Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (498)

Search Parameters:
Keywords = DNA resonance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1024 KB  
Review
Artificial Intelligence in Glioma Diagnosis: A Narrative Review of Radiomics and Deep Learning for Tumor Classification and Molecular Profiling Across Positron Emission Tomography and Magnetic Resonance Imaging
by Rafail C. Christodoulou, Rafael Pitsillos, Platon S. Papageorgiou, Vasileia Petrou, Georgios Vamvouras, Ludwing Rivera, Sokratis G. Papageorgiou, Elena E. Solomou and Michalis F. Georgiou
Eng 2025, 6(10), 262; https://doi.org/10.3390/eng6100262 - 3 Oct 2025
Abstract
Background: This narrative review summarizes recent progress in artificial intelligence (AI), especially radiomics and deep learning, for non-invasive diagnosis and molecular profiling of gliomas. Methodology: A thorough literature search was conducted on PubMed, Scopus, and Embase for studies published from January [...] Read more.
Background: This narrative review summarizes recent progress in artificial intelligence (AI), especially radiomics and deep learning, for non-invasive diagnosis and molecular profiling of gliomas. Methodology: A thorough literature search was conducted on PubMed, Scopus, and Embase for studies published from January 2020 to July 2025, focusing on clinical and technical research. In key areas, these studies examine AI models’ predictive capabilities with multi-parametric Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). Results: The domains identified in the literature include the advancement of radiomic models for tumor grading and biomarker prediction, such as Isocitrate Dehydrogenase (IDH) mutation, O6-methylguanine-dna methyltransferase (MGMT) promoter methylation, and 1p/19q codeletion. The growing use of convolutional neural networks (CNNs) and generative adversarial networks (GANs) in tumor segmentation, classification, and prognosis was also a significant topic discussed in the literature. Deep learning (DL) methods are evaluated against traditional radiomics regarding feature extraction, scalability, and robustness to imaging protocol differences across institutions. Conclusions: This review analyzes emerging efforts to combine clinical, imaging, and histology data within hybrid or transformer-based AI systems to enhance diagnostic accuracy. Significant findings include the application of DL to predict cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion and chemokine CCL2 expression. These highlight the expanding capabilities of imaging-based genomic inference and the importance of clinical data in multimodal fusion. Challenges such as data harmonization, model interpretability, and external validation still need to be addressed. Full article
Show Figures

Figure 1

11 pages, 1301 KB  
Article
Monitoring Single DNA Docking Site Activity with Sequential Modes of an Optoplasmonic Whispering-Gallery Mode Biosensor
by Narima Eerqing, Ekaterina Zossimova, Sivaraman Subramanian, Hsin-Yu Wu and Frank Vollmer
Sensors 2025, 25(19), 6059; https://doi.org/10.3390/s25196059 - 2 Oct 2025
Abstract
In recent years, there has been rapid advancement in single-molecule techniques, driven by their unparalleled precision in studying molecules whose sizes are beyond the diffraction limit. Among these techniques, optoplasmonic whispering gallery mode sensing has demonstrated great potential in label-free single-molecule characterization. It [...] Read more.
In recent years, there has been rapid advancement in single-molecule techniques, driven by their unparalleled precision in studying molecules whose sizes are beyond the diffraction limit. Among these techniques, optoplasmonic whispering gallery mode sensing has demonstrated great potential in label-free single-molecule characterization. It combines the principles of localized surface plasmon resonance (LSPR) and whispering gallery mode (WGM) sensing, offering exceptional sensing capabilities, even at the level of single ions. However, current optoplasmonic WGM sensing operates in a multiplexed channel, making it challenging to focus on individual binding sites of analyte molecules. In this article, we characterize different binding sites of DNA analyte molecules hybridizing to docking strands on the optoplasmonic WGM sensor, using the ratio of the resonance shift between sequential polar WGM modes. We identify specific docking sites that undergo transient interactions and eventually hybridize with the complementary analyte strands permanently. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

23 pages, 5324 KB  
Article
Vincristine Beyond Mitosis: Uncovering a First Link to G-Quadruplex DNA in Cancer Cells
by Anna Di Porzio, Carolina Persico, Francesca Romano, Alessandra Barra, Immacolata Aiello, Ludovica D’Auria, Sara Abate, Federica D’Aria, Concetta Giancola, Elpidio Cinquegrana, Francesco Saverio Di Leva, Jussara Amato, Simona Marzano, Nunzia Iaccarino and Antonio Randazzo
Int. J. Mol. Sci. 2025, 26(19), 9606; https://doi.org/10.3390/ijms26199606 - 1 Oct 2025
Abstract
Vincristine is a classical chemotherapeutic agent widely used for its ability to disrupt microtubule polymerization, yet additional molecular effects may contribute to its anticancer activity. G-quadruplexes (G4s), non-canonical nucleic acid structures enriched in regulatory regions of the genome and in mitochondrial DNA, have [...] Read more.
Vincristine is a classical chemotherapeutic agent widely used for its ability to disrupt microtubule polymerization, yet additional molecular effects may contribute to its anticancer activity. G-quadruplexes (G4s), non-canonical nucleic acid structures enriched in regulatory regions of the genome and in mitochondrial DNA, have emerged as relevant modulators of cellular homeostasis. In this study, we investigated whether vincristine can influence G4 biology. Cancer cells treated with vincristine were analyzed by immunofluorescence, revealing a consistent increase in nuclear and mitochondrial G4 foci. In particular, mitochondrial G4s were significantly elevated by approximately 1.5–2.5 fold compared to untreated cells, an effect accompanied by a detectable reduction in membrane potential, indicative of impaired organelle function. In addition, biophysical analyses on representative G4-forming sequences were carried out. Proton nuclear magnetic resonance titrations showed localized chemical shift perturbations upon vincristine addition, circular dichroism confirmed preservation of G4 topology, and isothermal titration calorimetry indicated weak but enthalpically favorable interactions. Taken together, these results suggest that vincristine perturbs both the cellular G4 landscape and mitochondrial homeostasis, while also engaging G4 DNA in vitro. Although additional studies are required to establish the mechanistic details, this work provides proof-of-concept for a previously unrecognized dimension of vincristine’s anticancer action. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1222 KB  
Article
Application of the Combined QCM-D/LSPR Aptasensor for Penicillin G Detection
by Sandro Spagnolo, Kiran Sontakke, Lukas Dubbert, Matthias Urban, Tomas Lednicky, Andrea Csaki, Katrin Wondraczek, Wolfgang Fritzsche and Tibor Hianik
Biosensors 2025, 15(10), 652; https://doi.org/10.3390/bios15100652 - 1 Oct 2025
Abstract
Penicillin G (PEN) is a widely used antibiotic for treating microbial infections. However, its extensive use in veterinary medicine can lead to accumulation in animal-derived products, particularly milk and meat. This highlights the urgent need for rapid and sensitive antibiotic detection methods. In [...] Read more.
Penicillin G (PEN) is a widely used antibiotic for treating microbial infections. However, its extensive use in veterinary medicine can lead to accumulation in animal-derived products, particularly milk and meat. This highlights the urgent need for rapid and sensitive antibiotic detection methods. In this study, we employed DNA aptamers for the detection of PEN and for the analysis of aptamer specificity using a combined approach based on quartz crystal microbalance with dissipation monitoring (QCM-D) and localized surface plasmon resonance (LSPR). QCM-D measures changes in resonant frequency, Δf, and dissipation, ΔD, while LSPR monitors wavelength shifts in the extinction spectra corresponding to changes at the surface of gold nanoparticles (AuNPs). Thiolated aptamers were chemisorbed onto the surface of AuNPs with a diameter of 80 nm. In the presence of PEN, a redshift in the extinction spectra and a decrease in resonant frequency were observed, accompanied by an increase in dissipation due to surface viscosity effects. Significant changes in both acoustic and LSPR signals were observed at PEN concentrations as low as 1 nM. The limits of detection (LOD) for PEN, determined by QCM-D (3.0 nM, or 1.05 ng/mL)) and LSPR (3.1 nM, or 1.09 ng/mL), were similar and both were lower than the maximum residue limit (MRL) for PEN established by the EU (4 ng/mL). Full article
(This article belongs to the Special Issue Feature Papers in Nano- and Micro-Technologies in Biosensors 2025)
Show Figures

Graphical abstract

28 pages, 1144 KB  
Review
The Importance of Multifaceted Approach for Accurate and Comprehensive Evaluation of Oxidative Stress Status in Biological Systems
by Borut Poljšak, Polona Jamnik and Irina Milisav
Antioxidants 2025, 14(9), 1083; https://doi.org/10.3390/antiox14091083 - 3 Sep 2025
Viewed by 803
Abstract
Oxidative stress is caused by an imbalance between the formation of reactive oxygen species (ROS) and the activity of antioxidant defense system, which disrupts redox signaling and causes molecular damage. While there are numerous methods to measure oxidative stress, the complex and dynamic [...] Read more.
Oxidative stress is caused by an imbalance between the formation of reactive oxygen species (ROS) and the activity of antioxidant defense system, which disrupts redox signaling and causes molecular damage. While there are numerous methods to measure oxidative stress, the complex and dynamic nature of ROS production and antioxidant reactions requires a multi-faceted approach. Direct methods such as electron spin resonance (ESR) and fluorescent probes measure ROS directly but are limited by the short lifespan of certain species. Indirect methods such as lipid peroxidation markers (e.g., malondialdehyde, MDA), protein oxidation (e.g., carbonyl content), and DNA damage (e.g., 8-oxo-dG) provide information on oxidative damage, but they do not capture the real-time dynamics of ROS. The antioxidant defense system, which includes enzymatic components such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), further complicates assessment, as it responds dynamically to oxidative challenges. Furthermore, the compartmentalized nature of ROS production in organelles and tissues coupled with the temporal variability of oxidative damage and repair underscores the need to integrate multiple assessment methods. This commentary highlights the limitations of using single assays and emphasizes the importance of combining complementary techniques to achieve a comprehensive assessment of oxidative stress. A multi-method approach ensures accurate identification of ROS dynamics, antioxidant responses, and the extent of oxidative damage, providing crucial insights into redox biology and its impact on health and disease. Full article
Show Figures

Figure 1

27 pages, 415 KB  
Review
Radiotherapy in Glioblastoma Multiforme: Evolution, Limitations, and Molecularly Guided Future
by Castalia Fernández, Raquel Ciérvide, Ana Díaz, Isabel Garrido and Felipe Couñago
Biomedicines 2025, 13(9), 2136; https://doi.org/10.3390/biomedicines13092136 - 1 Sep 2025
Viewed by 1185
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor in adults, has a poor prognosis due to rapid recurrence and treatment resistance. This review examines the evolution of radiotherapy (RT) for GBM management, from whole-brain RT to modern techniques like intensity-modulated RT (IMRT) [...] Read more.
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor in adults, has a poor prognosis due to rapid recurrence and treatment resistance. This review examines the evolution of radiotherapy (RT) for GBM management, from whole-brain RT to modern techniques like intensity-modulated RT (IMRT) and volumetric modulated arc therapy (VMAT), guided by 2023 European Society for Radiotherapy and Oncology (ESTRO)-European Association of Neuro-Oncology (EANO) and 2025 American Society for Radiation Oncology (ASTRO) recommendations. The standard Stupp protocol (60 Gy/30 fractions with temozolomide [TMZ]) improves overall survival (OS) to 14.6 months, with greater benefits in O6-methylguanine-DNA methyltransferase (MGMT)-methylated tumors (21.7 months). Tumor Treating Fields (TTFields) extend median overall survival (mOS) to 31.6 months in MGMT-methylated patients and 20.9 months overall in supratentorial GBM (EF-14 trial). However, 80–90% of recurrences occur within 2 cm of the irradiated field due to tumor infiltration and radioresistance driven by epidermal growth factor receptor (EGFR) amplification, phosphatase and tensin homolog (PTEN) mutations, cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletions, tumor hypoxia, and tumor stem cells. Pseudoprogression, distinguished using Response Assessment in Neuro-Oncology (RANO) criteria and positron emission tomography (PET), complicates response evaluation. Targeted therapies (e.g., bevacizumab; PARP inhibitors) and immunotherapies (e.g., pembrolizumab; oncolytic viruses), alongside advanced imaging (multiparametric magnetic resonance imaging [MRI], amino acid PET), support personalized RT. Ongoing trials evaluating reirradiation, hypofractionation, stereotactic radiosurgery, neoadjuvant therapies, proton therapy (PT), boron neutron capture therapy (BNCT), and AI-driven planning aim to enhance efficacy for GBM IDH-wildtype, but phase III trials are needed to improve survival and quality of life. Full article
(This article belongs to the Special Issue Glioblastoma: From Pathophysiology to Novel Therapeutic Approaches)
11 pages, 2175 KB  
Case Report
First Case in Lithuania of an Autosomal Recessive Mutation in the DNAJC30 Gene as a Cause of Leber’s Hereditary Optic Neuropathy
by Liveta Sereikaite, Alvita Vilkeviciute, Brigita Glebauskiene, Rasa Traberg, Arvydas Gelzinis, Raimonda Piskiniene, Reda Zemaitiene, Rasa Ugenskiene and Rasa Liutkeviciene
Genes 2025, 16(9), 993; https://doi.org/10.3390/genes16090993 - 23 Aug 2025
Viewed by 586
Abstract
Background: Leber’s hereditary optic neuropathy (LHON) is the most common mitochondrial disorder and an inherited optic neuropathy. Recently, two different LHON inheritance types have been discovered: mitochondrially inherited LHON (mtLHON) and autosomal recessive LHON (arLHON). Our case report is the first diagnosed case [...] Read more.
Background: Leber’s hereditary optic neuropathy (LHON) is the most common mitochondrial disorder and an inherited optic neuropathy. Recently, two different LHON inheritance types have been discovered: mitochondrially inherited LHON (mtLHON) and autosomal recessive LHON (arLHON). Our case report is the first diagnosed case of arLHON in a patient of Lithuanian descent and confirms the DnaJ Heat Shock Protein Family (Hsp40) Member C30 (DNAJC30) c.152A>G p.(Tyr51Cys) founder variant. Case Presentation: A 34-year-old Lithuanian man complained of headache and sudden, painless loss of central vision in his right eye. On examination, the visual acuity of the right and left eyes was 0.1 and 1.0, respectively. Visual-field examination revealed a central scotoma in the right eye, and visual evoked potentials (VEPs) showed prolonged latency in both eyes. Optical coherence tomography showed thickening of the retinal nerve fiber layer in the upper quadrant of the optic disk in the left eye. Magnetic resonance imaging of the head showed evidence of optic nerve inflammation in the right eye. Blood tests were within normal range and showed no signs of inflammation. Retrobulbar neuritis of the right eye was suspected, and the patient was treated with steroids, which did not improve visual acuity. He later developed visual loss in the left eye as well. A genetic origin of the optic neuropathy was suspected, and a complete mitochondrial DNA analysis was performed, but it did not reveal any pathologic mutations. Over time, the visual acuity of both eyes slowly deteriorated, and the retinal nerve fiber layer (RNFL) thinning of the optic disks progressed. A multidisciplinary team of specialists concluded that vasculitis or infectious disease was unlikely to be the cause of the vision loss, and a genetic cause for the disease was still suspected, although a first-stage genetic test did not yield the diagnosis. Thirty-three months after disease onset, whole-exome sequencing revealed a pathogenic variant in the DNAJC30 gene, leading to the diagnosis of arLHON. Treatment with Idebenone was started 35 months after the onset of the disease, resulting in no significant worsening of the patient’s condition. Conclusion: This case highlights the importance of considering arLHON as a possible diagnosis for patients with optic neuropathy, because the phenotype of arLHON appears to be identical to that of mtLHON and cannot be distinguished by clinicians. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

15 pages, 9131 KB  
Article
Rapid G4 Ligand Screening Through Spectral Changes Using HT-SRCD with Minimal Material
by Martina Rotondo, Claudia Honisch, Pietro Spanu, Fausta Ulgheri, Giovanni Loriga, Andrea Beccu, Rohanah Hussain, Barbara Biondi, Paolo Ruzza and Giuliano Siligardi
Molecules 2025, 30(16), 3322; https://doi.org/10.3390/molecules30163322 - 8 Aug 2025
Viewed by 477
Abstract
The development of molecules that interact with G-quadruplex (G4) sequences requires effective evaluation methods. Several techniques are currently available, including nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS), fluorescence using FRET-melting, [...] Read more.
The development of molecules that interact with G-quadruplex (G4) sequences requires effective evaluation methods. Several techniques are currently available, including nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS), fluorescence using FRET-melting, G4-fluorescent intercalator displacement assay (G4-FID) and affinity chromatography. Among these, CD spectroscopy is gaining prominence due to its lower material requirements, faster experimentation and quicker data processing. However, conventional CD methods have limitations, such as higher sample volume required and the inability to handle high-throughput analysis efficiently. The use of synchrotron radiation in high-throughput analysis methods (HT-SRCD) has further advanced the investigation of small-molecule interactions with DNA G4 structures in the presence of various monovalent cations. HT-SRCD offers the capability to analyze multiple samples simultaneously, overcoming the limitations of conventional CD methods. To validate this approach, three biologically relevant G4 sequences—HTelo1, G3T3 and T95-2T—were investigated. Their interactions with a library of small tetrazole-based molecules, synthesized via a four-component Ugi reaction, and with a peptide sequence deriving from RHAU helicases (Rhau25), were evaluated. The results demonstrate that this method not only effectively discriminates between different ligands but also provides valuable insights into the selectivity and the modes of interaction of these ligands with the G4 sequences. Full article
(This article belongs to the Special Issue Chemistry of Nucleic Acids: From Structure to Biological Interactions)
Show Figures

Graphical abstract

36 pages, 3621 KB  
Review
Harnessing Molecular Phylogeny and Chemometrics for Taxonomic Validation of Korean Aromatic Plants: Integrating Genomics with Practical Applications
by Adnan Amin and Seonjoo Park
Plants 2025, 14(15), 2364; https://doi.org/10.3390/plants14152364 - 1 Aug 2025
Viewed by 899
Abstract
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a [...] Read more.
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a comprehensive overview of the chemotaxonomic traits, biological activities, phylogenetic relationships and potential applications of Korean aromatic plants, highlighting their significance in more accurate identification. Chemotaxonomic investigations employing techniques such as gas chromatography mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy have enabled the identification of essential oils and specialized metabolites that serve as valuable taxonomic and diagnostic markers. These chemical traits play essential roles in species delimitation and in clarifying interspecific variation. The biological activities of selected taxa are reviewed, with emphasis on antimicrobial, antioxidant, anti-inflammatory, and cytotoxic effects, supported by bioassay-guided fractionation and compound isolation. In parallel, recent advances in phylogenetic reconstruction employing DNA barcoding, internal transcribed spacer regions, and chloroplast genes such as rbcL and matK are examined for their role in clarifying taxonomic uncertainties and inferring evolutionary lineages. Overall, the search period was from year 2001 to 2025 and total of 268 records were included in the study. By integrating phytochemical profiling, pharmacological evidence, and molecular systematics, this review highlights the multifaceted significance of Korean endemic aromatic plants. The conclusion highlights the importance of multidisciplinary approaches including metabolomics and phylogenomics in advancing our understanding of species diversity, evolutionary adaptation, and potential applications. Future research directions are proposed to support conservation efforts. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

22 pages, 1439 KB  
Article
The Transcription Machinery and the Driving Force of the Transcriptional Molecular Condensate: The Role of Phosphates
by Raúl Riera Aroche, Esli C. Sánchez Moreno, Yveth M. Ortiz García, Andrea C. Machado Sulbarán, Lizbeth Riera Leal, Luis R. Olivas Román and Annie Riera Leal
Curr. Issues Mol. Biol. 2025, 47(7), 571; https://doi.org/10.3390/cimb47070571 - 20 Jul 2025
Viewed by 585
Abstract
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can [...] Read more.
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can be modeled as a combination of n circuits connected in parallel. RNA Pol II accesses these circuits and, through a series of pulses, matches the resonance frequency of the DNA qubits, enabling it to extract genetic information and quantum teleport it. Negatively charged phosphates react under RNA Pol II catalysis, which increases the electron density on the deoxyribose acceptor carbon (2’C in the DNA sugar backbone). The phosphorylation effect on the stability of a carbon radical connects tyrosine to the nitrogenous base, while the subsequent pulses link the protein to molecular water through hydrogen bonds. The selective activation of inert C(sp3)–H bonds begins by reading the quantum information stored in the nitrogenous bases. The coupling of hydrogen proton transfer with electron transfer in water generates a supercurrent, which is explained by the correlation of pairs of the same type of fermions exchanging a boson. All these changes lead to the formation of a molecular protein–DNA–water transcriptional condensate. Full article
Show Figures

Figure 1

19 pages, 2134 KB  
Article
Valorization of Rice-Bran and Corn-Flour Hydrolysates for Optimized Polyhydroxybutyrate Biosynthesis: Statistical Process Design and Structural Verification
by Gaurav Shrimali, Hardik Shah, Kashyap Thummar, Esha Rami, Rajeshkumar Chaudhari, Jens Ejbye Schmidt and Ajit Gangawane
Polymers 2025, 17(14), 1904; https://doi.org/10.3390/polym17141904 - 10 Jul 2025
Viewed by 711
Abstract
The extensive environmental pollution caused by petroleum-based plastics highlights the urgent need for sustainable, economically viable alternatives. The practical challenge of enhancing polyhydroxybutyrate (PHB) production with cost-effective agro-industrial residues—rice-bran and corn-flour hydrolysates—has been demonstrated. Bacillus bingmayongensis GS2 was isolated from soil samples collected [...] Read more.
The extensive environmental pollution caused by petroleum-based plastics highlights the urgent need for sustainable, economically viable alternatives. The practical challenge of enhancing polyhydroxybutyrate (PHB) production with cost-effective agro-industrial residues—rice-bran and corn-flour hydrolysates—has been demonstrated. Bacillus bingmayongensis GS2 was isolated from soil samples collected at the Pirana municipal landfill in Ahmedabad, India, and identified through VITEK-2 biochemical profiling and 16S rDNA sequencing (GenBank accession OQ749793). Initial screening for PHB accumulation was performed using Sudan Black B staining. Optimization via a sequential one-variable-at-a-time (OVAT) approach identified optimal cultivation conditions (36 h inoculum age, 37 °C, pH 7.0, 100 rpm agitation), resulting in a PHB yield of 2.77 g L−1 (66% DCW). Further refinement using a central composite response surface methodology (RSM)—varying rice-bran hydrolysate, corn-flour hydrolysate, peptone concentration, and initial pH—significantly improved the PHB yield to 3.18 g L−1(74% DCW), representing more than a threefold enhancement over unoptimized conditions. Structural validation using Fourier Transform Infrared spectroscopy (FTIR) and Proton Nuclear Magnetic Resonance spectroscopy (1H-NMR) confirmed the molecular integrity of the produced PHB. That Bacillus bingmayongensis GS2 effectively converts low-cost agro-industrial residues into high-value bioplastics has been demonstrated, indicating substantial industrial potential. Future work will focus on bioreactor scale-up, targeted metabolic-engineering strategies, and comprehensive sustainability evaluations, including life-cycle assessment. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

34 pages, 6553 KB  
Review
Recent Advances in Photonic Crystal Fiber-Based SPR Biosensors: Design Strategies, Plasmonic Materials, and Applications
by Ayushman Ramola, Amit Kumar Shakya, Vinay Kumar and Arik Bergman
Micromachines 2025, 16(7), 747; https://doi.org/10.3390/mi16070747 - 25 Jun 2025
Cited by 1 | Viewed by 2307
Abstract
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light [...] Read more.
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light guidance, dispersion management, and light confinement, making them highly suitable for applications in refractive index (RI) sensing, biomedical imaging, and nonlinear optical phenomena such as fiber tapering and supercontinuum generation. SPR is a highly sensitive optical phenomenon, which is widely integrated with PCFs to enhance detection performance through strong plasmonic interactions at metal–dielectric interfaces. The combination of PCF and SPR technologies has led to the development of innovative sensor geometries, including D-shaped fibers, slotted-air-hole structures, and internal external metal coatings, each optimized for specific sensing goals. These PCF-SPR-based sensors have shown promising results in detecting biomolecular targets such as excess cholesterol, glucose, cancer cells, DNA, and proteins. Furthermore, this review provides an in-depth analysis of key design parameters, plasmonic materials, and sensor models used in PCF-SPR configurations, highlighting their comparative performance metrics and application prospects in medical diagnostics, environmental monitoring, and chemical analysis. Thus, an exhaustive analysis of various sensing parameters, plasmonic materials, and sensor models used in PCF-SPR sensors is presented and explored in this article. Full article
Show Figures

Graphical abstract

25 pages, 1486 KB  
Article
Functional Enrichment Analysis of Rare Mutations in Patients with Brain Arteriovenous Malformations
by Elena Zholdybayeva, Ayazhan Bekbayeva, Karashash Menlibayeva, Alua Gusmaulemova, Botakoz Kurentay, Bekbolat Tynysbekov, Almas Auganov, Ilyas Akhmetollayev and Chingiz Nurimanov
Biomedicines 2025, 13(6), 1451; https://doi.org/10.3390/biomedicines13061451 - 12 Jun 2025
Viewed by 698
Abstract
Background/Objectives: Brain arteriovenous malformations (bAVMs) are rare vascular anomalies characterized by direct connections between arteries and veins, bypassing the capillary network. This study aimed to identify potential genetic factors contributing to the development of sporadic bAVMs. Methods: Three patients (AVM1–3) from Kazakhstan [...] Read more.
Background/Objectives: Brain arteriovenous malformations (bAVMs) are rare vascular anomalies characterized by direct connections between arteries and veins, bypassing the capillary network. This study aimed to identify potential genetic factors contributing to the development of sporadic bAVMs. Methods: Three patients (AVM1–3) from Kazakhstan who underwent microsurgical resection at the National Centre for Neurosurgery (NCN) in Astana, Kazakhstan, were analyzed. Brain AVMs were diagnosed using magnetic resonance imaging (MRI). Genomic DNA was isolated from whole venous blood samples, and whole-exome sequencing was performed on the NovaSeq 6000 platform (Illumina). Variants were filtered according to standard bioinformatics protocols, and candidate gene prioritization was conducted using the ToppGene tool. Results: In silico analysis further revealed candidate genes likely associated with lesion development, including COL3A1, CTNNB1, LAMA1, NPHP3, SLIT2, SLIT3, SMO, MAPK3, LRRK2, TTN, ERBB2, PARD3, and OBSL1. It is essential to focus on the genetic variants affecting the following prioritized genes: ERBB2, SLIT3, SMO, MAPK3, and TTN. Mutations in these genes were predicted to be “damaging”. Most of these genes are involved in signaling pathways that control vasculogenesis and angiogenesis. Conclusions: Defects in genes associated with ciliary structure and function may be critical to the pathogenesis of brain AVMs. These findings provide valuable insights into the molecular underpinnings of bAVM development, emphasizing key biological pathways and potential candidate genes. Further research is needed to establish robust correlations between specific genetic mutations and clinical phenotypes, which could ultimately inform the development of improved diagnostic, therapeutic, and prognostic approaches. Full article
(This article belongs to the Special Issue Exploring Human Diseases Through Genomic and Genetic Analyses)
Show Figures

Figure 1

8 pages, 186 KB  
Article
Cardiac Involvement in Patients with MELAS-Related mtDNA 3243A>G Variant
by Aino-Maija Vuorinen, Lauri Lehmonen, Mari Auranen, Sini Weckström, Sari Kivistö, Miia Holmström and Tiina Heliö
Cardiogenetics 2025, 15(2), 16; https://doi.org/10.3390/cardiogenetics15020016 - 6 Jun 2025
Cited by 1 | Viewed by 853
Abstract
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a rare disease with variable clinical manifestations. MELAS is most often caused by the human mitochondrial DNA (mtDNA) m.3243A>G variant. We describe cardiac magnetic resonance (CMR) imaging findings and clinical features of [...] Read more.
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a rare disease with variable clinical manifestations. MELAS is most often caused by the human mitochondrial DNA (mtDNA) m.3243A>G variant. We describe cardiac magnetic resonance (CMR) imaging findings and clinical features of 22 subjects with the m.3243A>G mutation and endeavored to discover the role of CMR in MELAS cardiomyopathy diagnostics. The clinical symptoms, ECG findings, and laboratory tests were retrospectively collected from the electronic medical record. Ten subjects (46%) had cardiac symptoms, and eighteen subjects (82%) had some clinical symptoms or signs of MELAS. Seventeen subjects (77%) showed cardiac findings compatible with MELAS. An ECG showed a short PR interval in six subjects (27%). Two patients had a first-degree atrioventricular block. Repolarization changes in the ECG were observed in thirteen subjects (59%), whereas left ventricular hypertrophy voltage criteria were only observed in one subject. Patients with ECG abnormalities had a strong link between proBNP value and cardiac tissue composition (T1 relaxation, p < 0.02) and showed decreased CMR-based strain (p < 0.025). The CMR findings are heterogeneous in subjects with m.3243A>G. Cardiac MELAS may include left ventricular hypertrophy, which mimics sarcomericcardiomyopathy but maypredispose individuals to severe heart failure episodes triggered by acute critical situations. CMR may be used to clarify ECG findings. This study indicates that the genetic testing of MELAS should be considered in new cases of HCM or sudden heart failure phenotypes of unknown etiology. Full article
21 pages, 7343 KB  
Article
Dihydromyricetin May Attenuate Skin Aging as a RAGE Inhibitor
by Fei Wang, Yuanzhi Jian, Fangzhi Xia, Liangchun Kuo and Junbo Wang
Nutrients 2025, 17(11), 1862; https://doi.org/10.3390/nu17111862 - 29 May 2025
Viewed by 1506
Abstract
Background/Objectives: Dihydromyricetin (DHM), a flavonoid with abundant natural sources, potent bioactivity, and high safety, holds promise for translational applications, particularly in mitigating skin aging. However, its role and underlying mechanisms in counteracting skin aging induced by advanced glycation end products (AGEs) remain [...] Read more.
Background/Objectives: Dihydromyricetin (DHM), a flavonoid with abundant natural sources, potent bioactivity, and high safety, holds promise for translational applications, particularly in mitigating skin aging. However, its role and underlying mechanisms in counteracting skin aging induced by advanced glycation end products (AGEs) remain unclear. Methods: Eight-week-old male Sprague-Dawley (SD) rats were subcutaneously injected with 500 mg/kg D-galactose and administered DHM via gavage for 11 weeks. Additionally, senescent human skin fibroblasts (HFF-1) induced by AGEs were used for further investigation. Results: DHM treatment significantly alleviated D-galactose-induced skin aging in rats, with the most pronounced effects observed in the moderate-dose group (100 mg/kg). Compared to the aging group, DHM enhanced skin elasticity and preserved collagen levels. Moreover, DHM promoted cell proliferation in the skin. Further studies on AGE-induced senescent fibroblasts revealed that DHM markedly reduced multiple senescence-associated markers and stimulated cell proliferation by approximately a 1.5-fold increase. Transcriptomic analysis indicated that DHM upregulated genes related to the cell cycle and DNA repair while suppressing AGE-RAGE signaling and its downstream pathways. Notably, DHM downregulated AGER, the gene encoding the receptor for AGEs (RAGE). Molecular docking analysis demonstrated that DHM shares a binding site with other known RAGE inhibitors. Surface plasmon resonance (SPR) analysis further confirmed the high binding affinity of DHM to RAGE (KD = 28.7 μM), which was stronger and more stable than that of FPS-ZM1 (KD = 40.7 μM). Conclusions: DHM may attenuate glycation-induced skin aging in rats by functioning as a RAGE inhibitor, thereby suppressing AGE-RAGE signaling, delaying cellular senescence, and promoting cell proliferation. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

Back to TopTop