Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (300)

Search Parameters:
Keywords = DEM-CFD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4724 KB  
Article
Effect of Surface Tortuosity on Particle Dynamics in Rock Fractures
by Yang Wang, Cheng Li, Kangsheng Xue, Xin Qu and Yaling Liu
Processes 2025, 13(9), 2702; https://doi.org/10.3390/pr13092702 (registering DOI) - 25 Aug 2025
Abstract
The transport behavior of particles in tortuous fractures is prevalent in the oil and gas extraction process and has a profound impact on engineering. However, due to a variety of factors, drilling fluid leakage is prone to occur during drilling and completion, and [...] Read more.
The transport behavior of particles in tortuous fractures is prevalent in the oil and gas extraction process and has a profound impact on engineering. However, due to a variety of factors, drilling fluid leakage is prone to occur during drilling and completion, and an evaluation system for the influence of meander characteristics on the kinetic properties of particles has not yet been established. To this end, this paper constructs a numerical model based on CFD-DEM numerical simulation to simulate the particle–fluid two-phase flow in the meandering fracture, investigates the mechanism of surface meandering on particle force, particle transport velocity, and particle residence time, and proposes a mathematical method based on meandering for predicting particle transport velocity and particle residence time in the stable transport phase. The results show that the increase in tortuosity makes the force state of particles in the fracture show significant instability and intensifies the interaction between fluid and particles in the fracture; the effect of the tortuous wall intensifies the inhomogeneity of transport velocity, and the perturbation effect of the complex path structure on the x-direction velocity of particles is stronger; and the increase in tortuosity is not conducive to particle retention in the fracture. The results of the study can provide theoretical guidance for reducing the risk of drilling fluid leakage during drilling and completion. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

33 pages, 10331 KB  
Article
Sand Particle Transport Mechanisms in Rough-Walled Fractures: A CFD-DEM Coupling Investigation
by Chengyue Gao, Weifeng Yang, Henglei Meng and Yi Zhao
Water 2025, 17(17), 2520; https://doi.org/10.3390/w17172520 - 24 Aug 2025
Abstract
Utilizing a coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM) approach, this study constructs a comprehensive three-dimensional numerical model to simulate particle migration dynamics within rough artificial fractures subjected to the high-energy impact of water inrush. The model explicitly incorporates key governing [...] Read more.
Utilizing a coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM) approach, this study constructs a comprehensive three-dimensional numerical model to simulate particle migration dynamics within rough artificial fractures subjected to the high-energy impact of water inrush. The model explicitly incorporates key governing factors, including intricate fracture wall geometry characterized by the joint roughness coefficient (JRC) and aperture variation, hydraulic pressure gradients representative of inrush events, and polydisperse sand particle sizes. Sophisticated simulations track the complete mobilization, subsequent acceleration, and sustained transport of sand particles driven by the powerful high-pressure flow. The results demonstrate that particle migration trajectories undergo a distinct three-phase kinetic evolution: initial acceleration, intermediate coordination, and final attenuation. This evolution is critically governed by the complex interplay of hydrodynamic shear stress exerted by the fluid flow, frictional resistance at the fracture walls, and dynamic interactions (collisions, contacts) between individual particles. Sensitivity analyses reveal that parameters like fracture roughness exert significant nonlinear control on transport efficiency, with an identified optimal JRC range (14–16) promoting the most effective particle transit. Hydraulic pressure and mean aperture size also exhibit strong, nonlinear regulatory influences. Particle transport manifests through characteristic collective migration patterns, including “overall bulk progression”, processes of “fragmentation followed by reaggregation”, and distinctive “center-stretch-edge-retention” formation. Simultaneously, specific behaviors for individual particles are categorized as navigating the “main shear channel”, experiencing “boundary-disturbance drift”, or becoming trapped as “wall-adhered obstructed” particles. Crucially, a robust multivariate regression model is formulated, integrating these key parameter effects, to quantitatively predict the critical migration time required for 80% of the total particle mass to transit the fracture. This investigation provides fundamental mechanistic insights into the particle–fluid dynamics underpinning hazardous water–sand inrush phenomena, offering valuable theoretical underpinnings for risk assessment and mitigation strategies in deep underground engineering operations. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 4809 KB  
Article
Multiscale Analysis of Seepage Failure Mechanisms in Gap-Graded Soils Using Coupled CFD-DEM Modeling
by Qiong Xiao, Lu Ma, Shan Chang, Xinxin Yue and Ling Yuan
Water 2025, 17(16), 2461; https://doi.org/10.3390/w17162461 - 19 Aug 2025
Viewed by 318
Abstract
Seepage erosion around sheet pile walls represents a critical failure mechanism in geotechnical engineering, yet the underlying mechanisms governing the onset of erosion remain poorly understood. This study presents a comprehensive multi-scale investigation employing a coupled computational fluid dynamics (CFD)-discrete element method (DEM) [...] Read more.
Seepage erosion around sheet pile walls represents a critical failure mechanism in geotechnical engineering, yet the underlying mechanisms governing the onset of erosion remain poorly understood. This study presents a comprehensive multi-scale investigation employing a coupled computational fluid dynamics (CFD)-discrete element method (DEM) to elucidate the onset mechanisms of seepage erosion in gap-graded soils with varying the fines content under different hydraulic gradients. The results demonstrate that increasing the fines content enhances the overall erosion resistance, as evidenced by reduced particle mobilization and eroded mass ratio. Particle tracking analysis reveals that the fines content fundamentally influences the spatial distribution of the erosion. Specimens with low fines content exhibit distributed erosion throughout the domain, while specimens with higher fines content show concentrated erosion around the sheet pile wall and downstream regions. Micromechanical analysis of local contact fabric and contact forces indicates that this spatial heterogeneity stems from the mechanical coordination number and mechanical redundancy, characterized by the reduced magnitudes of these parameters for the region with lower erosion resistance. These findings establish that the fines content governs both global erosion resistance and spatial erosion patterns, providing essential insights for optimizing soil gradation design and advancing fundamental understanding of seepage erosion mechanisms. Full article
(This article belongs to the Special Issue Effects of Hydrology on Soil Erosion and Soil Water Conservation)
Show Figures

Figure 1

30 pages, 6817 KB  
Article
Numerical Study on Non-Icebreaking Ship Maneuvering in Floating Ice Based on Coupled NDEM–MMG Modeling
by Deling Wang, Luyuan Zou, Zhiheng Zhang and Xinqiang Chen
J. Mar. Sci. Eng. 2025, 13(8), 1578; https://doi.org/10.3390/jmse13081578 - 17 Aug 2025
Viewed by 251
Abstract
The maneuvering performance of ships in marginal ice zones is critical for navigational safety, yet most existing studies focus on icebreaking vessels. This study develops a coupled numerical framework that integrates the Non-Smooth Discrete Element Method (NDEM) for simulating ship–ice interactions with the [...] Read more.
The maneuvering performance of ships in marginal ice zones is critical for navigational safety, yet most existing studies focus on icebreaking vessels. This study develops a coupled numerical framework that integrates the Non-Smooth Discrete Element Method (NDEM) for simulating ship–ice interactions with the three-degree-of-freedom MMG model for ship dynamics. The framework was applied to an S175 container ship, and numerical simulations were conducted for turning circle and Zig-Zag maneuvers under varying ice concentrations (0–60%), floe sizes, and rudder angles. NDEM efficiently handles complex, high-frequency multi-body collisions with larger time steps compared to conventional DEM or CFD–DEM approaches, enabling large-scale simulations of realistic ice conditions. Results indicate that increasing ice concentration from 0% to 60% reduces the turning diameter from 4.11L to 3.21L and decreases steady turning speed by approximately 53%. Larger floes form stable force chains that restrict lateral motion, while higher rudder angles improve responsiveness but may induce dynamic instability. These findings improve understanding of non-icebreaking ship maneuverability in ice and provide practical guidance for safe and efficient Arctic navigation. Full article
Show Figures

Figure 1

30 pages, 4571 KB  
Review
Evolution and Application of Precision Fertilizer: A Review
by Luxi Wang, Jianmin Gao and Waqar Ahmed Qureshi
Agronomy 2025, 15(8), 1939; https://doi.org/10.3390/agronomy15081939 - 12 Aug 2025
Viewed by 571
Abstract
This paper reviews technological advances in precision fertilizer application from 2020 to 2025, addressing the need for a systematic synthesis of recent innovations to support agricultural sustainability. With precision fertilization critical for efficient resource use, rapid technological progress in this field has highlighted [...] Read more.
This paper reviews technological advances in precision fertilizer application from 2020 to 2025, addressing the need for a systematic synthesis of recent innovations to support agricultural sustainability. With precision fertilization critical for efficient resource use, rapid technological progress in this field has highlighted a gap in consolidated overviews of post-2020 developments. The review focuses on three core areas: device innovation, intelligent control optimization, and simulation-driven parameter refinement. Key advancements include structural improvements in fertilizer applicators (e.g., multi-segment arc and variable-diameter designs) enhancing discharge uniformity and accuracy; integration of algorithms like PSO, fuzzy logic, and RBFNN (e.g., PSO-RBF-PID reducing flow control errors) boosting control precision; and DEM/CFD simulations optimizing device parameters. These technologies, applied in scenarios from drone-based unmanned operations to automatic targeting systems, have shown potential in reducing fertilizer use and increasing crop yields. This synthesis clarifies recent progress, offering insights for green agricultural development. Note that a few pre-2020 references are included for foundational context, ensuring completeness. Full article
Show Figures

Figure 1

28 pages, 15264 KB  
Article
Effect of Auxiliary Air-Suction Seed-Filling Structure on Seed Discharge Performance of Peanut High-Speed Seed-Metering Machine
by Peng Guo, Bin Sun, Shuqi Shang, Jialin Hou, Dongwei Wang, Zhuang Zhao, Ahmed Elshafie, Xiaoshuai Zheng and Farid Eltoum
Agriculture 2025, 15(15), 1678; https://doi.org/10.3390/agriculture15151678 - 2 Aug 2025
Viewed by 375
Abstract
Aiming to resolve the problem of the poor peanut seed-filling effect under high-speed operation when developing high-speed peanut sowing with precision, a peanut precision seed-metering machine with an auxiliary air-suction seed-filling device was designed. Focusing on the force analysis of peanuts in the [...] Read more.
Aiming to resolve the problem of the poor peanut seed-filling effect under high-speed operation when developing high-speed peanut sowing with precision, a peanut precision seed-metering machine with an auxiliary air-suction seed-filling device was designed. Focusing on the force analysis of peanuts in the seed chamber, the peanut seed disturbance principle in the seed-metering machine for the blowing structure of an auxiliary air-suction seed-filling device was clarified. The seed-filling process was analyzed via DEM-CFD coupled simulation, and three factors affecting the seed-filling effect were identified, namely the seed-filling chamber ‘V’ angle γ, the bottom blow-air-hole cross-sectional area S, and the bottom blow-air-hole airflow velocity vq, and the ranges of values of the three factors were determined. The Box–Behnken test was conducted using the seed-filling index and leakage index as the indexes. The results show that the seed-filling chamber ‘V’ angle γ is 56.59°, the bottom blowhole cross-sectional area S is 1088.4 mm2, and the blowhole air velocity vq is 12.11 m·s−1. At this point, the peanut seed suction qualification index and leakage index are optimal, the seed suction qualification index is 96.33%, and the seed leakage index is 2.59%. At the same time, the field test shows that a sowing operation speed of 8–12 km·h−1, a qualified index > 93%, and a leakage index < 4.5% are required to meet the agronomic requirements of peanut precision sowing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 7708 KB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 - 1 Aug 2025
Viewed by 406
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

22 pages, 13481 KB  
Article
Design and Experiment of Air-Suction Roller-Type Minituber Seed-Metering Device Based on CFD-DEM
by Jicheng Li, Haiqin Ma, Yuxuan Chen, Xiaoxin Zhu, Yu Qi, Qiang Gao and Jinqing Lyu
Agriculture 2025, 15(15), 1652; https://doi.org/10.3390/agriculture15151652 - 31 Jul 2025
Viewed by 212
Abstract
Aiming at the problems of the high multiple- and missed-seeding index and low operation efficiency of current mechanical potato seed-meters in minituber sowing, this study designed an air-suction roller-type minituber seed-metering device for minitubers (mass between 2 and 4 g) in accordance with [...] Read more.
Aiming at the problems of the high multiple- and missed-seeding index and low operation efficiency of current mechanical potato seed-meters in minituber sowing, this study designed an air-suction roller-type minituber seed-metering device for minitubers (mass between 2 and 4 g) in accordance with the agronomic standards for potato cultivation in the single-cropping area of northern China. An account of the device’s structure and operational principle was made, its working process was theoretically analysed, and the three main factors affecting the airflow suction were determined: the seed roller speed, the suction seeding hole diameter, and the air inlet negative pressure. This study adopted the fluid dynamics simulation method and determined that the ideal location of the air inlet was 30° for horizontal inclination and 60° for vertical inclination. Then, based on the CFD-DEM fluid-structure coupling simulation method, the impact of a range of factors on the functionality of the seed-metering device under different conditions was studied and verification tests were carried out. Design-Expert was used to analyse test results. The results showed that when the pressure at the air inlet was −7000 Pa, the speed of the seeding roller was 40.2 r·min−1, the suction seeding hole diameter was 10.37 mm, and the performance was optimal: the qualified index was 92.95%, the multiple-seeding index was 4.16%, and the missed-seeding index was 2.89%. The research results show that the seed-metering device developed under this scheme exhibited satisfactory seeding performance during operation and was able to meet the demands of minituber sowing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 3997 KB  
Article
Simulation of Dynamic Particle Trapping and Accumulation in HGMS Based on FEM-CFD-DEM Coupling Approach
by Xiaoming Wang, Yonghui Hu, Yefei Hao, Zhengchang Shen, Guodong Liang and Ming Zhang
Processes 2025, 13(8), 2391; https://doi.org/10.3390/pr13082391 - 28 Jul 2025
Viewed by 369
Abstract
High-gradient magnetic separation (HGMS) is a conventional and effective method for processing weak magnetic materials. A multi-field dynamic coupling simulation method integrating the Finite Element Method (FEM), Computational Fluid Dynamics (CFD), and the Discrete Element Method (DEM) was employed to investigate the separation [...] Read more.
High-gradient magnetic separation (HGMS) is a conventional and effective method for processing weak magnetic materials. A multi-field dynamic coupling simulation method integrating the Finite Element Method (FEM), Computational Fluid Dynamics (CFD), and the Discrete Element Method (DEM) was employed to investigate the separation behavior in HGMS. The dynamic deposition process of magnetic particles under the interactions of magnetic fields, fluid flow fields, and particle–particle forces was simulated using a two-way fluid–solid coupling algorithm based on the FEM-CFD-DEM coupling approach. Experimental results demonstrated that the particle deposition profiles predicted by the double-wire medium model were in good agreement with the measured data. The research findings indicated that the separation process could be divided into three distinct stages—the adsorption stage, the closure stage, and the clogging stage—each characterized by unique dynamic behaviors and pressure-drop evolution patterns. Additionally, the effects of key parameters such as the feeding velocity and medium filling ratio on the separation process were analyzed, providing theoretical foundations and technical support for the optimization of HGMS processes and the enhancement of separation efficiency. Full article
(This article belongs to the Special Issue Mineral Processing Equipments and Cross-Disciplinary Approaches)
Show Figures

Figure 1

19 pages, 4635 KB  
Article
Prediction of Scouring Hole Morphology Induced by Underwater Jets Using CFD–DEM Simulation
by Yina Wang, Yang Wang, Jiachen Zhang, Jielong Hu, Zihao Duan and Qibo Zhang
Water 2025, 17(14), 2163; https://doi.org/10.3390/w17142163 - 21 Jul 2025
Viewed by 465
Abstract
Underwater jet scouring is an efficient, flexible underwater dredging technique, yet its complex physical mechanisms and dynamic evolution hinder dredging effectiveness evaluation. Existing studies mostly use empirical formulas and neglect the sediment properties’ influence on scour holes. This study integrates numerical simulation, theoretical [...] Read more.
Underwater jet scouring is an efficient, flexible underwater dredging technique, yet its complex physical mechanisms and dynamic evolution hinder dredging effectiveness evaluation. Existing studies mostly use empirical formulas and neglect the sediment properties’ influence on scour holes. This study integrates numerical simulation, theoretical derivation, and sediment characteristics to develop a universal model for efficiently predicting underwater jet scour hole morphology, overcoming existing models’ limitations of over-simplifying complex physics and insufficient experimental data alignment. Using CFD–DEM coupling to simulate scouring, it correlates key physical parameters (average/maximum shear rate, average/maximum shear velocity) with jet characteristics (nozzle diameter, velocity, distance) via theoretical derivation and simplifications, validated using multi-condition simulation data. Comparative analysis shows maximum relative errors of 13% for depth and 7% for width, confirming the engineering applicability in scour hole prediction. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

19 pages, 11197 KB  
Article
Modeling of Linear Die Filling Based on Dimensional Analysis Using DEM-CFD Methods
by Jie Li, Sunsheng Zhou, Shiyan Yan, Yuanqiang Tan and Jiangtao Zhang
Materials 2025, 18(14), 3261; https://doi.org/10.3390/ma18143261 - 10 Jul 2025
Viewed by 352
Abstract
Linear die filling is currently widely employed in industries. However, there is no comprehensive and systematic model to describe the powder die filling process. This paper utilizes dimensional analysis to extract and analyze various factors that affect the flow characteristics of powder based [...] Read more.
Linear die filling is currently widely employed in industries. However, there is no comprehensive and systematic model to describe the powder die filling process. This paper utilizes dimensional analysis to extract and analyze various factors that affect the flow characteristics of powder based on DEM-CFD simulations. Several dimensionless parameters including the ratio of particle size to die depth (dphD1), solid density number (ρpρg1), shoe speed number (vρgLDμ1), and force number (GpFDrag1) were proposed based on the Pi theorem. The results showed that the filling ratio δ increased with the increase in dphD1 and ρpρg1 due to GpFDrag1 rising. But it decreased with the increase in vρgLDμ1 due to the shortening of effective filling time. Finally, a semi-empirical modeling of linear die filling was developed, taking the critical value (dphD1)90 as the dependent variable and the solid density number (ρpρg1) and shoe speed number (vρgLDμ1) as independent variables. Hence, this model provides a new approach to computing the smallest shoe speed and designing the sizes of dies based on measurable material properties under complete die filling. Full article
Show Figures

Figure 1

4 pages, 175 KB  
Correction
Correction: Wang et al. Calibration of DEM Polyhedron Model for Wheat Seed Based on Angle of Repose Test and Semi-Resolved CFD-DEM Coupling Simulation. Agriculture 2025, 15, 506
by Longbao Wang, Hanyu Yang, Zhinan Wang, Qingjie Wang, Caiyun Lu, Chao Wang and Jin He
Agriculture 2025, 15(14), 1470; https://doi.org/10.3390/agriculture15141470 - 9 Jul 2025
Viewed by 222
Abstract
In the original publication [...] Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
25 pages, 7171 KB  
Article
CFD–DEM Analysis of Internal Soil Erosion Induced by Infiltration into Defective Buried Pipes
by Jun Xu, Fei Wang and Bryce Vaughan
Geosciences 2025, 15(7), 253; https://doi.org/10.3390/geosciences15070253 - 3 Jul 2025
Viewed by 499
Abstract
Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the [...] Read more.
Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the detachment, transport, and redistribution of soil particles under varying infiltration pressures and pipe defect geometries. Using ANSYS Fluent (CFD) and Rocky (DEM), the simulation resolves both the fluid flow field and granular particle dynamics, capturing erosion cavity formation, void evolution, and soil particle transport in three dimensions. The results reveal that increased infiltration pressure and defect size in the buried pipe significantly accelerate the process of erosion and sinkhole formation, leading to potentially unstable subsurface conditions. Visualization of particle migration, sinkhole development, and soil velocity distributions provides insight into the mechanisms driving localized failure. The findings highlight the importance of considering fluid–particle interactions and defect characteristics in the design and maintenance of buried structures, offering a predictive basis for assessing erosion risk and infrastructure vulnerability. Full article
Show Figures

Figure 1

30 pages, 12972 KB  
Article
Simulation and Optimization of Conveying Parameters for Vertical Screw Conveyor Based on CFD + DEM
by Xiao Mei, Xiaoyu Fang, Liyang Zhang, Yandi Wang and Yuan Tian
Fluids 2025, 10(7), 171; https://doi.org/10.3390/fluids10070171 - 30 Jun 2025
Cited by 1 | Viewed by 439
Abstract
This study investigates the interaction between airflow and low-density bulk particles within vertical screw conveyors and examines its impact on conveying performance. A combined simulation approach integrating the Discrete Element Method and Computational Fluid Dynamics was employed to model both single-phase particle flow [...] Read more.
This study investigates the interaction between airflow and low-density bulk particles within vertical screw conveyors and examines its impact on conveying performance. A combined simulation approach integrating the Discrete Element Method and Computational Fluid Dynamics was employed to model both single-phase particle flow and gas–solid two-phase flow. A periodic model was developed based on the structural characteristics of the conveyor. Particle motion dynamics under both single-phase and coupled two-phase conditions were analyzed using EDEM and coupled Fluent-EDEM simulations. The effects of key operational parameters, including screw speed, filling rate, and helix angle, on mass flow rate were systematically evaluated. A comprehensive performance index was established to quantify conveying efficiency, and its validity was confirmed through analysis of variance on the regression model. Finally, the response surface methodology was applied to optimize parameters and determine the optimal combination of screw speed and filling rate to enhance mass flow efficiency. The results indicate that the gas–solid two-phase flow model provides a more accurate representation of real-world conveying dynamics. Future research may extend the model to accommodate more complex material conditions. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

22 pages, 6584 KB  
Article
The Erosion Characteristics of a Needle Throttle Valve with Multiple Placement Schemes in a Shale Gas Field Based on CFD-DEM
by Zhe Wu, Yangfan Lu, Min Liu, Fubin Wang, Yingying Wang, Shengnan Du, Weiqiang Wang and Bingyuan Hong
Processes 2025, 13(6), 1833; https://doi.org/10.3390/pr13061833 - 10 Jun 2025
Cited by 1 | Viewed by 382
Abstract
Shale gas is a low-carbon unconventional natural gas resource. The development of shale gas helps to optimize the energy structure and reduce carbon emissions. However, the needle throttle valves (NTVs) commonly used in shale gas fields are usually severely eroded by solid particles. [...] Read more.
Shale gas is a low-carbon unconventional natural gas resource. The development of shale gas helps to optimize the energy structure and reduce carbon emissions. However, the needle throttle valves (NTVs) commonly used in shale gas fields are usually severely eroded by solid particles. Based on the method of CFD-DEM coupling calculation, this paper constructs a gas–solid two-phase flow erosion model of the NTV and studies the influence of different placement methods, valve opening degrees, and other factors on particle movement and valve erosion. This research found that the spool is the area of the valve that is most severely eroded, and when placed horizontally, it has a serious ‘bias wear’ phenomenon. The research results herein can provide references for the design optimization and on-site maintenance of valve performance. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

Back to TopTop