Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (388)

Search Parameters:
Keywords = EM wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7440 KB  
Article
The Impact of Dual-Wavefront Propagation of Electromagnetic Waves in Bio-Tissues on Imaging and In-Body Communications
by Lei Guo, Kamel Sultan, Fei Xue and Amin Abbosh
Biosensors 2025, 15(10), 667; https://doi.org/10.3390/bios15100667 - 3 Oct 2025
Abstract
Understanding how electromagnetic (EM) waves travel through different tissues is important for EM medical imaging, sensing, and in-body communication. It is known that EM waves in lossy bio-tissues are nonuniform and do not strictly follow the least time or least loss paths. Instead, [...] Read more.
Understanding how electromagnetic (EM) waves travel through different tissues is important for EM medical imaging, sensing, and in-body communication. It is known that EM waves in lossy bio-tissues are nonuniform and do not strictly follow the least time or least loss paths. Instead, they exhibit two distinct wavefronts: the phase wavefront and the amplitude wavefront, which are generally oriented at different angles. The impact of that on imaging and in-body communications is investigated and validated through comprehensive analysis and full-wave EM simulations. Additionally, the impact of a matching medium, commonly used to reduce antenna–skin interface reflections in medical EM applications, on the direction of EM wavefronts, travel time, phase changes, and attenuation is analyzed and quantified. The results show that the Fermat principle of least travel time, often used to estimate EM wave travel time for localization in medical imaging and wireless endoscopy, is only accurate when the loss tangent or dissipation factor of both the matching medium and tissues is very low. Otherwise, the results will be inaccurate, and the dual wavefronts should be considered. The presented analysis and results provide guidance on EM wave travel time and the direction of phase and amplitude wavefronts. This information is valuable for developing reliable processing algorithms for sensing, imaging, and in-body communication. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis—2nd Edition)
Show Figures

Figure 1

18 pages, 4415 KB  
Article
AI-Aided GPR Data Multipath Summation Using x-t Stacking Weights
by Nikos Economou, Sobhi Nasir, Said Al-Abri, Bader Al-Shaqsi and Hamdan Hamdan
NDT 2025, 3(4), 24; https://doi.org/10.3390/ndt3040024 - 2 Oct 2025
Abstract
The Ground Penetrating Radar (GPR) method can image dielectric discontinuities in subsurface structures, which cause the reflection of electromagnetic (EM) waves. These discontinuities are imaged as reflectors in GPR sections, often distorted by diffracted energy. To focus the diffracted energy within the GPR [...] Read more.
The Ground Penetrating Radar (GPR) method can image dielectric discontinuities in subsurface structures, which cause the reflection of electromagnetic (EM) waves. These discontinuities are imaged as reflectors in GPR sections, often distorted by diffracted energy. To focus the diffracted energy within the GPR sections, migration is commonly used. The migration velocity of GPR data is a low-wavenumber attribute crucial for effective migration. Obtaining a migration velocity model, typically close to a Root Mean Square (RMS) model, from zero-offset (ZO) data requires analysis of the available diffractions, whose density and (x, t) coverage are random. Thus, the accuracy and efficiency of such a velocity model, whether for migration or interval velocity model estimation, are not guaranteed. An alternative is the multipath summation method, which involves the weighted stacking of constant velocity migrated sections. Each stacked section contributes to the final stack, weighted by a scalar value dependent on the constant velocity value used and its relation to its estimated mean velocity of the section. This method effectively focuses the GPR diffractions in the presence of low heterogeneity. However, when the EM velocity varies dramatically, 2D weights are needed. In this study, with the aid of an Artificial Intelligence (AI) algorithm that detects diffractions and uses their kinematic information, we generate a diffraction velocity model. This model is then used to assign 2D weights for the weighted multipath summation, aiming to focus the scattered energy within the GPR section. We describe this methodology and demonstrate its application in enhancing the lateral continuity of reflections. We compare it with the 1D multipath summation using simulated data and present its application on marble assessment GPR data for imaging cracks and discontinuities in the subsurface structure. Full article
Show Figures

Figure 1

18 pages, 6030 KB  
Article
Broadband Omnidirectional Rectenna with Integrated Solar Cell for Hybrid Energy Harvesting
by Fei Cheng, Bu-Yun Cheng, Han-Ping Li and Wang Ni
Energies 2025, 18(19), 5098; https://doi.org/10.3390/en18195098 - 25 Sep 2025
Abstract
This paper presents a broadband omnidirectional rectenna combined with a solar cell for hybrid energy harvesting, addressing the daytime-only limitation of solar cells via complementary RF energy harvesting. To avoid mutual interaction in integration, the solar cell is placed above the antenna to [...] Read more.
This paper presents a broadband omnidirectional rectenna combined with a solar cell for hybrid energy harvesting, addressing the daytime-only limitation of solar cells via complementary RF energy harvesting. To avoid mutual interaction in integration, the solar cell is placed above the antenna to receive light/EM waves from different directions. A broadband discone antenna ensures omnidirectional RF reception from 1.56 to 6.63 GHz, while a single-stub matching circuit and voltage doubler enable rectifier operation from 1.4 to 3.6 GHz, with over 50% power conversion efficiency at 5 dBm. The measurement demonstrates that the hybrid system can yield 20.25 mW from combined RF/solar power. This broadband hybrid energy harvesting system shows potential for powering sensors throughout the day by integrating two complementary energy sources with minimal interaction. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

27 pages, 8496 KB  
Review
Progress in Electromagnetic Wave Absorption of Multifunctional Structured Metamaterials
by Zhuo Lu, Luwei Liu, Zhou Chen, Changxian Wang, Xiaolei Zhu, Xiaofeng Lu, Hui Yuan and Hao Huang
Polymers 2025, 17(18), 2559; https://doi.org/10.3390/polym17182559 - 22 Sep 2025
Viewed by 234
Abstract
This review summarizes recent advances in multifunctional metamaterials (MF-MMs) for electromagnetic (EM) wave absorption. MF-MMs overcome the key limitations of conventional absorbers—such as narrow bandwidth, limited functionality, and poor environmental adaptability—offering enhanced protection against EM security threats in radar, aerospace, and defense applications. [...] Read more.
This review summarizes recent advances in multifunctional metamaterials (MF-MMs) for electromagnetic (EM) wave absorption. MF-MMs overcome the key limitations of conventional absorbers—such as narrow bandwidth, limited functionality, and poor environmental adaptability—offering enhanced protection against EM security threats in radar, aerospace, and defense applications. This review focuses on an integrated structure-material-function co-design strategy, highlighting advances in three-dimensional (3D) lattice architectures, composite laminates, conformal geometries, bio-inspired topologies, and metasurfaces. When synergized with multicomponent composites, these structural innovations enable the co-regulation of impedance matching and EM loss mechanisms (dielectric, magnetic, and resistive dissipation), thereby achieving broadband absorption and enhanced multifunctionality. Key findings demonstrate that 3D lattice structures enhance mechanical load-bearing capacity by up to 935% while enabling low-frequency broadband absorption. Composite laminates achieve breakthroughs in ultra-broadband coverage (1.26–40 GHz), subwavelength thickness (<5 mm), and high flexural strength (>23 MPa). Bio-inspired topologies provide wide-incident-angle absorption with bandwidths up to 31.64 GHz. Metasurfaces facilitate multiphysics functional integration. Despite the significant potential of MF-MMs in resolving broadband stealth and multifunctional synergy challenges via EM wave absorption, their practical application is constrained by several limitations: limited dynamic tunability, incomplete multiphysics coupling mechanisms, insufficient adaptability to extreme environments, and difficulties in scalable manufacturing and reliability assurance. Future research should prioritize intelligent dynamic response, deeper integration of multiphysics functionalities, and performance optimization under extreme conditions. Full article
Show Figures

Figure 1

12 pages, 542 KB  
Article
Expensive Highly Constrained Antenna Design Using Surrogate-Assisted Evolutionary Optimization
by Caie Hu, Sanyou Zeng and Changhe Li
Electronics 2025, 14(18), 3613; https://doi.org/10.3390/electronics14183613 - 11 Sep 2025
Viewed by 270
Abstract
Antenna structure design constitutes a computationally expensive optimization problem due to the requirement for full-wave electromagnetic (EM) simulations. Surrogate-assisted evolutionary algorithms offer a promising approach for addressing such challenges. However, several challenges remain in solving expensive, highly constrained antenna design problems. This paper [...] Read more.
Antenna structure design constitutes a computationally expensive optimization problem due to the requirement for full-wave electromagnetic (EM) simulations. Surrogate-assisted evolutionary algorithms offer a promising approach for addressing such challenges. However, several challenges remain in solving expensive, highly constrained antenna design problems. This paper introduces a surrogate-assisted dynamic constrained multi-objective evolutionary algorithm framework to tackle expensive and highly constrained antenna design optimization tasks. A multi-layer perceptron (MLP) is employed as the surrogate model to approximate EM evaluations and alleviate the computational burden, while a dynamic scale-constrained boundary strategy is implemented to handle highly constraints. The effectiveness of the proposed method is validated on a set of constrained benchmark problems and two antenna design cases. Full article
Show Figures

Figure 1

14 pages, 8738 KB  
Article
Electromagnetic Wave Absorption Properties of Cation-Substituted Ba0.5Sr0.5Zn2−xMexFe16O27 (Me = Fe, Ni, Co, Cu, Mn) W-Type Hexagonal Ferrites
by Jae-Hee Heo and Young-Min Kang
Appl. Sci. 2025, 15(17), 9586; https://doi.org/10.3390/app15179586 - 30 Aug 2025
Viewed by 476
Abstract
W-type hexaferrites with compositions Ba0.5Sr0.5Zn2-xMexFe16O27 (Me = Fe, Ni, Co, Cu, Mn; x = 1) and Ba0.5Sr0.5Zn2−xMnxFe16O27 (x [...] Read more.
W-type hexaferrites with compositions Ba0.5Sr0.5Zn2-xMexFe16O27 (Me = Fe, Ni, Co, Cu, Mn; x = 1) and Ba0.5Sr0.5Zn2−xMnxFe16O27 (x = 0–2.0) were synthesized via solid-state reaction and optimized using a two-step calcination process to obtain single-phase or nearly single-phase structures. Their electromagnetic (EM) wave absorption properties were investigated by fabricating composites with 10 wt% epoxy and measuring the complex permittivity and permeability across two frequency bands: 0.1–18 GHz and 26.5–40 GHz. Reflection loss (RL) was calculated and visualized as two-dimensional (2D) maps with respect to frequency and sample thickness. In the 0.1–18 GHz range, only the Co-substituted sample exhibited strong ferromagnetic resonance (FMR) and broadband absorption, achieving a minimum RL of −41.5 dB at 4.84 GHz and a −10 dB bandwidth of 11.8 GHz. In contrast, the other Ba0.5Sr0.5Zn2-xMexFe16O27 samples (Me = Fe, Mn, Ni, Cu) showed no significant absorption in this range due to the absence of FMR. However, all these samples clearly exhibited FMR characteristics and distinct absorption peaks in the 26.5–40 GHz range, particularly the Mn-substituted series, which demonstrated RL values below −10 dB over the 32.0–40 GHz range with absorber thicknesses below 1 mm. The FMR frequency varied depending on the substitution type and amount. In the Mn-substituted series, the FMR frequency was lowest at x = 1.0 and increased as x deviated from this composition. This study confirms the potential of Co-free W-type hexaferrites as efficient, cost-effective, and broadband EM wave absorbers in the 26.5–40 GHz range. Full article
(This article belongs to the Topic Advanced Composite Materials)
Show Figures

Figure 1

15 pages, 2299 KB  
Article
A New Dimensional Target Scattering Characteristic Characterization Method Based on the Electromagnetic Vortex-Polarization Joint Scattering Matrix
by Yixuan Liu, Zhuo Zhang, Tao Wu and Xinger Cheng
Electronics 2025, 14(17), 3346; https://doi.org/10.3390/electronics14173346 - 22 Aug 2025
Viewed by 327
Abstract
Vortex electromagnetic (EM) waves exhibit spiral wavefront phase distributions, owing to their orbital angular momentum (OAM). Thus, the scattered waves from targets contain OAM characteristics, demonstrating novel scattering properties. Although researchers have carried out both theoretical and experimental studies on the target scattering [...] Read more.
Vortex electromagnetic (EM) waves exhibit spiral wavefront phase distributions, owing to their orbital angular momentum (OAM). Thus, the scattered waves from targets contain OAM characteristics, demonstrating novel scattering properties. Although researchers have carried out both theoretical and experimental studies on the target scattering characteristics of vortex EM waves, a comprehensive and standardized characterization framework is still lacking. This paper proposes and defines an EM vortex scattering matrix (EVSM), which can be used as a characterization method for the target scattering characteristics in the OAM dimension of vortex EM waves. Since vortex EM waves carry both OAM and spin angular momentum (SAM), the EM vortex-polarization joint scattering matrix (EVPJSM) is defined by extending EVSM. This joint matrix simultaneously describes the target scattering characteristics in both OAM and SAM dimensions of vortex EM waves. And it can offer a thorough framework of target scattering characteristics for arbitrary OAM–SAM combinations in new-dimensional EM waves. Numerical simulations are performed to compute each element in EVPJSM for two typical targets under twelve different pairs of OAM modes and two SAM polarization combinations. The numerical results can be used as an example of the characterization method in new dimensions for the targets’ scattering characteristics. Full article
Show Figures

Figure 1

22 pages, 6436 KB  
Article
Low-Resolution ADCs Constrained Joint Uplink/Downlink Channel Estimation for mmWave Massive MIMO
by Songxu Wang, Yinyuan Wang and Congying Hu
Electronics 2025, 14(15), 3076; https://doi.org/10.3390/electronics14153076 - 31 Jul 2025
Viewed by 582
Abstract
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a [...] Read more.
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a joint uplink/downlink (UL/DL) channel estimation algorithm that utilizes the spatial reciprocity of frequency division duplex (FDD) to improve the estimation of quantized UL channels. Quantified UL/DL channels are concentrated at the BS for joint estimation. This estimation problem is regarded as a compressed sensing problem with finite bits, which has led to the development of expectation-maximization-based quantitative generalized approximate messaging (EM-QGAMP) algorithms. In the expected step, QGAMP is used for posterior estimation of sparse channel coefficients, and the block maximization minimization (MM) algorithm is introduced in the maximization step to improve the estimation accuracy. Finally, simulation results verified the robustness of the proposed EM-QGAMP algorithm, and the proposed algorithm’s NMSE (normalized mean squared error) outperforms traditional methods by over 90% and recent state-of-the-art techniques by 30%. Full article
Show Figures

Figure 1

17 pages, 931 KB  
Article
How to Improve the Repeatability, Reproducibility and Accuracy in the Dynamic Structuration of Water by Electromagnetic Waves?
by Marie-Valérie Moreno, Sid Ahmed Ben Mansour and Frédéric Roscop
Biophysica 2025, 5(3), 29; https://doi.org/10.3390/biophysica5030029 - 21 Jul 2025
Viewed by 472
Abstract
This study represents a first step toward improving the repeatability, reproducibility, and accuracy of a process designed to enhance dynamic water structuring. We aim is to investigate the optical reflectivity of a watery magnesium chloride solution treated with electromagnetic waves, we employ a [...] Read more.
This study represents a first step toward improving the repeatability, reproducibility, and accuracy of a process designed to enhance dynamic water structuring. We aim is to investigate the optical reflectivity of a watery magnesium chloride solution treated with electromagnetic waves, we employ a novel methodology derived from human plethysmography (PPG) with three wavelengths spanning the visible and infrared spectra. We measured the reflectance of 17 flasks at 536 nm, 660 nm, and 940 nm before and after treatment, first using the succussion method (control) and second using a 50 Hz signal. The observed variability was acceptable, with repeatability errors below 0.15% and reproducibility errors below 3.5% across all wavelengths before and after treatment. Out of 51 samples dynamically structured using the succussion method, we obtained two false negatives, while one false negative was recorded out of 51 samples dynamically structured using the electromagnetic (EM) method. PPG appears to be a relevant sensor, as it correctly detected dynamically structured water in 99 out of 102 cases, using either the succussion or electromagnetic method. Our results show significant differences in reflectance (supposedly correlated with water’s structured status) at 536 nm between dynamically structured and dynamic non-structured samples (p < 0.001). Future improvements will include a validation protocol against gold-standard spectrophotometry with a larger sample size. Full article
Show Figures

Figure 1

19 pages, 3497 KB  
Article
Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies
by Ioanna Karatsi, Sofia Bakogianni and Stavros Koulouridis
Telecom 2025, 6(3), 52; https://doi.org/10.3390/telecom6030052 - 16 Jul 2025
Viewed by 957
Abstract
This study presents an in-depth dosimetry analysis of energy assimilation from EM waves and increase in the temperature during mobile phone usage within an elevator cabin. The cellphone operates at two different frequencies (1000 MHz and 1800 MHz) and is simulated at three [...] Read more.
This study presents an in-depth dosimetry analysis of energy assimilation from EM waves and increase in the temperature during mobile phone usage within an elevator cabin. The cellphone operates at two different frequencies (1000 MHz and 1800 MHz) and is simulated at three different talk positions vertical, tilt, and cheek. Realistic numerical models of a woman in the third trimester of pregnancy and a girl at the age of 5 years are employed. The analysis highlights the necessity of a comprehensive approach to fully grasp the complexities of EM exposure. Full article
Show Figures

Figure 1

22 pages, 8935 KB  
Article
Miniaturizing Controlled-Source EM Transmitters for Urban Underground Surveys: A Bipolar Square-Wave Inverter Approach with SiC-MOSFETs
by Zhongping Wu, Kuiyuan Zhang, Rongbo Zhang, Zucan Lin, Meng Wang, Yongqing Wang and Qisheng Zhang
Sensors 2025, 25(13), 4183; https://doi.org/10.3390/s25134183 - 4 Jul 2025
Viewed by 426
Abstract
This paper presents a compact, high-efficiency electromagnetic transmitter for Controlled-source Audio-frequency Magnetotelluric (CSAMT) applications, operating in the 10–100 kHz range. A novel bipolar square-wave inverter topology is proposed, which directly modulates the transformer’s secondary-side AC output, eliminating conventional rectification and filtering stages. This [...] Read more.
This paper presents a compact, high-efficiency electromagnetic transmitter for Controlled-source Audio-frequency Magnetotelluric (CSAMT) applications, operating in the 10–100 kHz range. A novel bipolar square-wave inverter topology is proposed, which directly modulates the transformer’s secondary-side AC output, eliminating conventional rectification and filtering stages. This design reduces system losses (simulated efficiency > 90%) and achieves an approximately 40% reduction in both volume and weight. The power stage uses a full-bridge bipolar inverter topology with SiC-MOSFETs, combined with a high-frequency transformer for voltage gain. Simulation, laboratory testing, and EMI evaluation confirm stable square-wave generation and full compliance with EN55032 Class A standards. Field validation with a CSAMT receiver demonstrates effective signal transmission and high-resolution subsurface imaging, thereby improving the efficiency and portability of urban geophysical exploration. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

26 pages, 389 KB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Cited by 1 | Viewed by 3048
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

11 pages, 998 KB  
Article
Study on the Absorbing Properties of V-Doped MoS2
by Jiang Zou and Quan Xie
Ceramics 2025, 8(3), 84; https://doi.org/10.3390/ceramics8030084 - 2 Jul 2025
Viewed by 367
Abstract
This study employed a hydrothermal method to prepare V-doped MoS2. The influence of varying filler ratios (30 wt%, 40 wt%, 50 wt%) on its absorption properties was analyzed. For annealing studies, a precursor powder with a 40 wt% filler ratio was [...] Read more.
This study employed a hydrothermal method to prepare V-doped MoS2. The influence of varying filler ratios (30 wt%, 40 wt%, 50 wt%) on its absorption properties was analyzed. For annealing studies, a precursor powder with a 40 wt% filler ratio was heat-treated at 600 °C for 2 h. The results obtained through characterization and testing indicate that the unannealed 40 wt% filler sample demonstrates superior absorption performance, with minimum reflection loss (RLmin) of −32.24 dB, an effective absorption bandwidth (EAB) of 4.40 GHz, and 99.9% electromagnetic (EM) wave attenuation. However, upon subjecting the sample with a 40 wt% filling ratio to annealing treatment, a notable decrease in impedance matching degree was observed, and regions with impedance matching values close to 1 were no longer present. Consequently, it can be concluded that at a filling ratio of 40 wt%, the sample’s excellent attenuation coefficient in conjunction with its good impedance matching collectively contribute to its superior comprehensive absorption performance. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

13 pages, 3657 KB  
Article
Analysis of High-Power Radar Propagation Environments Around the Test Site
by Jongho Keun, Taekyeong Jin, Jeonghee Jin and Hosung Choo
Appl. Sci. 2025, 15(13), 7305; https://doi.org/10.3390/app15137305 - 28 Jun 2025
Viewed by 393
Abstract
In this paper, we propose a novel evaluation method to assess the strength of electromagnetic (EM) waves in a specific area by analyzing the propagation environment at a radar testing site. To analyze the propagation environment of the radar test site, this evaluation [...] Read more.
In this paper, we propose a novel evaluation method to assess the strength of electromagnetic (EM) waves in a specific area by analyzing the propagation environment at a radar testing site. To analyze the propagation environment of the radar test site, this evaluation method performs precise modeling of actual structures such as buildings and terrain. The calculated received power is then converted into electric field strength to compare with the reference threshold level (61 V/m). The electric field during the radar operation is examined by changing two scenarios: one is when the transmitter (Tx.) is directed toward the receiver (Rx.), and the other is when the Tx. is misaligned. In particular, it may increase the electric field strength near the Tx. system when Tx. and Rx. are misaligned. To reduce the impact of EM waves, we conducted a comparison based on the installation of absorbers. The results indicate that the received electric field shows attenuation rates of 39.47% in the X-band and 39.35% in the Ku-band, achieved with a 1 m absorber. In addition, the theoretical and average measured received powers of −61.9 dBm and −62.03 dBm, respectively, show good agreement with the simulated result of −64.64 dBm. This measurement procedure exhibits high accuracy when compared with theoretical and simulation results. These results demonstrate the reliability of the propagation environment analysis using the proposed integrated simulation model. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

21 pages, 2973 KB  
Article
Machine Learning Approach for Ground-Level Estimation of Electromagnetic Radiation in the Near Field of 5G Base Stations
by Oluwole John Famoriji and Thokozani Shongwe
Appl. Sci. 2025, 15(13), 7302; https://doi.org/10.3390/app15137302 - 28 Jun 2025
Viewed by 431
Abstract
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G [...] Read more.
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G services are able to meet serious demands for bandwidth. To evaluate the ground-plane radiation level of electromagnetics close to 5G base stations, we propose a unique machine-learning-based approach. Because a machine learning algorithm is trained by utilizing data obtained from numerous 5G base stations, it exhibits the capability to estimate the strength of the electric field effectively at every point of arbitrary radiation, while the base station generates a network and serves various numbers of 5G terminals running in different modes of service. The model requires different numbers of inputs, including the antenna’s transmit power, antenna gain, terminal service modes, number of 5G terminals, distance between the 5G terminals and 5G base station, and environmental complexity. Based on experimental data, the estimation method is both feasible and effective; the machine learning model’s mean absolute percentage error is about 5.89%. The degree of correctness shows how dependable the developed technique is. In addition, the developed approach is less expensive when compared to measurements taken on-site. The results of the estimates can be used to save test costs and offer useful guidelines for choosing the best location, which will make 5G base station electromagnetic radiation management or radio wave coverage optimization easier. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

Back to TopTop