Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (156)

Search Parameters:
Keywords = Cwp2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2753 KB  
Article
Preclinical Study of Pain Neuropeptide Expression in Murine Sensory Neurons Induced by Irradiated Osteoclasts in the Context of Stereotactic Body Radiation Therapy
by Sun H. Park, Megan Peters, Caleb Aguayo, Michael K. Farris, Ryan T. Hughes, Joseph Moore, Michael T. Munley, Kaitlyn E. Reno, Jeffrey A. Foster, Jean Gardin, George W. Schaaf, J. Mark Cline, Christopher M. Peters and Jeffrey S. Willey
Cells 2025, 14(17), 1324; https://doi.org/10.3390/cells14171324 - 27 Aug 2025
Viewed by 240
Abstract
Stereotactic body radiation therapy (SBRT) for lung tumors near the chest wall often causes significant chest wall pain (CWP), negatively impacting patients’ quality of life. The mechanisms behind SBRT-induced CWP remain unclear and may involve multiple factors. We investigated crosstalk between radiation-activated osteoclasts [...] Read more.
Stereotactic body radiation therapy (SBRT) for lung tumors near the chest wall often causes significant chest wall pain (CWP), negatively impacting patients’ quality of life. The mechanisms behind SBRT-induced CWP remain unclear and may involve multiple factors. We investigated crosstalk between radiation-activated osteoclasts and sensory neurons, focusing on osteoclast-derived factors in CWP. Using murine pre-osteoclast cell line Raw264.7, we induced differentiation with Receptor Activator of Nuclear Factor kappa-beta Ligand (RANKL), followed by 10 Gy gamma-irradiation. Conditioned media (C.M) from irradiated osteoclasts was used to treat sensory neuronal cultures from mouse dorsal root ganglia. Neuronal cultures were also exposed to 10 Gy radiation, with and without osteoclast co-culture. Osteoclast markers and pain-associated neuropeptides were analyzed using RT-qPCR and histochemical staining. Osteoclasts differentiation and activity were inhibited using osteoprotegerin (OPG) and risedronate. High-dose radiation significantly increased the size of tartrate-resistant-acid-phosphatase (TRAP)-positive osteoclasts (1.36-fold) and activity biomarkers (Ctsk, 1.35-fold, Mmp9, 1.76-fold). Neurons treated with C.M from irradiated osteoclasts showed ~1.5-fold increase in Calca (calcitonin gene-related peptide) and Tac1 (substance P) expression, which was mitigated by osteoclast inhibitors. These findings suggest that radiation enhances osteoclast activity and promotes pain signaling. Osteoclast inhibitors may represent a therapeutic strategy to reduce CWP and improve quality of life. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

23 pages, 1540 KB  
Article
Assessment of Evapotranspiration–Yield Relationships in Northern China Tea Plantations: A Basis for Crop Water Productivity Improvement
by Quanru Liu, Zongzhi Wang, Liang Cheng, Kun Wang, Ying Bai, Qi Ding, Ziyue Shao and Yongbing Zhang
Agronomy 2025, 15(8), 1955; https://doi.org/10.3390/agronomy15081955 - 13 Aug 2025
Viewed by 538
Abstract
Global climate warming and freshwater scarcity are intensifying water stress in agricultural fields, severely constraining sustainable agricultural development. As a typical C3 perennial cash crop, tea (Camellia sinensis) is naturally suited to low-latitude regions with abundant heat and evenly distributed precipitation, [...] Read more.
Global climate warming and freshwater scarcity are intensifying water stress in agricultural fields, severely constraining sustainable agricultural development. As a typical C3 perennial cash crop, tea (Camellia sinensis) is naturally suited to low-latitude regions with abundant heat and evenly distributed precipitation, and it is highly sensitive to environmental factors such as temperature and moisture. In northern hilly tea-producing areas, tea plantations often encounter multiple challenges including uneven rainfall distribution and poor soil water retention, resulting in prominent water supply–demand imbalances that critically limit stable and efficient tea production. To explore efficient water-saving irrigation strategies adapted to such ecological conditions, this study was conducted in the Yushan Tea Plantation, Rizhao City, Shandong Province, China. Based on field monitoring data across three growing seasons (spring, summer, and autumn) from 2021 to 2023, five irrigation treatments were evaluated: conventional sprinkler irrigation (CK), drip irrigation (D), micro-sprinkler irrigation (W), drip irrigation with straw mulching (SD), and micro-sprinkler irrigation with straw mulching (SW). Actual crop evapotranspiration (ETc act) was estimated using the soil water balance method, and actual fresh tea leaf yield (FTLY) and crop water productivity (CWP) were measured. Results showed that the SW treatment significantly improved both FTLY and CWP across all three seasons, with summer FTLY in 2022 increasing by 56.58% compared to CK and maximum CWP in spring and autumn reaching 0.916 kg/m3, demonstrating excellent stability and adaptability. Among all irrigation strategies, the SW treatment also exhibited the best regression fitting and yield prediction accuracy. The regression model validated by leave-one-out cross-validation (LOOCV) for the SW treatment demonstrated strong robustness and reliability (R2 = 0.734; RMSE = 208.12 kg/ha; MAE = 183.31 kg/ha). Notably, the samples with the largest prediction errors across all treatments were nearly all associated with the highest or near-highest ETc act values, indicating that model accuracy tends to decrease under extreme evapotranspiration conditions. The results show the synergistic effect of irrigation–mulching integration on enhancing CWP in northern perennial tea systems, providing empirical evidence and theoretical support for developing efficient irrigation strategies in hilly tea-growing regions of Northern China. Full article
Show Figures

Figure 1

22 pages, 4027 KB  
Article
Parameter Sensitivity Analysis and Irrigation Regime Optimization for Jujube Trees in Arid Regions Using the WOFOST Model
by Shihao Sun, Yingjie Ma, Pengrui Ai, Ming Hong and Zhenghu Ma
Agriculture 2025, 15(15), 1705; https://doi.org/10.3390/agriculture15151705 - 7 Aug 2025
Viewed by 379
Abstract
In arid regions, water scarcity and soil potassium destruction are major constraints on the sustainable development of the jujube industry. In this regard, the use of crop models can compensate for time-consuming and costly field trials to screen for better irrigation regimes, but [...] Read more.
In arid regions, water scarcity and soil potassium destruction are major constraints on the sustainable development of the jujube industry. In this regard, the use of crop models can compensate for time-consuming and costly field trials to screen for better irrigation regimes, but their predictive accuracy is often compromised by parameter uncertainty. To address this issue, we utilized data from a three-year (2022–2024) field trial (with irrigation at 50%, 75%, and 100% of evapotranspiration and potassium applications of 120, 180, and 240 kg/ha) to simulate the growth process of jujube trees in arid regions using the WOFOST model. In this study, parameter sensitivity analyses were conducted to determine that photosynthetic capacity maximization (Amax), the potassium nutrition index (Kstatus), the water stress factor (SWF), the water–potassium photosynthetic coefficient of synergy (α), and potassium partitioning weight coefficients (βi) were the important parameters affecting the simulated growth process of the crop. Path analysis using segmented structural equations also showed that water stress factor (SWF) and potassium nutrition index (Kstatus) indirectly controlled yield by significantly affecting photosynthesis (path coefficients: 0.72 and 0.75, respectively). The ability of the crop model to simulate the growth process and yield of jujube trees was improved by the introduction of water and potassium parameters (R2 = 0.94–0.96, NRMSE = 4.1–12.2%). The subsequent multi-objective optimization of yield and crop water productivity of dates under different combinations of water and potassium treatments under a bi-objective optimization model based on the NSGA-II algorithm showed that the optimal strategy was irrigation at 80% ETc combined with 300 kg/ha of potassium application. This management model ensures yield and maximizes crop water use efficiency (CWP), thus providing a scientific and efficient irrigation and fertilization regime for jujube trees in arid zones. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

18 pages, 7358 KB  
Article
On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations
by Tingting Ye, Zhonghui Tan, Weihua Ai, Shuo Ma, Xianbin Zhao, Shensen Hu, Chao Liu and Jianping Guo
Remote Sens. 2025, 17(14), 2469; https://doi.org/10.3390/rs17142469 - 16 Jul 2025
Viewed by 331
Abstract
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager [...] Read more.
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager (AHI). The algorithm is featured by integrating deep learning techniques with a physical model. The algorithm first utilizes a convolutional neural network-based model to extract cloud top height (CTH) and cloud water path (CWP) from the AHI infrared observations. Then, a physical model is introduced to relate cloud geometric thickness (CGT) to CWP by constructing a look-up table of effective cloud water content (ECWC). Thus, the CBH can be obtained by subtracting CGT from CTH. The results demonstrate good agreement between our AHI CBH retrievals and the spaceborne active remote sensing measurements, with a mean bias of −0.14 ± 1.26 km for CloudSat-CALIPSO observations at daytime and −0.35 ± 1.84 km for EarthCARE measurements at nighttime. Additional validation against ground-based millimeter wave cloud radar (MMCR) measurements further confirms the effectiveness and reliability of the proposed algorithm across varying atmospheric conditions and temporal scales. Full article
Show Figures

Graphical abstract

14 pages, 2758 KB  
Article
Effects of the Maillard Reaction on the Structural and Functional Properties of Camel Whey Protein
by Ying Liu, Chunyan Ran, Hongyi Zhang, Yaqi Cheng, Minaer Huanbieke, Yuying Liu, Jie Yang, Yuqing Mei and Yang Qu
Foods 2025, 14(13), 2201; https://doi.org/10.3390/foods14132201 - 23 Jun 2025
Cited by 2 | Viewed by 561
Abstract
Consumer demand for dairy products like cheese and curds has resulted in a rise in whey production, which has caused significant waste and environmental issues. For this reason, improving the functional characteristics of whey proteins and their usage value are essential. In this [...] Read more.
Consumer demand for dairy products like cheese and curds has resulted in a rise in whey production, which has caused significant waste and environmental issues. For this reason, improving the functional characteristics of whey proteins and their usage value are essential. In this study, camel whey protein–galactose conjugates (CWP-Gal) and camel whey protein–glucose conjugates (CWP-Glu) were prepared through the Maillard reaction, and their structural and functional properties were characterized. Improvements in solubility of 14.90% and 8.17%, emulsification activity of 15.53% and 13.64%, and foaming capacity of 113.95% and 106.03% were demonstrated by CWP-Gal and CWP-Glu in comparison to camel whey protein (CWP). Circular dichroism analysis revealed secondary structure alterations in CWP-Gal and CWP-Glu compared to CWP. SDS-PAGE, FT-IR, and intrinsic fluorescence spectroscopy all verified that sugar molecules and proteins were covalently conjugated. SEM analysis revealed that the conjugates had a more sparsely packed microstructure. The results demonstrate that CWP-Gal exhibits enhanced structural stability and superior functional properties, providing a scientific basis for its potential utilization in the food industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

29 pages, 5354 KB  
Review
A Comprehensive Review on the Performance of Low-Carbon Ceramic Waste Powder as Cement Replacement Material in Concrete
by Jacob Olumuyiwa Ikotun, Peace Opeyemi Adedeji and Adewumi John Babafemi
Appl. Sci. 2025, 15(11), 6037; https://doi.org/10.3390/app15116037 - 27 May 2025
Viewed by 776
Abstract
Over 2 million tonnes of ceramic waste are generated annually in South Africa, with the majority disposed of in landfills, contributing to environmental degradation. Meanwhile, researchers are actively seeking sustainable alternatives to Portland cement (PC), which is associated with significant environmental challenges. Ceramic [...] Read more.
Over 2 million tonnes of ceramic waste are generated annually in South Africa, with the majority disposed of in landfills, contributing to environmental degradation. Meanwhile, researchers are actively seeking sustainable alternatives to Portland cement (PC), which is associated with significant environmental challenges. Ceramic waste powder (CWP) refers to finely milled ceramic waste and powder derived from the polishing and finishing stages of ceramic production. This review examines the potential of CWP as a partial replacement for PC in concrete, focusing on its effects on workability, mechanical durability, and microstructural properties. The findings indicate that moderate replacement levels (up to 20%) enhance the compressive and flexural strengths of concrete. However, these benefits are not consistently reported across all studies. Additionally, CWP improves the microstructural properties of the concrete. This is probably due to the pozzolanic reactions of CWP, which result in a denser concrete matrix and enhanced long-term durability. Notable durability benefits include reduced water absorption, increased resistance to chemical attacks, and improved thermal insulation. However, the performance of concrete with higher CWP replacement levels (above 30%) remains unclear. Some studies have reported strength reductions and increased susceptibility to durability loss at this level. Further studies should focus on clarifying its pozzolanic reactivity, durability in aggressive environments, and optimum replacement percentage. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

14 pages, 2155 KB  
Article
The Effect of Root Zone Cooling on the Growth and Development of Strawberry (Fragaria × ananassa) in a Tropical Climate
by Daruni Naphrom, Choochad Santasup, Werapat Panchai, Suwit Boonraeng and Anucha Promwungkwa
Int. J. Plant Biol. 2025, 16(2), 54; https://doi.org/10.3390/ijpb16020054 - 21 May 2025
Viewed by 938
Abstract
Strawberry production in tropical and subtropical climates has been adversely affected by rising temperatures and reduced cooling periods, leading to a decrease in flower induction and overall yield. This experiment aimed to investigate the effects of root zone cooling on short-day strawberry plants [...] Read more.
Strawberry production in tropical and subtropical climates has been adversely affected by rising temperatures and reduced cooling periods, leading to a decrease in flower induction and overall yield. This experiment aimed to investigate the effects of root zone cooling on short-day strawberry plants cultivated under evaporative greenhouse conditions. The cooling methods employed included of four root zone cooling treatments: normal water dripping (NWD), cold-water (10 °C) dripping (CWD), cold-water dripping plus cold-water pipe (CWD + CWP), and normal water dripping plus cold-water pipe (NWD + CWP) embedded within the growing media. The results indicated that the CWD + CWP treatment was particularly effective, reducing RZT by approximately 2 °C compared to other treatments, thereby promoting both vegetative and reproductive growth, particularly in the ‘Akihime’ strawberry. In the absence of root zone cooling, ‘Akihime’ and ‘Pharachatan 88’ were still capable of producing flowers and yield, whereas ‘Pharachatan 80’ was not. In addition, ‘Pharachatan 80’ was affected by CWD + CWP which showed the highest levels of total phenolic compound, total anthocyanin, and total vitamin C among all treatments. It can be concluded that reducing the root zone temperature through the integrated application of cold-water dripping and embedded cold-water pipes in the growing media can enhance the growth and development of short-day strawberry plants cultivated under evaporative greenhouse conditions in a tropical climate. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

22 pages, 10584 KB  
Article
Assimilation of Moderate-Resolution Imaging Spectroradiometer Level Two Cloud Products for Typhoon Analysis and Prediction
by Haomeng Zhang, Yubao Liu, Yu Qin, Zheng Xiang, Yueqin Shi and Zhaoyang Huo
Remote Sens. 2025, 17(9), 1635; https://doi.org/10.3390/rs17091635 - 5 May 2025
Viewed by 522
Abstract
A novel data assimilation technique is developed to assimilate MODIS (Moderate Resolution Imaging Spectroradiometer) level two (L2) cloud products, including cloud optical thickness (COT), cloud particle effective radius (Re), cloud water path (CWP), and cloud top pressure (CTP), into the Weather Research and [...] Read more.
A novel data assimilation technique is developed to assimilate MODIS (Moderate Resolution Imaging Spectroradiometer) level two (L2) cloud products, including cloud optical thickness (COT), cloud particle effective radius (Re), cloud water path (CWP), and cloud top pressure (CTP), into the Weather Research and Forecast (WRF) model. Its impact on the analysis and forecast of Typhoon Talim in 2023 at its initial developing stage is demonstrated. First, the conditional generative adversarial networks–bidirectional ensemble binned probability fusion (CGAN-BEBPF) model ) is applied to retrieve three-dimensional (3D) CloudSat CPR (cloud profiling radar) equivalent W-band (94 Ghz) radar reflectivity factor for the typhoons Talim and Chaba using the MODIS L2 data. Next, a W-band to S-band radar reflectivity factor mapping algorithm (W2S) is developed based on the collocated measurements of the retrieved W-band radar and ground-based S-band (4 Ghz) radar data for Typhoon Chaba at its landfall time. Then, W2S is utilized to project the MODIS-retrieved 3D W-band radar reflectivity factor of Typhoon Talim to equivalent ground-based S-band reflectivity factors. Finally, data assimilation and forecast experiments are conducted by using the WRF Hydrometeor and Latent Heat Nudging (HLHN) radar data assimilation technique. Verification of the simulation results shows that assimilating the MODIS L2 cloud products dramatically improves the initialization and forecast of the cloud and precipitation fields of Typhoon Talim. In comparison to the experiment without assimilation of the MODIS data, the Threat Score (TS) for general cloud areas and major precipitation areas is increased by 0.17 (from 0.46 to 0.63) and 0.28 (from 0.14 to 0.42), respectively. The fraction skill score (FSS) for the 5 mm precipitation threshold is increased by 0.43. This study provides an unprecedented data assimilation method to initialize 3D cloud and precipitation hydrometeor fields with the MODIS imagery payloads for numerical weather prediction models. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

18 pages, 5180 KB  
Article
Crop Water Productivity: Within-Field Spatial Variation in Irrigated Alfalfa (Medicago sativa L.)
by Keegan Hammond, Ruth Kerry, Ross Spackman, April Hulet, Bryan G. Hopkins, Matt A. Yost and Neil C. Hansen
AgriEngineering 2025, 7(4), 115; https://doi.org/10.3390/agriengineering7040115 - 10 Apr 2025
Viewed by 1050
Abstract
In this study, alfalfa (Medicago sativa L.) is evaluated for suitability of variable rate irrigation (VRI) by analyzing within-field variation in crop water productivity (CWP) under uniform irrigation. The objectives were to (1) measure within-field variation in crop evapotranspiration (ET), (2) quantify [...] Read more.
In this study, alfalfa (Medicago sativa L.) is evaluated for suitability of variable rate irrigation (VRI) by analyzing within-field variation in crop water productivity (CWP) under uniform irrigation. The objectives were to (1) measure within-field variation in crop evapotranspiration (ET), (2) quantify spatial variability of alfalfa biomass yield, and (3) assess whether a bivariate analysis of CWP and yield could inform VRI management zones. Research was conducted on a 22.6 ha center-pivot irrigated alfalfa field near Rexburg, Idaho, USA, over three harvest intervals (HIs) in 2021 and 2022. Using a water balance method at 66 field points, ET exhibited significant spatial clustering for each HI (p < 0.001 for all HIs), though spatial patterns varied among HIs. Biomass yield, measured via the quadrat method, ranged from 2.1 to 9.7 Mg ha−1, with significant spatial clustering (p < 0.001 for all HIs). The CWP ranged from 0.07 to 0.54 Mg ha−1 cm−1, also showing significant spatial clustering (p < 0.001 for all HIs). Bivariate cluster analysis indicated 12–18% more area of the field was over-watered than under-watered, suggesting potential for optimizing irrigation with VRI. Reducing irrigation in these over-watered zones could improve CWP, supporting alfalfa as a viable candidate for VRI. Full article
Show Figures

Figure 1

10 pages, 207 KB  
Article
Subcutaneous Lidocaine Infusion for Chronic Widespread Pain: A Chart Review and Survey Examining the Safety and Tolerability of Treatment
by Nina Gregoire, Kimberley Kaseweter, Ethan Klukas, Anita Sanan and W. Francois Louw
J. Clin. Med. 2025, 14(7), 2440; https://doi.org/10.3390/jcm14072440 - 3 Apr 2025
Cited by 1 | Viewed by 1496
Abstract
Chronic widespread pain (CWP) is characterized by persistent pain across multiple body regions, often accompanied by fatigue, cognitive difficulties, and psychological distress. Background/Objectives: Affecting approximately 10% of the general population, CWP disproportionately impacts women, individuals from lower socioeconomic backgrounds, immigrants, and those with [...] Read more.
Chronic widespread pain (CWP) is characterized by persistent pain across multiple body regions, often accompanied by fatigue, cognitive difficulties, and psychological distress. Background/Objectives: Affecting approximately 10% of the general population, CWP disproportionately impacts women, individuals from lower socioeconomic backgrounds, immigrants, and those with a family history of chronic pain. Standard treatments, including cognitive–behavioral therapy, exercise, and pharmacotherapy, often provide insufficient relief. This study explores a novel approach to treating treatment-resistant CWP: high-dose subcutaneous lidocaine infusions administered over extended periods. Methods: The research included a retrospective chart review and patient survey to evaluate safety and tolerability. The protocol started with a dose of 10–12 mg/kg of adjusted body weight, increasing by 10–15% per month, with a maximum dose of 2000 mg. Results: The chart review of 27 patients revealed mild to moderate adverse events (AEs) in seven patients, with no severe AEs. A survey of 15 patients indicated a higher incidence of AEs; however, all patients reported that the benefits outweighed the negatives. On average, patients experienced 61% pain relief, lasting 19 days per infusion. Conclusions: This study demonstrates that subcutaneous lidocaine infusions are a well-tolerated treatment for CWP, offering substantial pain relief and improving patients’ quality of life. Full article
(This article belongs to the Section Anesthesiology)
17 pages, 4116 KB  
Article
Influence of Different Substrate and Microorganism Concentrations on Butyric Acid-Derived Biohydrogen Production
by Gizem Karakaya and Serpil Özmihçi
Processes 2025, 13(4), 1068; https://doi.org/10.3390/pr13041068 - 3 Apr 2025
Viewed by 532
Abstract
This study examines the effect of inoculum (0.5–3 g/L) and substrate concentration (40–200 g/L) on butyric acid and biohydrogen production by batch dark fermentation at 37 °C. Clostridium pasteurianum DSM525 and Cheese Whey Powder (CWP) were used in the experiments. The results showed [...] Read more.
This study examines the effect of inoculum (0.5–3 g/L) and substrate concentration (40–200 g/L) on butyric acid and biohydrogen production by batch dark fermentation at 37 °C. Clostridium pasteurianum DSM525 and Cheese Whey Powder (CWP) were used in the experiments. The results showed that biohydrogen and butyric acid production increased with a 1.5 g/L microorganism concentration and 80 g/L CWP. A Cumulative Hydrogen Formation (CHF) of 458 mL, butyric acid (BA) of 1.523 g/L, butyric acid to acetic acid (BA/AA) ratio of 3.07 g BA/g AA, hydrogen production yield (YH2/TS) of 1278.63 mL H2/g TS, and butyric acid production yield (YBA/TS) of 0.37 g BA/g TS at 1.5 g/L inoculum concentration was achieved. The hydrogen (HPR) and butyric acid production rates (BAPR) were similarly the highest at 1.5 g/L. The maximum specific hydrogen (SHPR) and butyric acid rates (SBAPR) were obtained at 2 g/L and 1 g/L organism concentrations, respectively. In variations of substrate concentrations, 651.1 mL of CHF, 1.1 g/L of BA, 3.23 g BA/g AA of BA/AA ratio, 576 mL H2/g TS of YH2/TS, and 27.4 g BA/g TS of YBA/TS were accomplished. HPR and SHPR were the highest at 80 g/L CWP due to no substrate inhibition. The BAPR was at its maximum at 100 g/L, BA accumulation was faster, and the SBAPR was at maximum 40 g/L CWP. The results showed a good adaptation of C. pasteurianum to the butyric acid-derived hydrogen production pathway. This strategy could build a renewable and sustainable process with dual valuable outputs. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

21 pages, 7940 KB  
Article
Research on Springback Compensation Method of Roll Forming Based on Improved Fuzzy PID Control
by Tengqiang Wang, Yingping Qian, Wengkang Fang, Dongqiao Zhang, Huanqi Weng and Yiran Jiang
Appl. Sci. 2025, 15(7), 3748; https://doi.org/10.3390/app15073748 - 29 Mar 2025
Viewed by 609
Abstract
To enhance the forming accuracy of circular rolling, this paper proposes a control strategy for compensating the springback of sheet metals by altering the rolling angle. A kinematic model for circular rolling springback compensation is established to monitor the forming radian of the [...] Read more.
To enhance the forming accuracy of circular rolling, this paper proposes a control strategy for compensating the springback of sheet metals by altering the rolling angle. A kinematic model for circular rolling springback compensation is established to monitor the forming radian of the sheet metal in real time. The motor is then controlled to adjust the rolling angle of the sheet metal through a mechanical structure, thereby achieving springback compensation. To realize the precise control required by the springback compensation control strategy, a fuzzy PID controller strategy optimized by the coupled whale particle (CWP) algorithm is designed. The research results indicate that the error between the formed radius and the desired radius in a normal circular rolling experiment is 5.4%, 5.32%, and 5.52%. However, after applying the springback compensation strategy, the error in the circular rolling experiment is reduced to 1.6%, 1.55%, and 1.72%. This demonstrates that the proposed springback compensation strategy for circular rolling effectively improves the accuracy of circular rolling. Full article
(This article belongs to the Special Issue Fuzzy Control Systems: Latest Advances and Prospects)
Show Figures

Figure 1

24 pages, 5567 KB  
Article
Rheological and Mechanical Characterization of Self-Compacting Concrete Using Recycled Aggregate
by Amr ElNemr and Ramy Shaltout
Materials 2025, 18(7), 1519; https://doi.org/10.3390/ma18071519 - 28 Mar 2025
Cited by 1 | Viewed by 697
Abstract
Glass and ceramics have a fundamental and crucial role in our lives due to their properties and aesthetic decoration. However, they create serious environmental problems, mainly due to their high occupation of landfills and harmful emissions. Both wastes could be utilized to reduce [...] Read more.
Glass and ceramics have a fundamental and crucial role in our lives due to their properties and aesthetic decoration. However, they create serious environmental problems, mainly due to their high occupation of landfills and harmful emissions. Both wastes could be utilized to reduce the natural resources’ adverse environmental effects and exhaustion. With increasing environmental concerns to reduce solid waste as much as possible, the concrete industry has adopted several methods to achieve this goal. Hence, this study examines the performance of self-compacted concrete (SCC) utilizing various percentages of recycled waste materials such as those deposited from glass and ceramic industries. The idea of utilizing recycled waste materials in concrete manufacturing has gained massive attention due to their impressive results in rheological and mechanical states. Recycled glass (RG) and ceramic waste powder (CWP) were utilized to replace fine aggregate and cement, respectively. Five mixes were designed, including the control mix, and the other four mixes had different dosages of RG and CWP as fine aggregate and cement replacement ranging between 5 and 25%. Mixes were tested for both rheological and mechanical properties to evaluate their compliance with SCC requirements as per codes and guidelines. The results revealed that 20% CWP or less as cement replacement and 10% or less of RG as a fine aggregate replacement would provide suitable rheological properties along with mechanical ones. Utilizing recycled glass and ceramic waste powder provides strength similar to the mix designed with natural resources, which helps us keep structures economically and environmentally friendly. Full article
(This article belongs to the Special Issue Advances in Sustainable Civil Engineering Materials)
Show Figures

Figure 1

23 pages, 7248 KB  
Article
Cas5 Regulates the Exposure of β-Glucan, the Cell Surface Hydrophobicity, and the Expression of Cell Wall Proteins to Remodel the Candida albicans Cell Wall and Participates in the Recruitment of Neutrophils
by Qiyue Zhang, Guanglin Li, Yanmei Wang, Chen Yang, Wenhui Bai, Qingqing Li, Jiye Zhang and Peipei Zhang
Microorganisms 2025, 13(3), 683; https://doi.org/10.3390/microorganisms13030683 - 19 Mar 2025
Viewed by 750
Abstract
Candida albicans (C. albicans) is a major opportunistic fungal pathogen that causes life-threatening infections, particularly in immunocompromised individuals, underscoring the critical need to understand its pathogenic mechanisms. This study investigates the role of Cas5, a key transcription factor, in regulating C. [...] Read more.
Candida albicans (C. albicans) is a major opportunistic fungal pathogen that causes life-threatening infections, particularly in immunocompromised individuals, underscoring the critical need to understand its pathogenic mechanisms. This study investigates the role of Cas5, a key transcription factor, in regulating C. albicans cell wall remodeling, virulence, and host interactions. Genetic manipulation and biochemical assays were used to examine the effects of Cas5 depletion on C. albicans cell wall structure, adhesion to host cells, morphology transition, innate immune cells recruitment, and pathogenicity in a BALB/C mouse model of oropharyngeal candidiasis (OPC). The results showed that the Cas5 depletion mediated β-glucan exposure and enhanced C. albicans’s ability to recruit neutrophils in vivo. Additionally, Cas5-mediated changes in cell surface hydrophobicity (CSH), CWP expressions, and morphological transition promoted C. albicans adhesion to biologically active surfaces (host cells) and increased fungal burden in the mouse model of OPC. In conclusion, Cas5 modulates C. albicans cell wall remodeling by masking cell wall β-glucan, altering CSH, and regulating the expression of cell wall proteins (CWPs). Additionally, Cas5 participates in inhibiting neutrophil recruitment and enhancing the C. albicans adhesion to host cells, as well as facilitating morphological transitions. These actions promote the colonization and invasion of C. albicans in OPC pathogenesis. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

13 pages, 2398 KB  
Article
Evaluating the Impact of Nano-Silica and Silica Hydrogel Amendments on Soil Water Retention and Crop Yield in Rice and Clover Under Variable Irrigation Conditions
by Mohamed A. Abd El-Aziz, Mohssen Elbagory, Ahmed A. Arafat, Hesham M. Aboelsoud, Sahar El-Nahrawy, Tamer H. Khalifa and Alaa El-Dein Omara
Agronomy 2025, 15(3), 652; https://doi.org/10.3390/agronomy15030652 - 5 Mar 2025
Cited by 4 | Viewed by 1637
Abstract
The use of water-efficient soil amendments has gained increasing importance in agriculture, particularly in regions facing water scarcity. So, this study evaluates the impact of silica and nano-silica hydrogels on soil water retention, crop yield, and crop water productivity under variable irrigation regimes. [...] Read more.
The use of water-efficient soil amendments has gained increasing importance in agriculture, particularly in regions facing water scarcity. So, this study evaluates the impact of silica and nano-silica hydrogels on soil water retention, crop yield, and crop water productivity under variable irrigation regimes. Using a randomized complete block design with furrow irrigation, the experiment tested different hydrogel application rates and irrigation levels in rice (Oryza sativa L.) and clover (Trifolium alexandrinum L.) across two growing seasons. Statistical tests, including ANOVA and t-tests, confirm that nano-silica hydrogel significantly improves soil properties, yield, and crop water productivity (CWP), especially at moderate irrigation levels (70–90% of water requirements). In the first season, nano-silica hydrogel enhanced rice yield, with a maximum yield of 10.76 tons ha−1 with 90% irrigation and 119 kg ha−1 of hydrogel compared with other treatments. In the second season, clover yields were also positively affected, with the highest fresh forage yield of 5.02 tons ha−1 with 90% irrigation and 119 kg ha−1 nano-silica hydrogel. Despite seasonal variation, nano-silica hydrogel consistently outperformed silica hydrogel in terms of improving soil water retention, reducing bulk density, and enhancing hydraulic conductivity across different irrigation levels. Principal Component Analysis (PCA) revealed that nano-silica hydrogel significantly improved soil water retention properties, including the water-holding capacity (WHC), field capacity (FC), and available water (AW), and reduced the wilting point (WP). These improvements, in turn, led to increased crop yield and water productivity, particularly at moderate irrigation levels (70–90% of the crop’s total water requirements. These findings highlight the potential of nano-silica hydrogel as an effective amendment for improving soil water retention, enhancing crop productivity, and increasing crop water productivity under reduced irrigation conditions. Full article
(This article belongs to the Special Issue Nano-Farming: Crucial Solutions for the Future)
Show Figures

Figure 1

Back to TopTop