Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ESTCube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7672 KiB  
Article
Electric Sail Test Cube–Lunar Nanospacecraft, ESTCube-LuNa: Solar Wind Propulsion Demonstration Mission Concept
by Andris Slavinskis, Mario F. Palos, Janis Dalbins, Pekka Janhunen, Martin Tajmar, Nickolay Ivchenko, Agnes Rohtsalu, Aldo Micciani, Nicola Orsini, Karl Mattias Moor, Sergei Kuzmin, Marcis Bleiders, Marcis Donerblics, Ikechukwu Ofodile, Johan Kütt, Tõnis Eenmäe, Viljo Allik, Jaan Viru, Pätris Halapuu, Katriin Kristmann, Janis Sate, Endija Briede, Marius Anger, Katarina Aas, Gustavs Plonis, Hans Teras, Kristo Allaje, Andris Vaivads, Lorenzo Niccolai, Marco Bassetto, Giovanni Mengali, Petri Toivanen, Iaroslav Iakubivskyi, Mihkel Pajusalu and Antti Tammadd Show full author list remove Hide full author list
Aerospace 2024, 11(3), 230; https://doi.org/10.3390/aerospace11030230 - 14 Mar 2024
Cited by 3 | Viewed by 3300
Abstract
The electric solar wind sail, or E-sail, is a propellantless interplanetary propulsion system concept. By deflecting solar wind particles off their original course, it can generate a propulsive effect with nothing more than an electric charge. The high-voltage charge is applied to one [...] Read more.
The electric solar wind sail, or E-sail, is a propellantless interplanetary propulsion system concept. By deflecting solar wind particles off their original course, it can generate a propulsive effect with nothing more than an electric charge. The high-voltage charge is applied to one or multiple centrifugally deployed hair-thin tethers, around which an electrostatic sheath is created. Electron emitters are required to compensate for the electron current gathered by the tether. The electric sail can also be utilised in low Earth orbit, or LEO, when passing through the ionosphere, where it serves as a plasma brake for deorbiting—several missions have been dedicated to LEO demonstration. In this article, we propose the ESTCube-LuNa mission concept and the preliminary cubesat design to be launched into the Moon’s orbit, where the solar wind is uninterrupted, except for the lunar wake and when the Moon is in the Earth’s magnetosphere. This article introduces E-sail demonstration experiments and the preliminary payload design, along with E-sail thrust validation and environment characterisation methods, a cis-lunar cubesat platform solution and an early concept of operations. The proposed lunar nanospacecraft concept is designed without a deep space network, typically used for lunar and deep space operations. Instead, radio telescopes are being repurposed for communications and radio frequency ranging, and celestial optical navigation is developed for on-board orbit determination. Full article
(This article belongs to the Special Issue Advances in CubeSat Sails and Tethers)
Show Figures

Figure 1

16 pages, 26466 KiB  
Article
Robust Flight Tether for In-Orbit Demonstrations of Coulomb Drag Propulsion
by Petri Toivanen, Pekka Janhunen, Jarmo Kivekäs and Meri Mäkelä
Aerospace 2024, 11(1), 62; https://doi.org/10.3390/aerospace11010062 - 9 Jan 2024
Cited by 2 | Viewed by 1842
Abstract
A new method of producing robust multi-wire tethers for Coulomb drag applications was developed. The multi-wire structure required for redundancy against the micrometeoroid flux of the space environment is realised through the method of wire twist bonding traditionally used for chicken wire. In [...] Read more.
A new method of producing robust multi-wire tethers for Coulomb drag applications was developed. The multi-wire structure required for redundancy against the micrometeoroid flux of the space environment is realised through the method of wire twist bonding traditionally used for chicken wire. In the case of the Coulomb drag tether, the diameter of the individual wires is 50 μm, which introduces the main technological challenge. To manufacture the tether, a manually driven tether machine was designed and built. Two multi-wire tethers for Coulomb drag applications were produced for two in-orbit demonstrations of the FORESAIL-1 and ESTCube-2 CubeSat missions. The flight tethers were both 60 m long as produced, clearly demonstrating beyond the level of proof of concept the applicability of both the method and the manually driven tether machine. Altogether, 6480 twist bonds were produced without a single wire cut. In this paper, the requirements for the tether are listed and justified. The production method is reviewed, and the 4-wire tether produced is evaluated against the requirements. Finally, the test procedures of the tether are described, and on the basis of the results, it is concluded that the tether can tolerate a tension of 14 g without the twist bonds slipping or the tether structure collectively collapsing. Furthermore, the tether can be reeled from the production reel to the flight reel, which simplifies the final integration of the tether reeling system with the Coulomb drag propulsion device. Full article
(This article belongs to the Special Issue Advances in CubeSat Sails and Tethers)
Show Figures

Figure 1

27 pages, 8625 KiB  
Article
Electric Sail Mission Expeditor, ESME: Software Architecture and Initial ESTCube Lunar Cubesat E-Sail Experiment Design
by Mario F. Palos, Pekka Janhunen, Petri Toivanen, Martin Tajmar, Iaroslav Iakubivskyi, Aldo Micciani, Nicola Orsini, Johan Kütt, Agnes Rohtsalu, Janis Dalbins, Hans Teras, Kristo Allaje, Mihkel Pajusalu, Lorenzo Niccolai, Marco Bassetto, Giovanni Mengali, Alessandro A. Quarta, Nickolay Ivchenko, Joan Stude, Andris Vaivads, Antti Tamm and Andris Slavinskisadd Show full author list remove Hide full author list
Aerospace 2023, 10(8), 694; https://doi.org/10.3390/aerospace10080694 - 5 Aug 2023
Cited by 14 | Viewed by 2655
Abstract
The electric solar wind sail, or E-sail, is a novel deep space propulsion concept which has not been demonstrated in space yet. While the solar wind is the authentic operational environment of the electric sail, its fundamentals can be demonstrated in the ionosphere [...] Read more.
The electric solar wind sail, or E-sail, is a novel deep space propulsion concept which has not been demonstrated in space yet. While the solar wind is the authentic operational environment of the electric sail, its fundamentals can be demonstrated in the ionosphere where the E-sail can be used as a plasma brake for deorbiting. Two missions to be launched in 2023, Foresail-1p and ESTCube-2, will attempt to demonstrate Coulomb drag propulsion (an umbrella term for the E-sail and plasma brake) in low Earth orbit. This paper presents the next step of bringing the E-sail to deep space—we provide the initial modelling and trajectory analysis of demonstrating the E-sail in solar wind. The preliminary analysis assumes a six-unit cubesat being inserted in the lunar orbit where it deploys several hundred meters of the E-sail tether and charges the tether at 10–20 kV. The spacecraft will experience acceleration due to the solar wind particles being deflected by the electrostatic sheath around the charged tether. The paper includes two new concepts: the software architecture of a new mission design tool, the Electric Sail Mission Expeditor (ESME), and the initial E-sail experiment design for the lunar orbit. Our solar-wind simulation places the Electric Sail Test Cube (ESTCube) lunar cubesat with the E-sail tether in average solar wind conditions and we estimate a force of 1.51×104 N produced by the Coulomb drag on a 2 km tether charged to 20 kV. Our trajectory analysis takes the 15 kg cubesat from the lunar back to the Earth orbit in under three years assuming a 2 km long tether and 20 kV. The results of this paper are used to set scientific requirements for the conceptional ESTCube lunar nanospacecraft mission design to be published subsequently in the Special Issue “Advances in CubeSat Sails and Tethers”. Full article
(This article belongs to the Special Issue Advances in CubeSat Sails and Tethers)
Show Figures

Figure 1

29 pages, 36313 KiB  
Article
Interplanetary Student Nanospacecraft: Development of the LEO Demonstrator ESTCube-2
by Janis Dalbins, Kristo Allaje, Hendrik Ehrpais, Iaroslav Iakubivskyi, Erik Ilbis, Pekka Janhunen, Joosep Kivastik, Maido Merisalu, Mart Noorma, Mihkel Pajusalu, Indrek Sünter, Antti Tamm, Hans Teras, Petri Toivanen, Boris Segret and Andris Slavinskis
Aerospace 2023, 10(6), 503; https://doi.org/10.3390/aerospace10060503 - 26 May 2023
Cited by 14 | Viewed by 3877
Abstract
Nanosatellites have established their importance in low-Earth orbit (LEO), and it is common for student teams to build them for educational and technology demonstration purposes. The next challenge is the technology maturity for deep-space missions. The LEO serves as a relevant environment for [...] Read more.
Nanosatellites have established their importance in low-Earth orbit (LEO), and it is common for student teams to build them for educational and technology demonstration purposes. The next challenge is the technology maturity for deep-space missions. The LEO serves as a relevant environment for maturing the spacecraft design. Here we present the ESTCube-2 mission, which will be launched onboard VEGA-C VV23. The satellite was developed as a technology demonstrator for the future deep-space mission by the Estonian Student Satellite Program. The ultimate vision of the program is to use the electric solar wind sail (E-sail) technology in an interplanetary environment to traverse the solar system using lightweight propulsion means. Additional experiments were added to demonstrate all necessary technologies to use the E-sail payload onboard ESTCube-3, the next nanospacecraft targeting the lunar orbit. The E-sail demonstration requires a high-angular velocity spin-up to deploy a tether, resulting in a need for a custom satellite bus. In addition, the satellite includes deep-space prototypes: deployable structures; compact avionics stack electronics (including side panels); star tracker; reaction wheels; and cold–gas propulsion. During the development, two additional payloads were added to the design of ESTCube-2, one for Earth observation of the Normalized Difference Vegetation Index and the other for corrosion testing in the space of thin-film materials. The ESTCube-2 satellite has been finished and tested in time for delivery to the launcher. Eventually, the project proved highly complex, making the team lower its ambitions and optimize the development of electronics, software, and mechanical structure. The ESTCube-2 team dealt with budgetary constraints, student management problems during a pandemic, and issues in the documentation approach. Beyond management techniques, the project required leadership that kept the team aware of the big picture and willing to finish a complex satellite platform. The paper discusses the ESTCube-2 design and its development, highlights the team’s main technical, management, and leadership issues, and presents suggestions for nanosatellite and nanospacecraft developers. Full article
(This article belongs to the Special Issue Advances in CubeSat Sails and Tethers (2nd Edition))
Show Figures

Figure 1

Back to TopTop