Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = EAGLE matrix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4152 KB  
Article
Recent Advances in the EAGLE Concept—Monitoring the Earth’s Surface Based on a New Land Characterisation Approach
by Stephan Arnold, Geoffrey Smith, Geir-Harald Strand, Gerard Hazeu, Michael Bock, Barbara Kosztra, Christoph Perger, Gebhard Banko, Tomas Soukup, Nuria Valcarcel Sanz, Stefan Kleeschulte, Julián Delgado Hernández and Emanuele Mancosu
Land 2025, 14(8), 1525; https://doi.org/10.3390/land14081525 - 24 Jul 2025
Cited by 1 | Viewed by 521
Abstract
The demand for land monitoring information continues to increase, but the range and diversity of the available products to date have made their integrated use challenging and, at times, counterproductive. There has therefore been a growing need to enhance and harmonise the practice [...] Read more.
The demand for land monitoring information continues to increase, but the range and diversity of the available products to date have made their integrated use challenging and, at times, counterproductive. There has therefore been a growing need to enhance and harmonise the practice of land monitoring on a pan-European level with the formulation of a more consistent and standardised set of modelling criteria. The outcome has been a paradigm shift away from a “paper map”-based world where features are given a single, fixed label to one where features have a rich characterisation which is more informative, flexible and powerful. The approach allows the characteristics to be dynamic so that, over time, a feature may only change part of its description (i.e., a forest can be felled, but it may remain as forestry if replanted) or it can have multiple descriptors (i.e., a forest may be used for both timber production and recreation). The concept proposed by the authors has evolved since 2008 from first drafts to a comprehensive and powerful tool adopted by the European Union’s Copernicus programme. It provides for the semantic decomposition of existing nomenclatures, as well as supports a descriptive approach to the mapping of all landscape features in a flexible and object-oriented manner. In this way, the key move away from classification towards the characterisation of the Earth’s surface represents a novel and innovate approach to handling complex land surface information more suited to the age of distributed databases, cloud computing and object-oriented data modelling. In this paper, the motivation for and technical approach of the EAGLE concept with its matrix and UML model implementation are explained. This is followed by an update of the latest developments and the presentation of a number of experimental and operational use cases at national and European levels, and it then concludes with thoughts on the future outlook. Full article
Show Figures

Figure 1

29 pages, 70250 KB  
Article
Exploring the Effects of Dulbecco’s Modified Eagle’s Medium on Irradiated Layers of Magnesium-Doped Hydroxyapatite in a Chitosan Matrix for Biomedical Applications
by Coralia Bleotu, Simona Liliana Iconaru, Carmen Steluta Ciobanu, Andreea Groza and Daniela Predoi
Coatings 2025, 15(2), 209; https://doi.org/10.3390/coatings15020209 - 9 Feb 2025
Cited by 3 | Viewed by 1418
Abstract
In this paper, we present the development of magnesium-doped hydroxyapatite in chitosan matrix (MHA_Ch) powder by an adapted coprecipitation method. The MHA_Ch powder was then deposited as thin layers by radio frequency magnetron sputtering. The MHA_Ch layers were exposed to various irradiation doses [...] Read more.
In this paper, we present the development of magnesium-doped hydroxyapatite in chitosan matrix (MHA_Ch) powder by an adapted coprecipitation method. The MHA_Ch powder was then deposited as thin layers by radio frequency magnetron sputtering. The MHA_Ch layers were exposed to various irradiation doses and immersed in Dulbecco’s Modified Eagle’s Medium (DMEM) for various time intervals. We report, for the first time, the effects of DMEM on irradiated layers of magnesium-doped hydroxyapatite in a chitosan matrix. The surface morphology of the layers before and after irradiation and immersion in DMEM was evaluated by SEM, AFM, and MM studies. Additionally, data about the functional groups present in the layers and the changes induced by exposure of the layers to irradiation and DMEM were obtained by FTIR studies. In vitro biological assays were conducted using an MG63 cell line (ATCC CRL1427). Our results suggest that the magnesium-doped hydroxyapatite in chitosan matrix layers may be suitable candidates for applications in the biomedical domain. Full article
Show Figures

Figure 1

12 pages, 847 KB  
Article
Well Selection for CO2 Huff-n-Puff in Unconventional Oil Reservoirs Based on Improved Fuzzy Method
by Yunfeng Liu, Yangwen Zhu, Haiying Liao, Hongmin Yu, Xin Fang and Yao Zhang
Processes 2024, 12(5), 958; https://doi.org/10.3390/pr12050958 - 9 May 2024
Viewed by 1292
Abstract
The implementation of CO2 huff-n-puff in unconventional oil reservoirs represents a green development technology that integrates oil recovery and carbon storage, emphasizing both efficiency and environmental protection. A rational well selection method is crucial for the success of CO2 huff-n-puff development. [...] Read more.
The implementation of CO2 huff-n-puff in unconventional oil reservoirs represents a green development technology that integrates oil recovery and carbon storage, emphasizing both efficiency and environmental protection. A rational well selection method is crucial for the success of CO2 huff-n-puff development. This paper initially identifies eight parameters that influence the effectiveness of CO2 huff-n-puff development and conducts a systematic analysis of the impact of each factor on development effectiveness. A set of factors for well selection decisions is established with seven successful CO2 huff-n-puff cases. Subsequently, the influencing factors are classified into positive, inverse, and moderate indicators. By using an exponential formulation, a method for calculating membership degrees is calculated to accurately represent the nonlinearity of each parameter’s influence on development, resulting in a dimensionless fuzzy matrix. Furthermore, with the oil exchange ratio serving as a pivotal parameter reflecting development effectiveness, recalibration of weighting factors is performed in conjunction with the dimensionless fuzzy matrix. The hierarchical order of weighting factors, from primary to secondary, is as follows: porosity, reservoir temperature, water saturation, formation pressure, reservoir thickness, crude oil density, crude oil viscosity, and permeability. The comprehensive decision factor and oil exchange ratio exhibit a positive correlation, affirming the reliability of the weighting factors. Finally, utilizing parameters of the Ordos Basin as a case study, the comprehensive decision factor is calculated, with a value of 0.617, and the oil exchange ratio is predicted as 0.354 t/t, which falls between the Chattanooga and Eagle Ford reservoirs. This approach, which incorporates exponential membership degrees and recalibrated weighting factors derived from actual cases, breaks the limitations of linear membership calculation methods and human factors in expert scoring methods utilized in existing decision-making methodologies. It furnishes oilfield decision-makers with a swifter and more precise well selection method. Full article
Show Figures

Figure 1

19 pages, 7103 KB  
Article
Enabling Spatial Data Interoperability through the Use of a Semantic Meta-Model—The Peatland Example from the JRC SEPLA Project
by Pavel Milenov, Aleksandra Sima, Emanuele Lugato, Wim Devos and Philippe Loudjani
Land 2024, 13(4), 473; https://doi.org/10.3390/land13040473 - 7 Apr 2024
Viewed by 2195
Abstract
Numerous geographic data on peatland exist but definitions vary, and the correspondent classes are often neither harmonized nor interoperable. This hinders the efforts to employ the available national datasets on peatlands and wetlands for policy monitoring and reporting. The existing meta-languages, such as [...] Read more.
Numerous geographic data on peatland exist but definitions vary, and the correspondent classes are often neither harmonized nor interoperable. This hinders the efforts to employ the available national datasets on peatlands and wetlands for policy monitoring and reporting. The existing meta-languages, such as ISO-Land Cover Meta Language (LCML) and EAGLE, offer the possibility to “deconstruct” the relevant nomenclatures in an object-oriented manner, allowing the comparability and interoperable use of related information. The complex nature of peatlands calls for a dedicated and structured vocabulary of keywords and terms, comprising the biotic substrate and the soil. In the SEPLA project, a semantic meta-model has been developed, combining the hierarchical ontology of the LCML with the matrix structure of the EAGLE model. The necessary elements were provided to describe peatland bio-physical characteristics, while representing the definitions in a concise and user-friendly manner (semantic passports). The proposed semantic meta-model is innovative as it enables the documentation of the spatial distribution of peatland characteristics, considering also their temporal dimension, their intrinsic relation with land use, and the soil. It has been successfully implemented for the translation of the national peatland nomenclature into common land categories relevant for reporting under LULUCF regulation, as part of the EU Climate Law. Full article
Show Figures

Figure 1

31 pages, 19832 KB  
Article
Classification of Urban Surface Elements by Combining Multisource Data and Ontology
by Ling Zhu, Yuzhen Lu and Yewen Fan
Remote Sens. 2024, 16(1), 4; https://doi.org/10.3390/rs16010004 - 19 Dec 2023
Cited by 1 | Viewed by 1755
Abstract
The rapid pace of urbanization and increasing demands for urban functionalities have led to diversification and complexity in the types of urban surface elements. The conventional approach of relying solely on remote sensing imagery for urban surface element extraction faces emerging challenges. Data-driven [...] Read more.
The rapid pace of urbanization and increasing demands for urban functionalities have led to diversification and complexity in the types of urban surface elements. The conventional approach of relying solely on remote sensing imagery for urban surface element extraction faces emerging challenges. Data-driven techniques, including deep learning and machine learning, necessitate a substantial number of annotated samples as prerequisites. In response, our study proposes a knowledge-driven approach that integrates multisource data with ontology to achieve precise urban surface element extraction. Within this framework, components from the EIONET Action Group on Land Monitoring in Europe matrix serve as ontology primitives, forming a shared vocabulary. The semantics of surface elements are deconstructed using these primitives, enabling the creation of specific descriptions for various types of urban surface elements by combining these primitives. Our approach integrates multitemporal high-resolution remote sensing data, network big data, and other heterogeneous data sources. It segments high-resolution images into individual patches, and for each unit, urban surface element classification is accomplished through semantic rule-based inference. We conducted experiments in two regions with varying levels of urban scene complexity, achieving overall accuracies of 93.03% and 97.35%, respectively. Through this knowledge-driven approach, our proposed method significantly enhances the classification performance of urban surface elements in complex scenes, even in the absence of sample data, thereby presenting a novel approach to urban surface element extraction. Full article
Show Figures

Figure 1

12 pages, 3199 KB  
Article
Challenges for Precise Subtyping and Sequencing of a H5N1 Clade 2.3.4.4b Highly Pathogenic Avian Influenza Virus Isolated in Japan in the 2022–2023 Season Using Classical Serological and Molecular Methods
by James G. Komu, Hiep Dinh Nguyen, Yohei Takeda, Shinya Fukumoto, Kunitoshi Imai, Hitoshi Takemae, Tetsuya Mizutani and Haruko Ogawa
Viruses 2023, 15(11), 2274; https://doi.org/10.3390/v15112274 - 18 Nov 2023
Cited by 3 | Viewed by 2999
Abstract
The continuous evolution of H5Nx highly pathogenic avian influenza viruses (HPAIVs) is a major concern for accurate diagnosis. We encountered some challenges in subtyping and sequencing a recently isolated H5N1 HPAIV strain using classical diagnostic methods. Oropharyngeal, conjunctival, and cloacal swabs collected from [...] Read more.
The continuous evolution of H5Nx highly pathogenic avian influenza viruses (HPAIVs) is a major concern for accurate diagnosis. We encountered some challenges in subtyping and sequencing a recently isolated H5N1 HPAIV strain using classical diagnostic methods. Oropharyngeal, conjunctival, and cloacal swabs collected from a dead white-tailed eagle (Haliaeetus albicilla albicilla) were screened via real-time RT-PCR targeting the influenza A virus matrix (M) gene, followed by virus isolation. The hemagglutination inhibition test was applied in order to subtype and antigenically characterize the isolate using anti-A/duck/Hong Kong/820/80 (H5N3) reference serum or anti-H5N1 cross-clade monoclonal antibodies (mAbs). Sequencing using previously reported universal primers was attempted in order to analyze the full-length hemagglutinin (HA) gene. Oropharyngeal and conjunctival samples were positive for the M gene, and high hemagglutination titers were detected in inoculated eggs. However, its hemagglutination activity was not inhibited by the reference serum or mAbs. The antiserum to a recently isolated H5N1 clade 2.3.4.4b strain inhibited our isolate but not older strains. A homologous sequence in the previously reported forward primer and HA2 region in our isolate led to partial HA gene amplification. Finally, next-generation sequencing confirmed the isolate as H5N1 clade 2.3.4.4b HPAIV, with genetic similarity to H5N1 strains circulating in Japan since November 2021. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, Volume III)
Show Figures

Figure 1

16 pages, 2866 KB  
Article
Influence of Bioactive Glass Addition on TC4 Laser Cladding Coatings: Microstructure and Electrochemical Properties
by Yao Meng, Yuyun Yang, Changlin Zhang, Xiufang Cui, Erbao Liu, Guo Jin, Jiajie Kang and Peng She
Coatings 2023, 13(9), 1621; https://doi.org/10.3390/coatings13091621 - 15 Sep 2023
Cited by 3 | Viewed by 1694
Abstract
There is a growing interest in enhancing the bioactivity of TC4-based metallic biomaterials, which are known for their excellent biocompatibility. Bioactive glass (BG) has been recognized for its high potential in promoting bioactivity, particularly in osteo tissue engineering. This study focuses on investigating [...] Read more.
There is a growing interest in enhancing the bioactivity of TC4-based metallic biomaterials, which are known for their excellent biocompatibility. Bioactive glass (BG) has been recognized for its high potential in promoting bioactivity, particularly in osteo tissue engineering. This study focuses on investigating the influence of BG addition on the microstructure and electrochemical properties of TC4 coatings. The TC4/BG composite coatings were fabricated through laser cladding, and their microstructure was characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical properties of the coatings were assessed through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in three different solutions. The results revealed that the incorporation of BG had a significant impact on the microstructure of the TC4 coatings, leading to the formation of a well-defined interface between the TC4 matrix and the BG aggregates. The distribution of BG aggregates within the TC4 matrix coating was found to be random and unrelated to the specific regions of the coating. The metallographic microstructure variations were attributed to different heat dissipation conditions during the laser cladding process. Furthermore, the electrochemical corrosion behavior of TC4/BG composite coatings reveals that they exhibit stability similar to that of passive films and good resistance against media corrosion compared to TC4, while also showing enhanced corrosion resistance in 3.5 wt% NaCl and Dulbecco’s modified Eagle medium (DMEM) solutions, indicating their potential for biomedical applications; however, the corrosion resistance decreases gradually in all solutions, potentially due to the elevated Cl concentration. Further research can explore bioactivity enhancement of TC4/BG composite coatings and investigate the long-term stability and biological response of these coatings in diverse physiological environments. Full article
(This article belongs to the Special Issue Fabrication and Properties of Bio-Coatings and Their Applications)
Show Figures

Figure 1

14 pages, 4243 KB  
Article
Removal of NOMs by Carbon Nanotubes/Polysulfone Nanocomposite Hollow Fiber Membranes for the Control of Disinfection Byproducts (DBPs)
by Jun Yin, Maria Fidalgo and Baolin Deng
Water 2023, 15(11), 2054; https://doi.org/10.3390/w15112054 - 29 May 2023
Cited by 2 | Viewed by 1688
Abstract
It has been well established that natural organic matters (NOMs) are precursors for the formation of disinfection by-products (DBPs) in drinking water supplies, thus the removal of NOMs is often used as an effective approach to limit DBPs production. In this study, we [...] Read more.
It has been well established that natural organic matters (NOMs) are precursors for the formation of disinfection by-products (DBPs) in drinking water supplies, thus the removal of NOMs is often used as an effective approach to limit DBPs production. In this study, we evaluated the application of oxidized multi-walled carbon nanotubes (OMWNTs)/polysulfone (PSU) nanocomposite hollow fiber membranes (HFM) for the removal of NOMs and its impact on the production of DBPs following water chlorination. Analysis of source water samples by fluorescence excitation/emission matrix (EEM) spectrometry indicated that the dominant dissolved organic matters were humic acid. Evaluation of the fabricated nanocomposite HFMs showed improved water fluxes (30~50%), better fouling resistance, and a comparable solute rejection rate when compared with the conventional PSU membranes. The flux increase was attributed to the increased surface hydrophilicity and porosity of the membrane after embedding the hydrophilic OMWNTs. The membrane filtration resulted in a reduction of UV254 by approximately 52%, 48%, and 38% for three water samples from Missouri River, Eagle Bluffs Conservation Area, and Columbia Water Treatment Plant, respectively. The corresponding reduction in trihalomethane formation potential (THMFP) reached 40%, 70%, and 27%, respectively. Overall, this study demonstrated that proper OMWNTs/PSU ultrafiltration membranes could remove a portion of NOMs from water at a relatively low cross-membrane pressure. It also illustrates the innovative concept that membrane design could be tailored for specific water quality conditions and regulatory requirements; in this particular case, to fabricate a membrane to reduce the THMFP to a level that meets the regulatory standards for trihalomethanes when the water was disinfected by chlorine. Full article
(This article belongs to the Special Issue Membrane Technology for Water Treatment and Desalination)
Show Figures

Figure 1

13 pages, 4742 KB  
Article
Molecular Simulation Study on Methane Adsorption in Amorphous Shale Structure
by Aminah Qayyimah Mohd Aji, Dzeti Farhah Mohshim, Belladonna Maulianda and Khaled Abdalla El-Raeis
Minerals 2023, 13(2), 214; https://doi.org/10.3390/min13020214 - 1 Feb 2023
Cited by 9 | Viewed by 3910
Abstract
Gas adsorption in the porous shale matrix is critical for gas-in-place (GIP) evaluation and exploration. Adsorption investigations benefit significantly from the use of molecular simulation. However, modelling adsorption in a realistic shale topology remains a constraint, and there is a need to study [...] Read more.
Gas adsorption in the porous shale matrix is critical for gas-in-place (GIP) evaluation and exploration. Adsorption investigations benefit significantly from the use of molecular simulation. However, modelling adsorption in a realistic shale topology remains a constraint, and there is a need to study the adsorption behaviour using molecular models containing both organic and inorganic nanopores. Most simulations use a single component, either kerogen (organic composition) and quartz or clay (inorganic composition), to represent the shale surface. In this work, the molecular dynamic (MD) and grand conical Monte Carlo (GCMC) simulations were utilised to provide insight into methane adsorption behaviour. Amorphous shale structures composed of kerogen and quartz were constructed. The kerogen content was varied to replicate the shale with 2 wt.% and 5 wt.% Total Organic Carbon (TOC) content with 5 nm pore size. The simulated densities of the shale structures showed consistent values with actual shale from the Montney, Antrim, and Eagle Ford formations, with 2.52 g/cm3 and 2.44 g/cm3, respectively. The Average Error Analysis (ARE) was used to assess the applicability of the proposed amorphous shale model to replicate the laboratory adsorption isotherm measurements of actual shale. The ARE function showed that the amorphous shale shows good agreement with experimental measurements of all Barnett shale samples with an average of 5.0% error and slightly higher for the Haynesville samples with 8.0% error. The differences between the experimental adsorption measurement and simulation resulted from the amorphous packing, and actual shales have more minerals than the simulated model. Full article
Show Figures

Figure 1

11 pages, 4678 KB  
Article
Long-Term in Vitro Corrosion of Biodegradable WE43 Magnesium Alloy in DMEM
by Julia Nachtsheim, Jaka Burja, Songyun Ma and Bernd Markert
Metals 2022, 12(12), 2062; https://doi.org/10.3390/met12122062 - 30 Nov 2022
Cited by 17 | Viewed by 3865
Abstract
The biodegradable WE43 magnesium alloy is an attractive biomedical material for orthopaedic implants due to its relatively high strength and corrosion resistance. Understanding the long-term corrosion behaviour in the human body plays a crucial role in the biomedical development and application of WE43 [...] Read more.
The biodegradable WE43 magnesium alloy is an attractive biomedical material for orthopaedic implants due to its relatively high strength and corrosion resistance. Understanding the long-term corrosion behaviour in the human body plays a crucial role in the biomedical development and application of WE43 alloy for orthopaedic implants. In this work, the corrosion of an extruded WE43 magnesium alloy was investigated in a physiological environment using Dulbecco’s Modified Eagle Medium’s (DMEM) over a period of up to 10 weeks. To assess the in vitro corrosion process, we analysed the corrosion pits of the specimens’ cross sections and the composition of the corrosion layer by scanning electron microscopy. The experimental results indicated that the long-term corrosion process of WE43 magnesium alloy consists of three stages: (1) The rapid corrosion stage within the first 7 days, (2) the steady corrosion stage between 7 and 28 days, (3) the accelerated corrosion stage between 28 and 70 days. The microchemical analysis revealed a heterogeneous three-layer corrosion product with varying thicknesses of 10 to 130 µm on the surfaces of the samples for all corrosion times. It is composed of an inner layer of Mg-O, an intermediate layer of Mg-O-Ca-P, and an outer layer of Mg-O-Ca-P-C. The corrosion layers have many microcracks that allow limited contact between the liquid medium and the surface of the alloy. In addition, microgalvanic corrosion was observed to cause corrosion pits between the intermetallic rare earth element-rich phases and the Mg matrix. Full article
(This article belongs to the Special Issue Failure and Degradation of Metals)
Show Figures

Figure 1

30 pages, 4532 KB  
Article
High Resolution Land Cover Integrating Copernicus Products: A 2012–2020 Map of Italy
by Paolo De Fioravante, Andrea Strollo, Francesca Assennato, Ines Marinosci, Luca Congedo and Michele Munafò
Land 2022, 11(1), 35; https://doi.org/10.3390/land11010035 - 26 Dec 2021
Cited by 22 | Viewed by 7106
Abstract
The study involved an in-depth analysis of the main land cover and land use data available nationwide for the Italian territory, in order to produce a reliable cartography for the evaluation of ecosystem services. In detail, data from the land monitoring service of [...] Read more.
The study involved an in-depth analysis of the main land cover and land use data available nationwide for the Italian territory, in order to produce a reliable cartography for the evaluation of ecosystem services. In detail, data from the land monitoring service of the Copernicus Programme were taken into consideration, while at national level the National Land Consumption Map and some regional land cover and land use maps were analysed. The classification systems were standardized with respect to the European specifications of the EAGLE Group and the data were integrated to produce a land cover map in raster format with a spatial resolution of 10 m. The map was validated and compared with the CORINE Land Cover, showing a significant geometric and thematic improvement, useful for a more detailed and reliable evaluation of ecosystem services. In detail, the map was used to estimate the variation in carbon storage capacity in Italy for the period 2012–2020, linked to the increase in land consumption Full article
(This article belongs to the Special Issue Dynamics of Urbanization and Ecosystem Services Provision)
Show Figures

Figure 1

20 pages, 1932 KB  
Article
Analysis and Optimization of Dimensional Accuracy and Porosity of High Impact Polystyrene Material Printed by FDM Process: PSO, JAYA, Rao, and Bald Eagle Search Algorithms
by Manjunath Patel Gowdru Chandrashekarappa, Ganesh Ravi Chate, Vineeth Parashivamurthy, Balakrishnamurthy Sachin Kumar, Mohd Amaan Najeeb Bandukwala, Annan Kaisar, Khaled Giasin, Danil Yurievich Pimenov and Szymon Wojciechowski
Materials 2021, 14(23), 7479; https://doi.org/10.3390/ma14237479 - 6 Dec 2021
Cited by 18 | Viewed by 3576
Abstract
High impact polystyrene (HIPS) material is widely used for low-strength structural applications. To ensure proper function, dimensional accuracy and porosity are at the forefront of industrial relevance. The dimensional accuracy cylindricity error (CE) and porosity of printed parts are influenced mainly by the [...] Read more.
High impact polystyrene (HIPS) material is widely used for low-strength structural applications. To ensure proper function, dimensional accuracy and porosity are at the forefront of industrial relevance. The dimensional accuracy cylindricity error (CE) and porosity of printed parts are influenced mainly by the control variables (layer thickness, shell thickness, infill density, print speed of the fused deposition modeling (FDM) process). In this study, a central composite design (CCD) matrix was used to perform experiments and analyze the complete insight information of the process (control variables influence on CE and porosity of FDM parts). Shell thickness for CE and infill density for porosity were identified as the most significant factors. Layer thickness interaction with shell thickness, infill density (except for CE), and print speed were found to be significant for both outputs. The interaction factors, i.e., shell thickness and infill density, were insignificant (negligible effect) for both outputs. The models developed produced a better fit for regression with an R2 equal to 94.56% for CE, and 99.10% for porosity, respectively. Four algorithms (bald eagle search optimization (BES), particle swarm optimization (PSO), RAO-3, and JAYA) were applied to determine optimal FDM conditions while examining six case studies (sets of weights assigned for porosity and CE) focused on minimizing both CE and porosity. BES and RAO-3 algorithms determined optimal conditions (layer thickness: 0.22 mm; shell thickness: 2 mm; infill density: 100%; print speed: 30 mm/s) at a reduced computation time equal to 0.007 s, differing from JAYA and PSO, which resulted in an experimental CE of 0.1215 mm and 2.5% of porosity in printed parts. Consequently, BES and RAO-3 algorithms are efficient tools for the optimization of FDM parts. Full article
Show Figures

Figure 1

30 pages, 10084 KB  
Article
Integrating Land-Cover Products Based on Ontologies and Local Accuracy
by Ling Zhu, Guangshuai Jin and Dejun Gao
Information 2021, 12(6), 236; https://doi.org/10.3390/info12060236 - 31 May 2021
Cited by 8 | Viewed by 3318
Abstract
Freely available satellite imagery improves the research and production of land-cover products at the global scale or over large areas. The integration of land-cover products is a process of combining the advantages or characteristics of several products to generate new products and meet [...] Read more.
Freely available satellite imagery improves the research and production of land-cover products at the global scale or over large areas. The integration of land-cover products is a process of combining the advantages or characteristics of several products to generate new products and meet the demand for special needs. This study presents an ontology-based semantic mapping approach for integration land-cover products using hybrid ontology with EAGLE (EIONET Action Group on Land monitoring in Europe) matrix elements as the shared vocabulary, linking and comparing concepts from multiple local ontologies. Ontology mapping based on term, attribute and instance is combined to obtain the semantic similarity between heterogeneous land-cover products and realise the integration on a schema level. Moreover, through the collection and interpretation of ground verification points, the local accuracy of the source product is evaluated using the index Kriging method. Two integration models are developed that combine semantic similarity and local accuracy. Taking NLCD (National Land Cover Database) and FROM-GLC-Seg (Finer Resolution Observation and Monitoring-Global Land Cover-Segmentation) as source products and the second-level class refinement of GlobeLand30 land-cover product as an example, the forest class is subdivided into broad-leaf, coniferous and mixed forest. Results show that the highest accuracies of the second class are 82.6%, 72.0% and 60.0%, respectively, for broad-leaf, coniferous and mixed forest. Full article
(This article belongs to the Special Issue Big Data Integration and Intelligent Information Integration)
Show Figures

Figure 1

14 pages, 6383 KB  
Article
Mechanical, Electrochemical, and Osteoblastic Properties of Gradient Tantalum Coatings on Ti6Al4V Prepared by Plasma Alloying Technique
by Meng Zhang, Yong Ma, Jie Gao, Hongjun Hei, Wenru Jia, Jin Bai, Zhubo Liu, Xiaobo Huang, Yanpeng Xue, Shengwang Yu and Yucheng Wu
Coatings 2021, 11(6), 631; https://doi.org/10.3390/coatings11060631 - 25 May 2021
Cited by 14 | Viewed by 2853
Abstract
Plasma alloying technique capable of producing metallic coatings with metallurgical bonding has attracted much attention in dental and orthopedic fields. In this study, the effects of temperature and time of plasma tantalum (Ta) alloying technique on the mechanical, electrochemical, and osteoblastic properties of [...] Read more.
Plasma alloying technique capable of producing metallic coatings with metallurgical bonding has attracted much attention in dental and orthopedic fields. In this study, the effects of temperature and time of plasma tantalum (Ta) alloying technique on the mechanical, electrochemical, and osteoblastic properties of Ta coatings were systematically investigated. Ta coatings prepared at 800 °C possess better interfacial strengths than those prepared at 750 and 850 °C, and the interfacial strength increases with prolonged alloying time (30–120 min). At 800 °C, however, the increased proportion of the soft Ta deposition layer with alloying time in the whole coating impairs the surface mechanical properties of the entire coating, as convinced by decreased microhardness and wear resistance. Moreover, Ta coatings exhibit better corrosion resistance than the Ti6Al4V substrate in Dulbecco’s modified Eagle medium. The enhanced adhesion and extracellular matrix mineralization level of osteoblasts demonstrate the better cytocompatibility and osteogenic activity of the Ta coating. Ta30 (Ta coating prepared at 800 °C for 30 min) exhibits excellent mechanical, electrochemical, and osteoblastic behaviors and is promising in biomedical applications. Full article
(This article belongs to the Special Issue Plasma Technologies for Surface Engineering)
Show Figures

Figure 1

12 pages, 2879 KB  
Article
Viability of Quercetin-Induced Dental Pulp Stem Cells in Forming Living Cellular Constructs for Soft Tissue Augmentation
by Hytham N. Fageeh, Shilpa Bhandi, Mohammed Mashyakhy, Ahmed Al Kahtani, Zahi Badran, Deepak Mehta, Hammam Ibrahim Fageeh, Thodur Madapusi Balaji, Hosam Ali Baeshen, Saranya Varadarajan, A. Thirumal Raj, Vikrant R. Patil, Nishant Vyas, Alessio Zanza, Luca Testarelli and Shankargouda Patil
J. Pers. Med. 2021, 11(5), 430; https://doi.org/10.3390/jpm11050430 - 18 May 2021
Cited by 8 | Viewed by 3661
Abstract
Autogenous gingival grafts used for root coverage or gingival augmentation procedures often result in donor site morbidity. Living cellular constructs as an exogenous alternative have been proven to be associated with lower morbidity. With the available background information, the present study aims to [...] Read more.
Autogenous gingival grafts used for root coverage or gingival augmentation procedures often result in donor site morbidity. Living cellular constructs as an exogenous alternative have been proven to be associated with lower morbidity. With the available background information, the present study aims to assess if quercetin-induced living cell constructs, derived from dental pulp stem cells, have the potential to be applied as a tool for soft tissue augmentation. The characterized dental pulp stem cells (positive for CD73, CD90, and negative for CD34, HLA-DR) were expanded in Dulbecco’s Modified Eagle’s medium (DMEM) supplemented with 10 mM quercetin. The handling properties of the quercetin-induced dental pulp stem cell constructs were assessed by visual, and tactile sensation. A microscopic characterization using hematoxylin and eosin staining, and qRT-PCR-based analysis for stemness-associated genes (OCT4, NANOG, SOX2, and cMyc) was also performed. Dental pulp stem cells without quercetin administration were used as the control. Dental pulp stem cell constructs induced by quercetin easily detached from the surface of the plate, whereas there was no formation in the control cells. It was also simple to transfer the induced cellular construct on the flattened surface. Microscopic characterization of the constructs showed cells embedded in a tissue matrix. Quercetin also increased the expression of stemness-related genes. The use of quercetin-induced DPSC living constructs for soft tissue augmentation could provide an alternative to autogenous soft tissue grafts to lower patient morbidity and improve esthetic outcomes. Full article
(This article belongs to the Section Personalized Therapy in Clinical Medicine)
Show Figures

Graphical abstract

Back to TopTop