Hennawy, Mina S. F. Samaan, Taher A. Salaheldin, Ahmed Abou El-Yazied and Ashraf El-Kereamy
Plants 2021, 10(7), 1285; https://doi.org/10.3390/plants10071285 - 24 Jun 2021
Cited by 25 | Viewed by 4796
Abstract
Producing high-quality table grapes is becoming a challenge in the warmer area of the world due to the global increase in temperature, which negatively affects anthocyanin biosynthesis and other fruit quality attributes. Nanotechnology is a growing field that can be a very useful [...] Read more.
Producing high-quality table grapes is becoming a challenge in the warmer area of the world due to the global increase in temperature, which negatively affects anthocyanin biosynthesis and other fruit quality attributes. Nanotechnology is a growing field that can be a very useful tool to improve crop productivity and sustainability. The red color is one of the major fruit quality parameters that determine table grape marketability. This study aimed to investigate the role of the zinc element in improving the marketable characteristics of Crimson seedless (Vitis vinifera L.) table grape berries i.e., color, firmness, total soluble solids and sugars; besides its role in activating PAL and SOD enzymatic systems. Additionally, this paper investigated the additive advantages of zinc when applied in nanometric form. Five concentrations of zinc oxide nanoparticles, ZnO NPs (0, 25, 50, 100 and 250 ppm), were compared to zinc oxide in mineral form at a concentration of 250 ppm to investigate their effects on the marketable characteristics of Crimson seedless grape cultivar. The treatments were applied as foliar spray on three-year-old Crimson seedless vines grafted on Richter 110 rootstock grown in one of the major table grape production area in Egypt. The experiment was arranged in completely randomized block design and each vine was sprayed with five letters of the solution. The use of the lowest concentration (25 ppm) of ZnO NPs achieved the highest significant enzyme activity (PAL and SOD). Moreover, the T.S.S, sugars and anthocyanin content in berries increased significantly in association of decreasing acidity. On the other hand, the use of a 50 ppm concentration led to an increase in fruit firmness. Collectively, our data showed that 25 ppm of zinc nanoparticles improved PAL and SOD enzymes activity, improved red coloration in table grape and was more effective than the 250 ppm zinc oxide mineral form. Full article
(This article belongs to the Special Issue Physiology and Molecular Biology of Fruit Trees and Vines)
Show Figures

Figure 1

18 pages, 7789 KB  
Article
Environmental Conditions Affecting Ochratoxin A during Solar Drying of Grapes: The Case of Tunnel and Open Air-Drying
by Charalampos Templalexis, Paola Giorni, Diamanto Lentzou, Sabrina Mesisca, Dimitrios I. Tsitsigiannis, Paola Battilani and Georgios Xanthopoulos
Toxins 2021, 13(6), 400; https://doi.org/10.3390/toxins13060400 - 3 Jun 2021
Cited by 9 | Viewed by 2987
Abstract
Drying optimization, to mitigate fungal growth and Ochratoxin A (OTA) contamination is a key topic for raisin and currant production. Specific indicators of environmental conditions and drying properties were analyzed using two seedless grape varieties (Crimson—red and Thompson—white), artificially inoculated [...] Read more.
Drying optimization, to mitigate fungal growth and Ochratoxin A (OTA) contamination is a key topic for raisin and currant production. Specific indicators of environmental conditions and drying properties were analyzed using two seedless grape varieties (Crimson—red and Thompson—white), artificially inoculated with Aspergillus carbonarius under open air and tunnel drying. The air temperature (T), relative humidity, grape surface temperature (Ts) and water activity throughout the drying experiment, the grapes’ moisture content and the fungal colonization and OTA contamination during the drying process and their interactions were recorded and critically analyzed. Drying properties such as the water diffusivity (Deff) and peel resistance to water transfer were estimated. The grapes Ts was 5–7 °C higher in tunnel vs. open air–drying; the infected grapes had higher maximum Ts vs. the control (around 4–6 °C). OTA contamination was higher in tunnel vs. open air–dried grapes, but fungal colonies showed the opposite trend. The Deff was higher in tunnel than in the open air–drying by 54%; the infected grapes had more than 70% higher Deff than the control, differences explained by factors affecting the water transport. This study highlighted CFU and OTA indicators that affect the water availability between red and white grapes during open air and tunnel drying, estimated by the Deff and peel resistance. This raises new issues for future research. Full article
(This article belongs to the Special Issue Occurrence and Integrated Management of Mycotoxins)
Show Figures

Figure 1

19 pages, 3936 KB  
Article
Volatile Organic Compounds (VOCs) Produced by Gluconobacter cerinus and Hanseniaspora osmophila Displaying Control Effect against Table Grape-Rot Pathogens
by Ninoska Delgado, Matías Olivera, Fabiola Cádiz, Guillermo Bravo, Iván Montenegro, Alejandro Madrid, Claudia Fuentealba, Romina Pedreschi, Eduardo Salgado and Ximena Besoain
Antibiotics 2021, 10(6), 663; https://doi.org/10.3390/antibiotics10060663 - 1 Jun 2021
Cited by 25 | Viewed by 5374
Abstract
Table grapes (Vitis vinifera) are affected by botrytis bunch rot and summer bunch rot, the latter a complex disease caused by Botrytis cinerea, Aspergillus spp., Penicillium expansum and Rhizopus stolonifer. To search for biocontrol alternatives, a new bioproduct composed [...] Read more.
Table grapes (Vitis vinifera) are affected by botrytis bunch rot and summer bunch rot, the latter a complex disease caused by Botrytis cinerea, Aspergillus spp., Penicillium expansum and Rhizopus stolonifer. To search for biocontrol alternatives, a new bioproduct composed of Gluconobacter cerinus and Hanseniaspora osmophila, a consortium called PUCV-VBL, was developed for the control of fungal rots in table grapes. Since this consortium presents new biocontrol species, the effect of their VOCs (volatile organic compounds) was evaluated under in vitro and in vivo conditions. The VOCs produced by the PUCV-VBL consortium showed the highest mycelial inhibition against Botrytis cinerea (86%). Furthermore, H. osmophila was able to inhibit sporulation of A. tubingensis and P. expansum. VOCs’ effect in vivo was evaluated using berries from Red Globe, Thompson Seedless and Crimson Seedless grapes cultivars, demonstrating a mycelial inhibition by VOCs greater than 70% for all evaluated fungal species. The VOC identification of the PUCV-VBL consortium was analyzed by solid-phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GCMS). A total 26 compounds were identified, including 1-butanol 3-methyl, propanoic acid ethyl ester, ethyl acetate, phenylethyl alcohol, isobutyl acetate and hexanoic acid ethyl ester. Our results show that VOCs are an important mode of action of the PUCV-VBL biological consortium. Full article
Show Figures

Figure 1

Back to TopTop