Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,351)

Search Parameters:
Keywords = Design for Transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2421 KB  
Article
DLC-Organized Tower Base Forces and Moments for the IEA-15 MW on a Jack-up-Type Support (K-Wind): Integrated Analyses and Cross-Code Verification
by Jin-Young Sung, Chan-Il Park, Min-Yong Shin, Hyeok-Jun Koh and Ji-Su Lim
J. Mar. Sci. Eng. 2025, 13(11), 2077; https://doi.org/10.3390/jmse13112077 (registering DOI) - 31 Oct 2025
Abstract
Offshore wind turbines are rapidly scaling in size, which amplifies the need for credible integrated load analyses that consistently resolve the coupled dynamics among rotor–nacelle–tower systems and their support substructures. This study presents a comprehensive ultimate limit state (ULS) load assessment for a [...] Read more.
Offshore wind turbines are rapidly scaling in size, which amplifies the need for credible integrated load analyses that consistently resolve the coupled dynamics among rotor–nacelle–tower systems and their support substructures. This study presents a comprehensive ultimate limit state (ULS) load assessment for a fixed jack-up-type substructure (hereafter referred to as K-wind) coupled with the IEA 15 MW reference wind turbine. Unlike conventional monopile or jacket configurations, the K-wind concept adopts a self-installable triangular jack-up foundation with spudcan anchorage, enabling efficient transport, rapid deployment, and structural reusability. Yet such a configuration has never been systematically analyzed through full aero-hydro-servo-elastic coupling before. Hence, this work represents the first integrated load analysis ever reported for a jack-up-type offshore wind substructure, addressing both its unique load-transfer behavior and its viability for multi-MW-class turbines. To ensure numerical robustness and cross-code reproducibility, steady-state verifications were performed under constant-wind benchmarks, followed by time-domain simulations of standard prescribed Design Load Case (DLC), encompassing power-producing extreme turbulence, coherent gusts with directional change, and parked/idling directional sweeps. The analyses were independently executed using two industry-validated solvers (Deeplines Wind v5.8.5 and OrcaFlex v11.5e), allowing direct solver-to-solver comparison and establishing confidence in the obtained dynamic responses. Loads were extracted at the transition-piece reference point in a global coordinate frame, and six key components (Fx, Fy, Fz, Mx, My, and Mz) were processed into seed-averaged signed envelopes for systematic ULS evaluation. Beyond its methodological completeness, the present study introduces a validated framework for analyzing next-generation jack-up-type foundations for offshore wind turbines, establishing a new reference point for integrated load assessments that can accelerate the industrial adoption of modular and re-deployable support structures such as K-wind. Full article
17 pages, 4695 KB  
Article
Crack Arrest Effect of FeMnNiSi-Inconel625-Ni60 Laminated Structure Prepared by Laser Cladding Additive Manufacturing
by Lihong Ding, Weining Lei and Jufang Chen
Materials 2025, 18(21), 4996; https://doi.org/10.3390/ma18214996 (registering DOI) - 31 Oct 2025
Abstract
This study addresses the technical challenges of cracking and surface crack initiation in Ni60 alloy cladding layers fabricated by laser cladding additive manufacturing on FeMnNiSi alloys. An innovative FeMnNiSi-Inconel625-Ni60 laminate design was proposed, achieving metallurgical bonding of the dissimilar materials through an Inconel625 [...] Read more.
This study addresses the technical challenges of cracking and surface crack initiation in Ni60 alloy cladding layers fabricated by laser cladding additive manufacturing on FeMnNiSi alloys. An innovative FeMnNiSi-Inconel625-Ni60 laminate design was proposed, achieving metallurgical bonding of the dissimilar materials through an Inconel625 transition layer. This effectively addresses the interfacial stress concentration issue caused by differences in thermal expansion coefficients in conventional processes. The results demonstrate that the interfacial microstructure is regulated by synergistic Nb-Mo element segregation, promoting the precipitation of γ″ phase and the formation of a nanoscale Laves phase. This phase not only inhibits carbide aggregation and growth, refining grain size, but also deflects crack propagation paths by pinning dislocations, achieving a dual mechanism of stress reduction and crack arrest. The Ni60 cladding layer in the laminated structure exhibits an average surface microhardness of 641.31 HV0.3, 3.88 times that of the substrate (165.22 HV0.3), while the Inconel625 base layer shows 340.71 HV0.3, 2.06 times the substrate’s value. Wear testing reveals the laminated cladding layer has a wear volume of 0.086 mm3 (0.243 mm3 less than the substrate’s 0.329 mm3) and a wear rate of 0.86 × 10−2 mm3/(N·m), 73.86% lower than the substrate’s 3.29 × 10−2 mm3/(N·m), indicating superior wear resistance. The electrochemical test results show that under the same corrosion conditions, the self-corrosion potential and polarization resistance of the FeMnNiSi-Inconel625-Ni60 cladding layer are significantly higher than those of the substrate, while the corrosion current density is significantly lower than that of the substrate. The frequency stability region at the highest impedance modulus |Z| is wider than that of the substrate, and the corrosion rate is 71.86% slower than that of the substrate, demonstrating excellent wear resistance. This study not only reveals the mechanism by which Laves phases improve interfacial properties through microstructural regulation but also provides a scalable interface design strategy for heterogeneous material additive manufacturing, which has important engineering value in promoting the application of laser cladding technology in the field of high-end equipment repair. Full article
Show Figures

Figure 1

25 pages, 6312 KB  
Review
Early Insights into AI and Machine Learning Applications in Hydrogel Microneedles: A Short Review
by Jannah Urifa and Kwok Wei Shah
Micro 2025, 5(4), 48; https://doi.org/10.3390/micro5040048 (registering DOI) - 31 Oct 2025
Abstract
Hydrogel microneedles (HMNs) act as non-invasive devices that can effortlessly merge with the human body for drug delivery and diagnostic purposes. Nonetheless, their improvement is limited by intricate and repetitive issues related to material composition, structural geometry, manufacturing accuracy, and performance enhancement. At [...] Read more.
Hydrogel microneedles (HMNs) act as non-invasive devices that can effortlessly merge with the human body for drug delivery and diagnostic purposes. Nonetheless, their improvement is limited by intricate and repetitive issues related to material composition, structural geometry, manufacturing accuracy, and performance enhancement. At present, there are only a limited number of studies accessible since artificial intelligence and machine learning (AI/ML) for HMN are just starting to emerge and are in the initial phase. Data is distributed across separate research efforts, spanning different fields. This review aims to tackle the disjointed and narrowly concentrated aspects of current research on AI/ML applications in HMN technologies by offering a cohesive, comprehensive synthesis of interdisciplinary insights, categorized into five thematic areas: (1) material and microneedle design, (2) diagnostics and therapy, (3) drug delivery, (4) drug development, and (5) health and agricultural sensing. For each domain, we detail typical AI methods, integration approaches, proven advantages, and ongoing difficulties. We suggest a systematic five-stage developmental pathway covering material discovery, structural design, manufacturing, biomedical performance, and advanced AI integration, intended to expedite the transition of HMNs from research ideas to clinically and commercially practical systems. The findings of this review indicate that AI/ML can significantly enhance HMN development by addressing design and fabrication constraints via predictive modeling, adaptive control, and process optimization. By synchronizing these abilities with clinical and commercial translation requirements, AI/ML can act as key facilitators in converting HMNs from research ideas into scalable, practical biomedical solutions. Full article
Show Figures

Figure 1

29 pages, 2063 KB  
Article
The Eco-Friendly Paradigm Shift in Shipping and Shipbuilding: Policy–Technology Linkages as Key Drivers
by Hae-Yeon Lee, Chang-Hee Lee, Sang-Seop Lim and Kang Woo Chun
Sustainability 2025, 17(21), 9733; https://doi.org/10.3390/su17219733 (registering DOI) - 31 Oct 2025
Abstract
The decarbonization of shipping and shipbuilding is a critical challenge under the Inter-national Maritime Organization’s (IMO) 2030 greenhouse gas (GHG) reduction target and 2050 net-zero strategy, requiring effective coordination between policy and technology. This study investigates how Japan, China, and Korea respond to [...] Read more.
The decarbonization of shipping and shipbuilding is a critical challenge under the Inter-national Maritime Organization’s (IMO) 2030 greenhouse gas (GHG) reduction target and 2050 net-zero strategy, requiring effective coordination between policy and technology. This study investigates how Japan, China, and Korea respond to these regulatory pressures by systematically analyzing their policy–technology linkages. A four-stage design was applied, combining qualitative case studies, policy–technology mapping, theoretical interpretation, and comparative analysis, to trace how national strategies shape eco-friendly transitions. Japan employs an innovation-led, institution-convergent model in which technological demonstrations drive institutional adaptation and diffusion, China follows a policy-designated, execution-oriented model where state-led interventions accelerate commercialization, and Korea adopts a coordination-based, cyclical model balancing public demonstrations, financial support, and international standardization to reduce transition costs. These findings demonstrate that sequencing between policy–technology linkage is context-dependent, shaped by technological maturity, economic feasibility and infrastructure, institutional predictability, and socio-environmental acceptance. The study contributes a cyclic co-evolutionary perspective that moves beyond technological or institutional determinism, reconceptualizes regulation as enabling infra-structure, and identifies implications for global standard-setting and industrial competitiveness. The insights inform practical strategies for major shipbuilding nations to reduce costs while sustaining competitiveness under the IMO’s decarbonization framework. Full article
24 pages, 13194 KB  
Article
Ore Characterization and Its Application to Beneficiation: the Case of Molai Zn-Pb±(Ag,Ge) Epithermal Ore, Laconia, SE Peloponnese, Greece
by Stavros Savvas Triantafyllidis, Stylianos Fotios Tombros, Elias Sammas, Elias Kevrekidis, Konstantinos Kappis, Michalis Fitros, Constantinos Mavrogonatos, Konstantinos Papageorgiou, Ekaterini Spiliopoulou, Sotirios Kokkalas, Panagiotis Voudouris, Charalampos Vasilatos, Degao Zhai, Pantelis Nikolakopoulos, Ioannis Koukouvelas, Joan Papavasiliou and Stavros Kalaitzidis
Minerals 2025, 15(11), 1152; https://doi.org/10.3390/min15111152 (registering DOI) - 31 Oct 2025
Abstract
This study provides a comprehensive characterization of the low-to-intermediate sulfidation (LS-to-IS) epithermal Molai Zn-Pb±(Ag,Ge) ore (Vigla-Mesovouni orebody) in Laconia, Greece, and provides insights on how such data may be employed in beneficiation flow-sheet design. Detailed mineralogical, chemical, textural, and physicochemical characterization defines a [...] Read more.
This study provides a comprehensive characterization of the low-to-intermediate sulfidation (LS-to-IS) epithermal Molai Zn-Pb±(Ag,Ge) ore (Vigla-Mesovouni orebody) in Laconia, Greece, and provides insights on how such data may be employed in beneficiation flow-sheet design. Detailed mineralogical, chemical, textural, and physicochemical characterization defines a systematic transition from early refractory Ge-rich to late-stage refractory Ag-rich mineralization, including sulfides and fahlores. Germanium, although present in all sphalerite varieties (Sp-I, Sp-II, and Sp-III), is predominantly enriched in early sphalerite (Sp-I, up to 1891.60 ppm). Interestingly, Ge is also enriched in early Py-I pyrite, with content reaching up to 383 ppm. Silver is mainly concentrated in late-stage tetrahedrite Ttr-II (up to 3.60%), galena (Ga-II), and, to a lesser extent, late sphalerite (Sp-III). Liberation studies reveal effective liberation of Py-I and Sp-I, major Ge carriers, in the coarser fractions (+0.150 mm) and near complete liberation of all ore phases below 0.036 mm. Combined beneficiation via Wilfley pre-concentration and differential flotation produced up to ~35% Pb and ~65% Zn at >85% recovery for the smallest fractions (−0.036 mm). Ore characterization revealed that secondary circuits may be developed to further enhance the economic value of Molai ore (Ge from Py-I, and Ag±[Sb,As] from Ttr-II and Ag-bearing sulfosalts), which are dismissed as wastes in Pb and Zn flotation circuits. The results of our study establish a robust foundation for the design of tailored, multi-stage metallurgical flow-sheets aimed at maximizing the economic value of the Molai epithermal resource. Full article
18 pages, 1512 KB  
Article
SPICE Model for SiC Bipolar Transistor and TTL Inverter Degradation Due to Gamma Radiation
by Alex Metreveli, Anders Hallén and Carl-Mikael Zetterling
Micromachines 2025, 16(11), 1246; https://doi.org/10.3390/mi16111246 (registering DOI) - 31 Oct 2025
Abstract
Silicon carbide (SiC) is a key material for electronics operating in harsh environments due to its wide bandgap, high thermal conductivity, and radiation hardness. In this work, we present a SPICE model for a 4H-SiC BJT and TTL inverter exposed to gamma radiation. [...] Read more.
Silicon carbide (SiC) is a key material for electronics operating in harsh environments due to its wide bandgap, high thermal conductivity, and radiation hardness. In this work, we present a SPICE model for a 4H-SiC BJT and TTL inverter exposed to gamma radiation. The devices were fabricated using a dedicated SiC bipolar process at KTH (Sweden) and tested at the 60Co Calliope (Italy) facility up to 800 krad (Si). Experimental data, including Gummel plots and inverter transfer characteristics, were used to calibrate and refine a VBIC-based SPICE model. The adjusted model accounts for both bulk and surface degradation mechanisms by extracting parameters of forward current gain (βF), saturation current (IS), base resistance (RB), and forward transit time (TF). Results show a uniform degradation of BJTs, primarily manifested as reduced current gain and increased base resistance, while the inverter maintained functional operation up to 600 krad(Si). Extrapolation of the SPICE model predicts a failure threshold near 16 Mrad(Si), far exceeding the tolerance of conventional silicon circuits. By linking radiation-induced defects at the material and interface levels to circuit-level behavior, the proposed model enables realistic design and lifetime prediction of SiC integrated circuits for satellites, planetary missions, and other radiation-intensive applications. Full article
(This article belongs to the Special Issue SiC Based Miniaturized Devices, 3rd Edition)
Show Figures

Figure 1

27 pages, 6417 KB  
Article
Thermal Performance of Charge/Discharge Dynamics in Flat-Plate Phase-Change Thermal Energy Storage Systems
by Minglong Ni, Xiaolong Yue, Mingtao Liu, Lei Wang and Zhenqian Chen
Energies 2025, 18(21), 5733; https://doi.org/10.3390/en18215733 (registering DOI) - 31 Oct 2025
Abstract
Phase-change materials (PCMs) are integral to the thermal energy storage devices used in phase-change storage air-conditioning systems, but their adoption is hindered by slow heat transfer rates and suboptimal energy storage efficiency. In this study, we design and analyze a flat-panel thermal energy [...] Read more.
Phase-change materials (PCMs) are integral to the thermal energy storage devices used in phase-change storage air-conditioning systems, but their adoption is hindered by slow heat transfer rates and suboptimal energy storage efficiency. In this study, we design and analyze a flat-panel thermal energy storage device based on PCM, using both numerical simulations and experimental testing to evaluate performance under various operating conditions. The simulations, conducted using computational fluid dynamics (CFD) in a steady-state environment with an inlet temperature of 12 °C, demonstrate that the phase-change completion time for cooling storage is 8331 s, while the cooling release process is completed in 3883 s. The fluid distribution within the device is found to be uniform, and the positioning of the inlet and outlet has a minimal effect on performance metrics. However, the lateral stacking configuration of PCM units significantly improves heat transfer efficiency, increasing it by 15% compared to vertical stacking arrangements. Experimental tests confirm that increasing the inlet flow rate accelerates the phase transition process but has a marginal impact on overall energy utilization efficiency. These results provide valuable quantitative insights into optimizing the design of phase-change thermal storage devices, particularly in terms of enhancing heat transfer and overall energy efficiency. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

16 pages, 3310 KB  
Article
Research on the Influence of Fibers on the Mechanical Properties of Asphalt Mixtures
by Qinyu Shi, Zhaohui Pei and Keke Lou
Materials 2025, 18(21), 4971; https://doi.org/10.3390/ma18214971 - 31 Oct 2025
Abstract
Fiber reinforcement is a promising solution to several problems, however, the impact of fiber characteristics on the mechanical behavior and reinforcement mechanisms of asphalt mixtures remains unclear. Therefore, two distinct forms of basalt fiber—chopped basalt fiber (CBF) and flocculent basalt fiber (FBF)—were employed. [...] Read more.
Fiber reinforcement is a promising solution to several problems, however, the impact of fiber characteristics on the mechanical behavior and reinforcement mechanisms of asphalt mixtures remains unclear. Therefore, two distinct forms of basalt fiber—chopped basalt fiber (CBF) and flocculent basalt fiber (FBF)—were employed. A comprehensive experimental program was conducted, encompassing macroscopic and microscopic analyses through semi-circular bending tests integrated with digital image correlation, four-point bending fatigue tests, and dynamic modulus tests. Results indicate that both fiber types significantly improve crack resistance, with FBF demonstrating superior performance. Compared with the ordinary mixture, the flexibility index and fracture energy of the FBF-reinforced asphalt mixture increased by 59.7% and 30.6%, respectively. Fibers exert a crack-bridging effect, delaying the transition of the crack propagation stage by 1.25–2.21 s and reducing the crack propagation rate by 39.6–55.4%. Although fatigue life decreased with increasing strain levels, basalt fibers substantially enhanced fatigue resistance, with FBF-reinforced asphalt mixture achieving 20–40% higher Nf,50 values than CBF. Dynamic modulus tests revealed that fibers reduce modulus at low temperatures while increasing it at high temperatures, with more pronounced reinforcement effects observed in high-frequency regions. These findings underscore the importance of fiber morphology in optimizing asphalt mixture design and provide a theoretical basis for optimizing fiber-reinforced pavement materials to achieve long-term durability under complex environmental and traffic load conditions. Full article
Show Figures

Figure 1

26 pages, 3984 KB  
Article
Effects of Operational Parameters on Heat Extraction Efficiency in Medium-Deep Geothermal Systems: THM Coupling Numerical Simulation
by Wenrui Wang, Zhiwei Yang, Chenglu Gao, Zhiyuan Liu, Zongqing Zhou and Huaqing Ma
Energies 2025, 18(21), 5727; https://doi.org/10.3390/en18215727 - 30 Oct 2025
Abstract
Amid the global energy transition, geothermal energy, as a clean, stable, and renewable energy source, serves as a core direction for energy structure optimization. The development of medium-deep geothermal reservoirs is dominated by thermo–hydro–mechanical (THM) multi-physics coupling effects, yet the quantitative regulation laws [...] Read more.
Amid the global energy transition, geothermal energy, as a clean, stable, and renewable energy source, serves as a core direction for energy structure optimization. The development of medium-deep geothermal reservoirs is dominated by thermo–hydro–mechanical (THM) multi-physics coupling effects, yet the quantitative regulation laws of their operational parameters remain unclear. In this study, a numerical model for geothermal extraction considering THM multi-physics coupling was established. Using the single-factor variable method, simulations were conducted within the set parameter ranges of injection–production pressure difference, well spacing, and injection temperature. The spatiotemporal evolution characteristics of the temperature field, the dynamic temperature–pressure responses at the midpoint of injection–production wells and production wells, and efficiency indicators, such as instantaneous heat extraction power and cumulative heat extraction, were analyzed and quantified. The results show that a larger pressure difference accelerates the expansion of the cold zone in the reservoir, which improves short-term heat extraction efficiency but increases the risk of long-term thermal depletion; a smaller well spacing leads to higher initial heat production power but results in lower long-term cumulative heat extraction due to rapid heat consumption; within the normal temperature range of 16–24 °C, the injection temperature has a negligible impact on heat extraction efficiency. This study clarifies the regulatory laws of operational parameters and provides theoretical support for well pattern design and injection–production process optimization in medium-deep geothermal development. Full article
Show Figures

Figure 1

18 pages, 18287 KB  
Article
Daily Life Adaptation in Autism: A Co-Design Framework for the Validation of Virtual Reality Experiential Training Systems
by Agata Marta Soccini and Alessandro Clocchiatti
Electronics 2025, 14(21), 4268; https://doi.org/10.3390/electronics14214268 - 30 Oct 2025
Abstract
Individuals with Autism Spectrum Disorder often experience distress or discomfort when facing changes in daily routines, particularly during major transitions such as beginning attendance at a Day Activity Center. To address this challenge, we designed and developed a virtual reality system based on [...] Read more.
Individuals with Autism Spectrum Disorder often experience distress or discomfort when facing changes in daily routines, particularly during major transitions such as beginning attendance at a Day Activity Center. To address this challenge, we designed and developed a virtual reality system based on an interactive digital twin of an actual center. The application allows users to explore the environment and engage in typical daily activities through repeated exposures in an immersive, caregiver-guided virtual setting, following an experiential training approach. The current study presents a method for validating the system, conducted with individuals formally diagnosed with Autism at DSM-5 Level 1 and currently attending the center, within a user-centered co-design framework. The results indicate that the system is both usable and suitable for the target population, and the caregiver’s presence is perceived as important for an enjoyable and supportive experience. The proposed framework can be adapted to other use cases and used for the validation of virtual reality systems for people on the spectrum at different levels. Full article
(This article belongs to the Special Issue Virtual Reality Applications in Enhancing Human Lives)
Show Figures

Figure 1

27 pages, 7542 KB  
Article
Clean Energy Transition in Insular Communities: Wind Resource Evaluation and VAWT Design Using CFD and Statistics
by Jonathan Fábregas-Villegas, Luis Manuel Palacios-Pineda, Alfredo Miguel Abuchar-Curi and Argemiro Palencia-Díaz
Sustainability 2025, 17(21), 9663; https://doi.org/10.3390/su17219663 - 30 Oct 2025
Abstract
Vertical-Axis Wind Turbines (VAWTs) are efficient solutions for renewable energy generation, especially in regions with variable wind conditions. This study presents an optimized design of a small-scale H-type VAWT through the integration of Design of Experiments (DOE) and Computational Fluid Dynamics (CFD), using [...] Read more.
Vertical-Axis Wind Turbines (VAWTs) are efficient solutions for renewable energy generation, especially in regions with variable wind conditions. This study presents an optimized design of a small-scale H-type VAWT through the integration of Design of Experiments (DOE) and Computational Fluid Dynamics (CFD), using a fractional factorial 2k−p approach to evaluate the influence of geometric and operational parameters on power output and power coefficient (Cp), which ranged from 0.15 to 0.35. The research began with a comprehensive assessment of renewable resources in Isla Fuerte, Colombia. Solar analysis revealed an average of 5.13 Peak Sun Hours (PSHs), supporting the existing 175 kWp photovoltaic system. Wind modeling, based on meteorological data and Weibull distribution, showed speeds between 2.79 m/s and 5.36 m/s, predominantly from northeast to northwest. Under these conditions, the NACA S1046 airfoil was selected for its aerodynamic suitability. The turbine achieved power outputs from 0.46 W to 37.59 W, with stabilization times analyzed to assess dynamic performance. This initiative promotes environmental sustainability by reducing reliance on Diesel Generators (DGs) and empowering local communities through participatory design and technical training. The DOE-CFD methodology offers a replicable model for energy transition in insular regions of developing countries, linking technical innovation with social development and education. Full article
Show Figures

Graphical abstract

15 pages, 1615 KB  
Article
Organic Acid-Induced Structural Modifications Improve Melt-Stretch Properties and Mouthfeel of Plant-Based Cheese Alternatives
by Can Xu, Lijun Liu, Jia Liu, Fayin Ye, Cuilan Fang and Lin Lei
Foods 2025, 14(21), 3724; https://doi.org/10.3390/foods14213724 - 30 Oct 2025
Abstract
Developing plant-based cheeses that replicate the melt-stretch property of dairy cheese remains challenging because plant proteins are brittle and thermally unstable. We hypothesized that combining acetic acid (plasticizer) with lactic or citric acid (acidulants) would enhance the melt-stretch behavior of zein-based cheese alternatives. [...] Read more.
Developing plant-based cheeses that replicate the melt-stretch property of dairy cheese remains challenging because plant proteins are brittle and thermally unstable. We hypothesized that combining acetic acid (plasticizer) with lactic or citric acid (acidulants) would enhance the melt-stretch behavior of zein-based cheese alternatives. Small-angle X-ray scattering analysis showed that the zein network formed semi-crystalline lamellar structures. Acetic acid promoted smaller, more uniformly distributed oil droplets and a denser protein matrix. Fourier transform infrared spectroscopy and rheological results indicated appropriate combinations of acetic acid and acidulants, which increased protein structural disorder and network flexibility. Melt-stretch and tribological evaluations further confirmed that the L/A2 formulation (lactic acid: acetic acid = 2:1) achieved a stretch length of 19.5 cm and a transition speed of 0.38 mm/s, closely resembling Cheddar cheese (26.2 cm; 0.38 mm/s), and outperforming a commercial plant-based Violife cheese (2.5 cm; 597.16 mm/s). This study provides practical guidance for designing appealing, allergen-conscious dairy alternatives. Full article
(This article belongs to the Special Issue Recent Research on Function and Structure of Plant-Based Food Protein)
Show Figures

Figure 1

45 pages, 2491 KB  
Review
Metaverse Business Models and Framework: A Systematic Search with Narrative Synthesis
by Katarina Kostelić and Darko Etinger
Systems 2025, 13(11), 968; https://doi.org/10.3390/systems13110968 - 30 Oct 2025
Abstract
This systematic search with narrative synthesis examines metaverse business models and their shift toward immersive virtual ecosystems. Following the PRISMA flow for identification and screening to structure transparency, we review 91 publications to map the shift from classical and digital models to metaverse [...] Read more.
This systematic search with narrative synthesis examines metaverse business models and their shift toward immersive virtual ecosystems. Following the PRISMA flow for identification and screening to structure transparency, we review 91 publications to map the shift from classical and digital models to metaverse models, highlighting new value propositions, revenue mechanisms, and the integration of VR, AR, and blockchain across the value chain. Our contributions are threefold: we articulate the transition patterns from classical and digital to metaverse business models; we propose a structured metaverse business framework with evaluation dimensions; and we compile a candidate metric set to support comparative analysis. Interpreting the evidence through a socio-technical systems lens, the synthesis indicates an emergent shift in how value is created, delivered, and captured. We identify five core dimensions for assessing metaverse business models: scalability, technological adaptability, user engagement and retention, ethical and sustainability practices, and economic viability as critical dimensions for future comparative analysis of metaverse business models. Building on these findings, we propose a metaverse business framework and a set of candidate KPIs to enable comparative evaluation and guide investment, design, and governance. The paper advances digital transformation theory and outlines a research agenda on dynamic capabilities and the long-term sustainability of metaverse business models. Full article
Show Figures

Figure 1

28 pages, 838 KB  
Review
The Status of Plasma Induced Acidification and Its Valorising Potential on Slurries and Digestate: A Review
by Bridget Kumi, Stephen Worrall, David Sawtell and Ruben Sakrabani
Nitrogen 2025, 6(4), 97; https://doi.org/10.3390/nitrogen6040097 - 30 Oct 2025
Abstract
This review examines the current status and future potential of plasma-induced acidification (PIA) as a sustainable method for managing nitrogen-rich organic waste streams such as livestock slurry and digestate. Conventional acidification using sulfuric or nitric acid reduces ammonia (NH3) emissions but [...] Read more.
This review examines the current status and future potential of plasma-induced acidification (PIA) as a sustainable method for managing nitrogen-rich organic waste streams such as livestock slurry and digestate. Conventional acidification using sulfuric or nitric acid reduces ammonia (NH3) emissions but raises concerns related to safety, cost, and environmental impacts. Plasma-assisted systems offer an alternative by generating reactive nitrogen and oxygen species (RNS/ROS) in situ, lowering pH and stabilizing ammonia (NH3), as ammonium (NH4+), thereby enhancing fertiliser value and reducing emissions of NH3, methane (CH4), and odours. Key technologies such as dielectric barrier discharge (DBD), corona discharge, and gliding arc reactors show promise in laboratory-scale studies, but barriers like energy consumption, scalability, and N2O trade-offs limit commercial adoption. The paper reviews the mechanisms behind PIA, compares it to conventional approaches, and assesses its agronomic and environmental benefits. Valorisation opportunities, including the recovery of nitrate-rich fractions and integration with biogas systems, align plasma treatment with circular economy goals. However, challenges remain, including reactor design, energy efficiency, and lack of recognition as a Best Available Technique (BAT). A roadmap is proposed for transitioning from lab to farm-scale application, involving cross-sector collaboration, lifecycle assessments, and policy support to accelerate adoption and realise environmental and economic gains. Full article
Show Figures

Figure 1

19 pages, 2671 KB  
Review
The Transition of Luminescent Materials and Conductive Electrodes in Upconversion Devices to Flexible Architectures
by Huijuan Chen, Weibo Feng and Tianling Qin
Photonics 2025, 12(11), 1075; https://doi.org/10.3390/photonics12111075 - 30 Oct 2025
Abstract
Flexible upconversion (UC) devices, owing to their unique combination of high–efficiency optical energy conversion and mechanical flexibility, have attracted increasing attention in the fields of optoelectronics, wearable devices, flexible displays, and biomedical applications. However, significant challenges remain in balancing optical performance, mechanical adaptability, [...] Read more.
Flexible upconversion (UC) devices, owing to their unique combination of high–efficiency optical energy conversion and mechanical flexibility, have attracted increasing attention in the fields of optoelectronics, wearable devices, flexible displays, and biomedical applications. However, significant challenges remain in balancing optical performance, mechanical adaptability, long–term stability, and scalable fabrication, which limit their practical deployment. This review systematically introduces five representative upconversion mechanisms—excited–state absorption (ESA), energy transfer upconversion (ETU), energy migration upconversion (EMU), triplet–triplet annihilation upconversion (TTA–UC), and photon avalanche (PA)—highlighting their energy conversion principles, performance characteristics, and applicable scenarios. The article further delves into the flexible transition of upconversion devices, detailing not only the evolution of the luminescent layer from bulk crystals and nanoparticles to polymer composites and hybrid systems, but also the optimization of electrodes from rigid metal films to metal grids, carbon–based materials, and stretchable polymers. These developments significantly enhance the stability and reliability of flexible upconversion devices under bending, stretching, and complex mechanical deformation. Finally, emerging research directions are outlined, including multi–mechanism synergistic design, precise nanostructure engineering, interface optimization, and the construction of high–performance composite systems, emphasizing the broad potential of flexible UC devices in flexible displays, wearable health monitoring, solar energy harvesting, flexible optical communications, and biomedical photonic applications. This work provides critical insights for the design and application of high–performance flexible optoelectronic devices. Full article
(This article belongs to the Special Issue Organic Photodetectors, Displays, and Upconverters)
Show Figures

Figure 1

Back to TopTop