Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = DABCO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2709 KB  
Article
New Generation Antibiotics Derived from DABCO-Based Cationic Polymers
by Betul Zehra Temur, Ilay Ceren Cetinkaya, Merve Acikel Elmas, Nihan Unubol, Serap Arbak, Tanil Kocagoz, Tarik Eren and Ozge Can
Antibiotics 2025, 14(9), 856; https://doi.org/10.3390/antibiotics14090856 - 25 Aug 2025
Viewed by 508
Abstract
Background/Objectives: The growing threat of antibiotic resistance necessitates the development of novel antimicrobial agents that effectively target pathogenic microorganisms while minimizing toxicity. Methods: Two series DABCO-based cationic homopolymers (D-subs 1kDa, D-subs 5kDa, D-subs 15kDa) and DABCO–pyridinium-based copolymers (PyH-subs 5kDa_Dsubs 5kDa, PyH-subs [...] Read more.
Background/Objectives: The growing threat of antibiotic resistance necessitates the development of novel antimicrobial agents that effectively target pathogenic microorganisms while minimizing toxicity. Methods: Two series DABCO-based cationic homopolymers (D-subs 1kDa, D-subs 5kDa, D-subs 15kDa) and DABCO–pyridinium-based copolymers (PyH-subs 5kDa_Dsubs 5kDa, PyH-subs 7kDa_Dsubs 3kDa, PyH-subs 3kDa_Dsubs 7kDa) were synthesized to mimic to host-defense cationic peptides via ring-opening metathesis polymerization (ROMP). The antimicrobial activities of these polymers were determined by their minimum inhibitory concentrations (MICs) against E. coli (Gram-negative bacteria), P. aeruginosa (Gram-negative bacteria), S. aureus (Gram-positive bacteria), and C. albicans (fungus). In vitro cytotoxicity assays revealed selective toxicity towards bacterial cells, with high selectivity indices for several copolymers. To gain insight into the mechanism of action, morphological changes in S. aureus upon exposure to D-subs 1kDa were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: The D-subs 15kDa homopolymer demonstrated the highest overall antimicrobial activity, particularly against S. aureus (MIC: 8 µg/mL), with all polymers exhibiting minimal hemolytic activity (HC50 ≥ 1024 µg/mL). SEM and TEM results revealed membrane disruption indicative of polymer–bacteria interactions. Additionally, stability studies confirmed polymer integrity under physiological conditions for at least 28 days. Conclusions: These results support the potential of DABCO-based cationic polymers as a promising platform for next-generation antimicrobial therapeutics. Full article
(This article belongs to the Section Novel Antimicrobial Agents)
Show Figures

Figure 1

15 pages, 4292 KB  
Article
Structural Rearrangement in Cyclic Cu(II) Pyridyltriazole Complexes: Oxidation of Dabco to Oxalate and CO2 Conversion to Carbonate
by Uttam R. Pokharel, Frank R. Fronczek and Andrew W. Maverick
Molecules 2025, 30(7), 1430; https://doi.org/10.3390/molecules30071430 - 24 Mar 2025
Cited by 1 | Viewed by 1287
Abstract
Structural rearrangements in metal–organic supramolecules constructed from the coordination of Cu(II) with m-xpt (m-xylylenebis(pyridyltriazole)) are investigated upon their interaction with 1,4-diazabicyclo[2.2.2]octane (dabco) and carbon dioxide-enriched air. The binuclear [Cu2(m-xpt)2]4+ complexes react with dabco [...] Read more.
Structural rearrangements in metal–organic supramolecules constructed from the coordination of Cu(II) with m-xpt (m-xylylenebis(pyridyltriazole)) are investigated upon their interaction with 1,4-diazabicyclo[2.2.2]octane (dabco) and carbon dioxide-enriched air. The binuclear [Cu2(m-xpt)2]4+ complexes react with dabco to produce a carbonate-bridged trinuclear complex, [Cu3(m-xpt)3(µ-CO3)]4+, and an oxalate-bridged binuclear complex, [Cu2(m-xpt)2(µ-C2O4)]2+, where carbonate and oxalate likely originate from CO2 and dabco, respectively. The trinuclear complex reassembles the original dimer upon the removal of the carbonate ion. Similarly, polymeric [Cu(o-xpt)(PF6)]n, formed from Cu(I) and o-xpt (o-xylylenebis(pyridyltriazole)) coordination, undergoes oxidation in CO2-enriched air to yield a tetranuclear Cu(II) complex, Cu4(o-xpt)34-CO3)(μ2-OH)(μ2-OCOCH3)4+. The reaction progress is monitored by UV-Vis spectroscopy, and the major products are characterized by single-crystal X-ray diffraction. Full article
(This article belongs to the Special Issue Host–Guest Inclusion Complexes and Their Miscellaneous Applications)
Show Figures

Graphical abstract

19 pages, 8488 KB  
Article
DABCO/Amberlyst® 15-Cocatalysed One-Pot Three-Component Aza-Morita–Baylis–Hillman Reaction Under Green Conditions
by Giovanna Bosica, Riccardo De Nittis and Matthew Vella Refalo
Catalysts 2024, 14(12), 873; https://doi.org/10.3390/catal14120873 - 29 Nov 2024
Viewed by 1340
Abstract
The one-pot multicomponent aza-Morita–Baylis–Hillman (MBH) reaction was performed under green conditions using 1,4-diazabicyclo[2.2.2]octane (DABCO) and Amberlyst® 15 as a co-catalyst, at ambient temperature and under negligible amounts of non-hazardous solvent. A number of α-methylene-β-amino acid derivatives were produced in good to excellent [...] Read more.
The one-pot multicomponent aza-Morita–Baylis–Hillman (MBH) reaction was performed under green conditions using 1,4-diazabicyclo[2.2.2]octane (DABCO) and Amberlyst® 15 as a co-catalyst, at ambient temperature and under negligible amounts of non-hazardous solvent. A number of α-methylene-β-amino acid derivatives were produced in good to excellent yields from different arylaldehydes, p-toluenesulfonamide and α,β-unsaturated carbonyl compounds. The environmental benignity of the process is accounted by the low E-factor (0.7) and high atom economy (95%) values obtained. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

13 pages, 8239 KB  
Article
DABCO-Intercalated α-Zirconium Phosphate as a Latent Thermal Catalyst in the Reaction of Urethane Synthesis
by Osamu Shimomura, Yushi Arisaka, Astrid Rahmawati, Shekh Md. Mamun Kabir, Motohiro Shizuma and Atsushi Ohtaka
Molecules 2024, 29(23), 5569; https://doi.org/10.3390/molecules29235569 - 25 Nov 2024
Viewed by 1145
Abstract
The mixture of hexamethylene diisocyanate (HDI) and butanol (BuOH) with the intercalation compound of 1,4-diazabicyclo[2.2.2]octane (DABCO) with α-zirconium phosphate (α-ZrP) has been evaluated as a latent thermal catalyst at varying temperatures. α-ZrP·DABCO did not show activity at 25 °C, but showed a high [...] Read more.
The mixture of hexamethylene diisocyanate (HDI) and butanol (BuOH) with the intercalation compound of 1,4-diazabicyclo[2.2.2]octane (DABCO) with α-zirconium phosphate (α-ZrP) has been evaluated as a latent thermal catalyst at varying temperatures. α-ZrP·DABCO did not show activity at 25 °C, but showed a high level of activity at a higher temperature of 80 °C. To clarify the reaction behavior of HDI-BuOH with α-ZrP·DABCO, a viscosity value of 1200 mPa·s·g/cm2 was reached at 80 °C for 30 min. To investigate the deintercalation behavior of DABCO from the α-ZrP interlayer, it was investigated in BuOH and in HDI, respectively, under heated conditions. Interestingly, XRD patterns showed a reduction in α-ZrP·DABCO for the interlayer distance due to the deintercalation of DABCO in BuOH, while no changes associated with the deintercalation of DABCO were observed in HDI. Butanol was found to be important for the deintercalation of DABCO. To examine the reactivity of bifunctional monomers, the reaction of 1,4-butanediol (1,4-BDO) and HDI with α-ZrP·DABCO were investigated to show good reactivity at 80 °C and stability at 40 °C. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

12 pages, 3430 KB  
Article
Adsorption of Carbon Dioxide and Nitrogen in Co3(ndc)3(dabco) Metal–Organic Framework
by Rui Pedro Pinto Lopes Ribeiro and José Paulo Barbosa Mota
Int. J. Mol. Sci. 2024, 25(18), 9951; https://doi.org/10.3390/ijms25189951 - 15 Sep 2024
Viewed by 1801
Abstract
Metal–organic frameworks (MOFs) are promising materials for processes such as carbon dioxide (CO2) capture or its storage. In this work, the adsorption of CO2 and nitrogen (N2) in Co3(ndc)3(dabco) MOF (ndc: 2,6-naphthalenedicarboxylate; dabco: 1,4-diazabicyclo[2.2.2]octane) [...] Read more.
Metal–organic frameworks (MOFs) are promising materials for processes such as carbon dioxide (CO2) capture or its storage. In this work, the adsorption of CO2 and nitrogen (N2) in Co3(ndc)3(dabco) MOF (ndc: 2,6-naphthalenedicarboxylate; dabco: 1,4-diazabicyclo[2.2.2]octane) is reported for the first time over the temperature range of 273–323 K and up to 35 bar. The adsorption isotherms are successfully described using the Langmuir isotherm model. The heats of adsorption for CO2 and N2, determined through the Clausius–Clapeyron equation, are 20–27 kJ/mol and 10–11 kJ/mol, respectively. The impact of using pressure and/or temperature swings on the CO2 working capacity is evaluated. If a flue gas with 15% CO2 is fed at 6 bar and 303 K and regenerated at 1 bar and 373 K, 1.58 moles of CO2 can be captured per kg of MOF. The analysis of the multicomponent adsorption of typical flue gas streams (15% CO2 balanced with N2), using the ideal adsorbed solution theory (IAST), shows that at 1 bar and 303 K, the CO2/N2 selectivity is 11.5. In summary, this work reports essential data for the design of adsorption-based processes for CO2 capture using a Co3(ndc)3(dabco) MOF, such as pressure swing adsorption (PSA). Full article
Show Figures

Figure 1

17 pages, 2721 KB  
Article
Exploring Methane Storage Capacities of M2(BDC)2(DABCO) Sorbents: A Multiscale Computational Study
by Nguyen Thi Xuan Huynh, Tue Nguyen-Van, Nguyen Le Bao Tran, Nguyen Van Nghia and Pham Ngoc Thanh
Crystals 2024, 14(7), 596; https://doi.org/10.3390/cryst14070596 - 27 Jun 2024
Viewed by 2127
Abstract
A promising solution for efficient methane (CH4) storage and transport is a metal–organic framework (MOF)-based sorbent. Hence, searching for potential MOFs like M2(BDC)2(DABCO) to enhance the CH4 storage capacity in both gravimetric and volumetric uptakes is [...] Read more.
A promising solution for efficient methane (CH4) storage and transport is a metal–organic framework (MOF)-based sorbent. Hence, searching for potential MOFs like M2(BDC)2(DABCO) to enhance the CH4 storage capacity in both gravimetric and volumetric uptakes is essential. Herein, we systematically elucidate the adsorption of CH4 in M2(BDC)2(DABCO) or M(DABCO) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) MOFs using multiscale simulations that combined grand canonical Monte Carlo simulation with van der Waals density functional (vdW-DF) calculation. We find that, in the M(DABCO) series, Mg(DABCO) has the highest total CH4 adsorption capacities, with mtot= 231.39 mg/g at 298 K, for gravimetric uptake, and Vtot= 231.43 cc(STP)/cc, for volumetric uptake. The effects of temperature, pressure, and metal substitution on enhancing CH4 storage are evaluated, and we predict that the volumetric CH4 storage capacity on M(DABCO) could meet the DOE target at temperatures of ca. 238 K–268 K and pressures of 35–100 bar. The interactions between CH4 and M(DABCO) are dominated by the vdW interactions, as shown by the vdW-DF calculations. The Mg, Mn, Fe, Co, and Ni substitutions in M(DABCO) result in a stronger interaction and thus, a higher CH4 storage capacity, at higher pressures for Mg, Mn, Ni, and Co and at lower pressures for Fe. This work may provide guidance for the rational design of CH4 storage in M2(BDC)2(DABCO) MOFs. Full article
Show Figures

Figure 1

25 pages, 5943 KB  
Article
Modeling 1-Cyano-4-Dimethylaminopyridine Tetrafluoroborate (CDAP) Chemistry to Design Glycoconjugate Vaccines with Desired Structural and Immunological Characteristics
by Rebecca Nappini, Renzo Alfini, Salvatore Durante, Laura Salvini, Maria Michelina Raso, Elena Palmieri, Roberta Di Benedetto, Martina Carducci, Omar Rossi, Paola Cescutti, Francesca Micoli and Carlo Giannelli
Vaccines 2024, 12(7), 707; https://doi.org/10.3390/vaccines12070707 - 24 Jun 2024
Cited by 5 | Viewed by 3242
Abstract
Glycoconjugation is a well-established technology for vaccine development: linkage of the polysaccharide (PS) antigen to an appropriate carrier protein overcomes the limitations of PS T-independent antigens, making them effective in infants and providing immunological memory. Glycoconjugate vaccines have been successful in reducing the [...] Read more.
Glycoconjugation is a well-established technology for vaccine development: linkage of the polysaccharide (PS) antigen to an appropriate carrier protein overcomes the limitations of PS T-independent antigens, making them effective in infants and providing immunological memory. Glycoconjugate vaccines have been successful in reducing the burden of different diseases globally. However, many pathogens still require a vaccine, and many of them display a variety of glycans on their surface that have been proposed as key antigens for the development of high-valency glycoconjugate vaccines. CDAP chemistry represents a generic conjugation strategy that is easily applied to PS with different structures. This chemistry utilizes common groups to a large range of PS and proteins, e.g., hydroxyl groups on the PS and amino groups on the protein. Here, new fast analytical tools to study CDAP reaction have been developed, and reaction conditions for PS activation and conjugation have been extensively investigated. Mathematical models have been built to identify reaction conditions to generate conjugates with wanted characteristics and successfully applied to a large number of bacterial PSs from different pathogens, e.g., Klebsiella pneumoniae, Salmonella Paratyphi A, Salmonella Enteritidis, Salmonella Typhimurium, Shighella sonnei and Shigella flexneri. Furthermore, using Salmonella Paratyphi A O-antigen and CRM197 as models, a design of experiment approach has been used to study the impact of conjugation conditions and conjugate features on immunogenicity in rabbits. The approach used can be rapidly extended to other PSs and accelerate the development of high-valency glycoconjugate vaccines. Full article
(This article belongs to the Special Issue Advances in Glycoconjugate Vaccines and Nanovaccines)
Show Figures

Figure 1

17 pages, 3917 KB  
Article
Polyurethane Composites Recycling with Styrene–Acrylonitrile and Calcium Carbonate Recovery
by Jesús del Amo, Subramaniam Iswar, Thomas Vanbergen, Ana Maria Borreguero, Simon Dirk E. De Vos, Isabel Verlent, Jan Willems and Juan Francisco Rodriguez Romero
Materials 2024, 17(12), 2844; https://doi.org/10.3390/ma17122844 - 11 Jun 2024
Cited by 3 | Viewed by 1476
Abstract
The glycolysis process of flexible polyurethane foams containing styrene–acrylonitrile and calcium carbonate as fillers was explored in detail. The use of DABCO as a catalyst allowed us to reduce the catalyst concentration and the polyurethane-to-glycol mass ratio to 0.1% and 1:1, respectively. The [...] Read more.
The glycolysis process of flexible polyurethane foams containing styrene–acrylonitrile and calcium carbonate as fillers was explored in detail. The use of DABCO as a catalyst allowed us to reduce the catalyst concentration and the polyurethane-to-glycol mass ratio to 0.1% and 1:1, respectively. The glycolysis process allowed us to obtain a high-purity polyol (99%), which can totally replace raw polyols in the synthesis of new flexible polyurethane foams, maintaining the standard mechanical properties of the original one and modifying the ratio of isocyanates employed to correct the closed cell structure caused by the impurities present in the recovered polyol. This isocyanate mixture was also optimized, resulting in a ratio of 30 and 70% of the isocyanates TDI80 and TDI65, respectively. Additionally, the fillers incorporated in the glycolyzed foams were recovered. Both recovered fillers, styrene–acrylonitrile and calcium carbonate, were fully characterized, showing a quality very similar to that of commercial compounds. Finally, the replacement of commercial fillers by the recovered ones in the synthesis of new polyurethane foams was studied, demonstrating the feasibility of using them in the synthesis of new foams without significantly altering their properties. Full article
Show Figures

Graphical abstract

14 pages, 2291 KB  
Article
A Thiourea Derivative of 2-[(1R)-1-Aminoethyl]phenol as a Chiral Sensor for the Determination of the Absolute Configuration of N-3,5-Dinitrobenzoyl Derivatives of Amino Acids
by Federica Aiello, Alessandra Recchimurzo, Federica Balzano, Gloria Uccello Barretta and Federica Cefalì
Molecules 2024, 29(6), 1319; https://doi.org/10.3390/molecules29061319 - 15 Mar 2024
Cited by 3 | Viewed by 1607
Abstract
In the exploration of chiral solvating agents (CSAs) for nuclear magnetic resonance (NMR) spectroscopy designed for the chiral analysis of amino acid derivatives, notable advancements have been made with thiourea–CSAs. 1-TU, derived from 2-[(1R)-1-aminoethyl]phenol and benzoyl isothiocyanate, is effective in [...] Read more.
In the exploration of chiral solvating agents (CSAs) for nuclear magnetic resonance (NMR) spectroscopy designed for the chiral analysis of amino acid derivatives, notable advancements have been made with thiourea–CSAs. 1-TU, derived from 2-[(1R)-1-aminoethyl]phenol and benzoyl isothiocyanate, is effective in the enantiodifferentiation of N-3,5-dinitrobenzoyl (N-DNB) amino acids. In order to broaden the application of 1-TU for configurational assignment, enantiomerically enriched N-DNB amino acids were analyzed via NMR. A robust correlation was established between the relative position of specific 1H and 13C NMR resonances of the enantiomers in the presence of 1-TU. 1,4-Diazabicyclo[2.2.2]octane (DABCO) was selected for the complete solubilization of amino acid substrates. Notably, the para and ortho protons of the N-DNB moiety displayed higher frequency shifts for the (R)-enantiomers as opposed to the (S)-enantiomers. This trend was consistently observed in the 13C NMR spectra for quaternary carbons bonded to NO2 groups. Conversely, an inverse correlation was noted for quaternary carbon resonances of the carboxyl moiety, amide carbonyl, and methine carbon at the chiral center. This observed trend aligns with the interaction mechanism previously reported for the same chiral auxiliary. The configurational correlation can be effectively exploited under conditions of high dilution or, significantly, under sub-stoichiometric conditions. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

17 pages, 3608 KB  
Article
Isohexide-Based Tunable Chiral Platforms as Amide- and Thiourea-Chiral Solvating Agents for the NMR Enantiodiscrimination of Derivatized Amino Acids
by Federica Cefalì, Anna Iuliano, Federica Balzano, Gloria Uccello Barretta, Valerio Zullo and Carlo Baldassari
Molecules 2024, 29(6), 1307; https://doi.org/10.3390/molecules29061307 - 15 Mar 2024
Cited by 6 | Viewed by 2020
Abstract
New arylamide- and arylthiourea-based chiral solvating agents (CSAs) were synthesized starting from commercially available isomannide and isosorbide. The two natural isohexides were transformed into the three amino derivatives, having isomannide, isosorbide, and isoidide stereochemistry, then the amino groups were derivatized with 3,5-dimethoxybenzoyl chloride [...] Read more.
New arylamide- and arylthiourea-based chiral solvating agents (CSAs) were synthesized starting from commercially available isomannide and isosorbide. The two natural isohexides were transformed into the three amino derivatives, having isomannide, isosorbide, and isoidide stereochemistry, then the amino groups were derivatized with 3,5-dimethoxybenzoyl chloride or 3,5-bis(trifluoromethyl)phenyl isothiocyanate to obtain the CSAs. Bis-thiourea derivative containing the 3,5-bis(trifluoromethyl)phenyl moiety with exo–exo stereochemistry was remarkably efficient in the differentiation of NMR signals (NH and acetyl) of enantiomers of N-acetyl (N-Ac) amino acids in the presence of 1,4-diazabicyclo[2,2,2]octane (DABCO). Nonequivalences in the ranges of 0.104–0.343 ppm and 0.042–0.107 ppm for NH and acetyl groups, respectively, allowed for very accurate enantiomeric excess determination, and a reliable correlation was found between the relative positions of signals of enantiomers and their absolute configuration. Therefore, a complete stereochemical characterization could be performed. Dipolar interactions detected in the ternary mixture CSA/N-Ac-valine/DABCO led to the identification of a different interaction model for the two enantiomers, involving the formation of a one-to-one substrate/CSA complex for (S)-N-Ac-valine and a one-to-two complex for (R)-N-Ac-valine, as suggested by the complexation stoichiometry. Full article
Show Figures

Graphical abstract

16 pages, 2497 KB  
Article
Halogen Bonding versus Nucleophilic Substitution in the Co-Crystallization of Halomethanes and Amines
by Olivia Grounds, Matthias Zeller and Sergiy V. Rosokha
Crystals 2024, 14(2), 124; https://doi.org/10.3390/cryst14020124 - 26 Jan 2024
Cited by 3 | Viewed by 2082
Abstract
Haloalkanes and amines are common halogen-bond (XB) donors and acceptors as well as typical reagents in nucleophilic substitution reactions. Thus, crystal engineering using these molecules requires an understanding of the interchange between these processes. Indeed, we previously reported that the interaction of quinuclidine [...] Read more.
Haloalkanes and amines are common halogen-bond (XB) donors and acceptors as well as typical reagents in nucleophilic substitution reactions. Thus, crystal engineering using these molecules requires an understanding of the interchange between these processes. Indeed, we previously reported that the interaction of quinuclidine (QN) with CHI3 in acetonitrile yielded co-crystals showing a XB network of these two constituents. In the current work, the interactions of QN with C2H5I or 1,4-diazabicyclo[2.2.2]octane (DABCO) with CH2I2 led to nucleophilic substitution producing I anions and quaternary ammonium (QN-CH2CH3 or DABCO-CH2I+) cations. Moreover, the reaction of QN with CHI3 in dichloromethane afforded co-crystals containing XB networks of CHI3 with either Cl or I anions and QN-CH2Cl+ counter-ions. A similar reaction in acetone produced XB networks comprising CHI3, I and QN-CH2COCH3+. These distinctions were rationalized through a computational analysis of XB complexes and the transition-state energies for the nucleophilic substitution. It indicated that the outcome of the reactions was determined mostly by the relative energies of the products. The co-crystals obtained in this work showed bonding between the cationic (DABCO-CH2I+, QN-CH2Cl+) or neutral (CHI3) XB donors and the anionic (I, Cl) or neutral (CHI3) acceptors. Their analysis showed comparable electron and energy densities at the XB bond critical points and similar XB energies regardless of the charges of the interacting species. Full article
(This article belongs to the Special Issue Feature Papers in Crystals 2023)
Show Figures

Graphical abstract

23 pages, 5031 KB  
Article
Synthesis of Ketjenblack Decorated Pillared Ni(Fe) Metal-Organic Frameworks as Precursor Electrocatalysts for Enhancing the Oxygen Evolution Reaction
by Thi Hai Yen Beglau, Lars Rademacher, Robert Oestreich and Christoph Janiak
Molecules 2023, 28(11), 4464; https://doi.org/10.3390/molecules28114464 - 31 May 2023
Cited by 15 | Viewed by 3148
Abstract
Metal-organic frameworks (MOFs) have been investigated with regard to the oxygen evolution reaction (OER) due to their structure diversity, high specific surface area, adjustable pore size, and abundant active sites. However, the poor conductivity of most MOFs restricts this application. Herein, through a [...] Read more.
Metal-organic frameworks (MOFs) have been investigated with regard to the oxygen evolution reaction (OER) due to their structure diversity, high specific surface area, adjustable pore size, and abundant active sites. However, the poor conductivity of most MOFs restricts this application. Herein, through a facile one-step solvothermal method, the Ni-based pillared metal-organic framework [Ni2(BDC)2DABCO] (BDC = 1,4-benzenedicarboxylate, DABCO = 1,4-diazabicyclo[2.2.2]octane), its bimetallic nickel-iron form [Ni(Fe)(BDC)2DABCO], and their modified Ketjenblack (mKB) composites were synthesized and tested toward OER in an alkaline medium (KOH 1 mol L−1). A synergistic effect of the bimetallic nickel-iron MOF and the conductive mKB additive enhanced the catalytic activity of the MOF/mKB composites. All MOF/mKB composite samples (7, 14, 22, and 34 wt.% mKB) indicated much higher OER performances than the MOFs and mKB alone. The Ni-MOF/mKB14 composite (14 wt.% of mKB) demonstrated an overpotential of 294 mV at a current density of 10 mA cm−2 and a Tafel slope of 32 mV dec−1, which is comparable with commercial RuO2, commonly used as a benchmark material for OER. The catalytic performance of Ni(Fe)MOF/mKB14 (0.57 wt.% Fe) was further improved to an overpotential of 279 mV at a current density of 10 mA cm−2. The low Tafel slope of 25 mV dec−1 as well as a low reaction resistance due to the electrochemical impedance spectroscopy (EIS) measurement confirmed the excellent OER performance of the Ni(Fe)MOF/mKB14 composite. For practical applications, the Ni(Fe)MOF/mKB14 electrocatalyst was impregnated into commercial nickel foam (NF), where overpotentials of 247 and 291 mV at current densities of 10 and 50 mA cm−2, respectively, were realized. The activity was maintained for 30 h at the applied current density of 50 mA cm−2. More importantly, this work adds to the fundamental understanding of the in situ transformation of Ni(Fe)DMOF into OER-active α/β-Ni(OH)2, β/γ-NiOOH, and FeOOH with residual porosity inherited from the MOF structure, as seen by powder X-ray diffractometry and N2 sorption analysis. Benefitting from the porosity structure of the MOF precursor, the nickel-iron catalysts outperformed the solely Ni-based catalysts due to their synergistic effects and exhibited superior catalytic activity and long-term stability in OER. In addition, by introducing mKB as a conductive carbon additive in the MOF structure, a homogeneous conductive network was constructed to improve the electronic conductivity of the MOF/mKB composites. The electrocatalytic system consisting of earth-abundant Ni and Fe metals only is attractive for the development of efficient, practical, and economical energy conversion materials for efficient OER activity. Full article
(This article belongs to the Special Issue Feature Papers in Materials Chemistry)
Show Figures

Figure 1

13 pages, 5984 KB  
Article
Cation Charge as a Tool to Change Dimensionality in Organic–Inorganic Hybrids Based on Copper Thiocyanate Templated by 1,4-Diazabicyclo[2.2.2]octane
by Evgeny Goreshnik and Svitlana Petrusenko
Molecules 2023, 28(8), 3608; https://doi.org/10.3390/molecules28083608 - 20 Apr 2023
Cited by 3 | Viewed by 2546
Abstract
The first three compounds based on a {copper–thiocyanate–dabco} combination, namely, (Hdabco)[Cu2(NCS)3] (1), (H2dabco)[Cu(NCS)3] (2), and [Cu(Hdabco)2(NCS)4]∙2dmso (3), where dabco = 1,4-diazabicyclo[2.2.2]octane were synthesized and characterized [...] Read more.
The first three compounds based on a {copper–thiocyanate–dabco} combination, namely, (Hdabco)[Cu2(NCS)3] (1), (H2dabco)[Cu(NCS)3] (2), and [Cu(Hdabco)2(NCS)4]∙2dmso (3), where dabco = 1,4-diazabicyclo[2.2.2]octane were synthesized and characterized by single-crystal XRD, elemental analysis, Raman, and partial IR spectroscopy. In copper(I) derivatives, the influence of the charge of the organic cation on the dimensionality of the crystal structure is observed. Thus, in the case of 1, monoprotonated Hdabco+ cations provide the template for the formation of a polymeric anionic 3D framework {[Cu2(NCS)3]}n, while in the case of 2, diprotonated H2dabco2+ cations together with discrete [Cu(SCN)3]2− anions generate a simple ionic 0D structure with an island-like crystal lattice. The anionic {[Cu2(SCN)3]}n framework has infinite square channels of 10 × 10 Å size running along the 001 crystallographic direction. In 3, both the Hdabco+ and thiocyanato units behave as terminal monodentate ligands attached to copper(II) centers via N-donor atoms, forming neutral molecular complexes with an elongated (4+2) octahedral environment. The crystallization molecules of dmso are hydrogen bonded to the protonated parts of the coordinated dabco molecules. A series of by-products Cu(SCN)2(dmso)2 (4), (Hdabco)SCN (5), (H2dabco)(SCN)2 (6), and (H2dabco)(SCN)2∙H2O (7) were identified and characterized. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

15 pages, 2690 KB  
Article
DABCO-Catalyzed Mono-/Diallylation of N-Unsubstituted Isatin N,N′-Cyclic Azomethine Imine 1,3-Dipoles with Morita-Baylis-Hillman Carbonates
by Qiumi Wang, Sicheng Li, Guosheng Yang, Xinyu Zou, Xi Yin, Juhua Feng, Huabao Chen, Chunping Yang, Li Zhang, Cuifen Lu and Guizhou Yue
Molecules 2023, 28(7), 3002; https://doi.org/10.3390/molecules28073002 - 28 Mar 2023
Cited by 6 | Viewed by 2442
Abstract
Allylation of N-unsubstituted isatin N,N′-cyclic azomethine imines with Morita-Baylis-Hillman carbonates in the presence of 1–10 mol% DABCO in DCM at room temperature, rapidly gave N-allylated and N, β-diallylated isatin N,N′-cyclic azomethine imine 1,3-dipoles [...] Read more.
Allylation of N-unsubstituted isatin N,N′-cyclic azomethine imines with Morita-Baylis-Hillman carbonates in the presence of 1–10 mol% DABCO in DCM at room temperature, rapidly gave N-allylated and N, β-diallylated isatin N,N′-cyclic azomethine imine 1,3-dipoles in moderate to high yields. The reaction features mild reaction conditions, easily practical operation, and short reaction times in most cases. Furthermore, the alkylated products were transformed into novel bicyclic spiropyrrolidine oxoindole derivatives through the [3+2] or [3+3]-cycloaddition with maleimides or Knoevenagel adducts. Full article
(This article belongs to the Special Issue Chemistry of Nitrogen Heterocyclic Compounds)
Show Figures

Figure 1

18 pages, 3284 KB  
Article
Effect of Different Amine Catalysts on the Thermomechanical and Cytotoxic Properties of ‘Visco’-Type Polyurethane Foam for Biomedical Applications
by Dominik Grzęda, Grzegorz Węgrzyk, Adriana Nowak, Gabriela Komorowska, Leonard Szczepkowski and Joanna Ryszkowska
Materials 2023, 16(4), 1527; https://doi.org/10.3390/ma16041527 - 11 Feb 2023
Cited by 5 | Viewed by 3559
Abstract
Components for manufacturing polyurethane foams can adversely affect the human body, particularly if they are in contact with it for long periods. In applications where the foam is not placed directly into the body, the study of the product’s effects is often neglected. [...] Read more.
Components for manufacturing polyurethane foams can adversely affect the human body, particularly if they are in contact with it for long periods. In applications where the foam is not placed directly into the body, the study of the product’s effects is often neglected. In the case of human skin, distinguishing the increasingly frequent problems of skin atopy, more attention should be paid to this. This paper presents the influence of the different catalytic systems on cytotoxic and thermomechanical properties in polyurethane foams. Among others, foams were produced with the most popular catalysts on the market, DABCO and a metal-organic tin catalyst. The foams were characterized by thermomechanical properties and were subjected to a cytotoxicity test against human keratinocytes. In biocompatibility tests with skin cells, the results were highly variable. VAB 2 with a catalytic system consisting of commercial Diethanolamine and Addocat®105 performed the best. However, with such a catalytic system, the mechanical properties have worsened. Full article
(This article belongs to the Special Issue Porous Materials for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop