Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = EV-integrated microgrid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8883 KB  
Article
Autonomous Decentralized Cooperative Control DC Microgrid Deployed in Residential Areas
by Hirohito Yamada
Energies 2025, 18(18), 5041; https://doi.org/10.3390/en18185041 - 22 Sep 2025
Viewed by 297
Abstract
This paper presents a DC microgrid architecture with autonomous decentralized control that exhibits high resilience against increasingly common threats, such as natural disasters and cyber-physical attacks, as well as its operational characteristics under normal circumstances. The proposed system achieves autonomous decentralized cooperative control [...] Read more.
This paper presents a DC microgrid architecture with autonomous decentralized control that exhibits high resilience against increasingly common threats, such as natural disasters and cyber-physical attacks, as well as its operational characteristics under normal circumstances. The proposed system achieves autonomous decentralized cooperative control by combining a battery-integrated DC baseline, in which multiple distributed small-scale batteries are directly connected to the grid baseline, with a weakly coupled grid architecture in which each power device is loosely coupled via the grid baseline. Unlike conventional approaches that assign grid formation, inertial support, and power balancing functions to DC/DC converters, the proposed approach delegates these fundamental grid roles to the distributed batteries. This configuration simplifies the control logic of the DC/DC converters, limiting their role to power exchange only. To evaluate system performance, a four-family DC microgrid model incorporating a typical Japanese home environment, including an EV charger, was constructed in MATLAB/Simulink R2025a and subjected to one-year simulations. The results showed that with approximately 5 kW of PV panels and a 20 kWh battery capacity per household, a stable power supply could be maintained throughout the year, with more than 50% of the total power consumption covered by solar energy. Furthermore, the predicted battery life was over 20 years, confirming the practicality and economic viability of the proposed residential microgrid design. Full article
(This article belongs to the Special Issue Intelligent Operation and Control of Resilient Microgrids)
Show Figures

Figure 1

26 pages, 38655 KB  
Article
Model-Free Adaptive Cooperative Control Strategy of Multiple Electric Springs: A Hierarchical Approach for EV-Integrated AC Micro-Grid
by Hongtao Chen, Yuchen Dai, Lei Li, Jianfeng Sun and Xiaoning Huang
Smart Cities 2025, 8(4), 132; https://doi.org/10.3390/smartcities8040132 - 8 Aug 2025
Viewed by 507
Abstract
With the aim of addressing the power quality problem associated with voltage fluctuation of multiple electric vehicles and renewable energy generation equipment integration into the AC micro-grid, a multi-agent system-based model-free adaptive constrained control method is proposed in this paper. First, a novel [...] Read more.
With the aim of addressing the power quality problem associated with voltage fluctuation of multiple electric vehicles and renewable energy generation equipment integration into the AC micro-grid, a multi-agent system-based model-free adaptive constrained control method is proposed in this paper. First, a novel hierarchical control structure is developed. Therein, the upper-level cooperative controller is designed based on the directed graph and droop control strategy, enabling efficient power distribution among multiple electric vehicles. For the lower-level voltage controller, a model-free adaptive constrained control strategy is designed, incorporating a pseudo-partial derivative-based output observer, and an anti-windup compensator is designed to solve the voltage fluctuation problem, which achieves precise tracking of each electric spring output voltage. Finally, the effectiveness and superiority of the proposed control strategy is verified by the MATLAB/Simulink platform under scenarios of grid-side voltage fluctuations and load variations. Full article
(This article belongs to the Section Smart Grids)
Show Figures

Figure 1

28 pages, 2701 KB  
Article
Optimal Scheduling of Hybrid Games Considering Renewable Energy Uncertainty
by Haihong Bian, Kai Ji, Yifan Zhang, Xin Tang, Yongqing Xie and Cheng Chen
World Electr. Veh. J. 2025, 16(7), 401; https://doi.org/10.3390/wevj16070401 - 17 Jul 2025
Viewed by 407
Abstract
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is [...] Read more.
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is developed, involving integrated energy microgrids (IEMS), shared energy storage operators (ESOS), and user aggregators (UAS). A mixed game model combining master–slave and cooperative game theory is constructed in which the ESO acts as the leader by setting electricity prices to maximize its own profit, while guiding the IEMs and UAs—as followers—to optimize their respective operations. Cooperative decisions within the IEM coalition are coordinated using Nash bargaining theory. To enhance the generality of the user aggregator model, both electric vehicle (EV) users and demand response (DR) users are considered. Additionally, the model incorporates renewable energy output uncertainty through distributionally robust chance constraints (DRCCs). The resulting two-level optimization problem is solved using Karush–Kuhn–Tucker (KKT) conditions and the Alternating Direction Method of Multipliers (ADMM). Simulation results verify the effectiveness and robustness of the proposed model in enhancing operational efficiency under conditions of uncertainty. Full article
Show Figures

Figure 1

24 pages, 3447 KB  
Article
Vehicle-to-Grid Services in University Campuses: A Case Study at the University of Rome Tor Vergata
by Antonio Comi and Elsiddig Elnour
Future Transp. 2025, 5(3), 89; https://doi.org/10.3390/futuretransp5030089 - 8 Jul 2025
Viewed by 829
Abstract
As electric vehicles (EVs) become increasingly integrated into urban mobility, the load on electrical grids increases, prompting innovative energy management strategies. This paper investigates the deployment of vehicle-to-grid (V2G) services at the University of Rome Tor Vergata, leveraging high-resolution floating car data (FCD) [...] Read more.
As electric vehicles (EVs) become increasingly integrated into urban mobility, the load on electrical grids increases, prompting innovative energy management strategies. This paper investigates the deployment of vehicle-to-grid (V2G) services at the University of Rome Tor Vergata, leveraging high-resolution floating car data (FCD) to forecast and schedule energy transfers from EVs to the grid. The methodology follows a four-step process: (1) vehicle trip detection, (2) the spatial identification of V2G in the campus, (3) a real-time scheduling algorithm for V2G services, which accommodates EV user mobility requirements and adheres to charging infrastructure constraints, and finally, (4) the predictive modelling of transferred energy using ARIMA and LSTM models. The results demonstrate that substantial energy can be fed back to the campus grid during peak hours, with predictive models, particularly LSTM, offering high accuracy in anticipating transfer volumes. The system aligns energy discharge with campus load profiles while preserving user mobility requirements. The proposed approach shows how campuses can function as microgrids, transforming idle EV capacity into dynamic, decentralised energy storage. This framework offers a scalable model for urban energy optimisation, supporting broader goals of grid resilience and sustainable development. Full article
(This article belongs to the Special Issue Innovation in Last-Mile and Long-Distance Transportation)
Show Figures

Figure 1

10 pages, 1398 KB  
Proceeding Paper
Optimization of Grid-Connected Hybrid Microgrid System with EV Charging Using Pelican Optimization Algorithm
by Anirban Maity, Sajjan Kumar and Pulok Pattanayak
Eng. Proc. 2025, 93(1), 13; https://doi.org/10.3390/engproc2025093013 - 2 Jul 2025
Viewed by 401
Abstract
This research focuses on optimizing a grid-connected hybrid microgrid system (HMGS) for The Neotia University (TNU), West Bengal, India, utilizing renewable energy sources to improve sustainability and energy efficiency. The system integrates solar panels, wind turbines, and an existing diesel generator (DG) to [...] Read more.
This research focuses on optimizing a grid-connected hybrid microgrid system (HMGS) for The Neotia University (TNU), West Bengal, India, utilizing renewable energy sources to improve sustainability and energy efficiency. The system integrates solar panels, wind turbines, and an existing diesel generator (DG) to meet campus energy demands, including electric vehicle (EV) charging facilities for residents and staff. The pelican optimization algorithm (POA) is employed to determine the optimal capacity of PV and wind turbine units for reducing energy costs, enhancing reliability, and minimizing carbon emissions. The results reveal a substantial decrease in the cost of energy (COE) from INR 11.74/kWh to INR 5.20/kWh. Full article
Show Figures

Figure 1

36 pages, 6279 KB  
Article
Eel and Grouper Optimization-Based Fuzzy FOPI-TIDμ-PIDA Controller for Frequency Management of Smart Microgrids Under the Impact of Communication Delays and Cyberattacks
by Kareem M. AboRas, Mohammed Hamdan Alshehri and Ashraf Ibrahim Megahed
Mathematics 2025, 13(13), 2040; https://doi.org/10.3390/math13132040 - 20 Jun 2025
Cited by 1 | Viewed by 663
Abstract
In a smart microgrid (SMG) system that deals with unpredictable loads and incorporates fluctuating solar and wind energy, it is crucial to have an efficient method for controlling frequency in order to balance the power between generation and load. In the last decade, [...] Read more.
In a smart microgrid (SMG) system that deals with unpredictable loads and incorporates fluctuating solar and wind energy, it is crucial to have an efficient method for controlling frequency in order to balance the power between generation and load. In the last decade, cyberattacks have become a growing menace, and SMG systems are commonly targeted by such attacks. This study proposes a framework for the frequency management of an SMG system using an innovative combination of a smart controller (i.e., the Fuzzy Logic Controller (FLC)) with three conventional cascaded controllers, including Fractional-Order PI (FOPI), Tilt Integral Fractional Derivative (TIDμ), and Proportional Integral Derivative Acceleration (PIDA). The recently released Eel and Grouper Optimization (EGO) algorithm is used to fine-tune the parameters of the proposed controller. This algorithm was inspired by how eels and groupers work together and find food in marine ecosystems. The Integral Time Squared Error (ITSE) of the frequency fluctuation (ΔF) around the nominal value is used as an objective function for the optimization process. A diesel engine generator (DEG), renewable sources such as wind turbine generators (WTGs), solar photovoltaics (PVs), and storage components such as flywheel energy storage systems (FESSs) and battery energy storage systems (BESSs) are all included in the SMG system. Additionally, electric vehicles (EVs) are also installed. In the beginning, the supremacy of the adopted EGO over the Gradient-Based Optimizer (GBO) and the Smell Agent Optimizer (SAO) can be witnessed by taking into consideration the optimization process of the recommended regulator’s parameters, in addition to the optimum design of the membership functions of the fuzzy logic controller by each of these distinct algorithms. The subsequent phase showcases the superiority of the proposed EGO-based FFOPI-TIDμ-PIDA structure compared to EGO-based conventional structures like PID and EGO-based intelligent structures such as Fuzzy PID (FPID) and Fuzzy PD-(1 + PI) (FPD-(1 + PI)); this is across diverse symmetry operating conditions and in the presence of various cyberattacks that result in a denial of service (DoS) and signal transmission delays. Based on the simulation results from the MATLAB/Simulink R2024b environment, the presented control methodology improves the dynamics of the SMG system by about 99.6% when compared to the other three control methodologies. The fitness function dropped to 0.00069 for the FFOPI-TIDμ-PIDA controller, which is about 200 times lower than the other controllers that were compared. Full article
(This article belongs to the Special Issue Mathematical Methods Applied in Power Systems, 2nd Edition)
Show Figures

Figure 1

23 pages, 6078 KB  
Article
Multi-Energy Optimal Dispatching of Port Microgrids Taking into Account the Uncertainty of Photovoltaic Power
by Xiaoyong Wang, Xing Wei, Hanqing Zhang, Bailiang Liu and Yanmin Wang
Energies 2025, 18(12), 3216; https://doi.org/10.3390/en18123216 - 19 Jun 2025
Cited by 1 | Viewed by 534
Abstract
To tackle the problems of high scheduling costs and low photovoltaic (PV) accommodation rates in port microgrids, which are caused by the coupling of uncertainties in new energy output and load randomness, this paper proposes an optimized scheduling method that integrates scenario analysis [...] Read more.
To tackle the problems of high scheduling costs and low photovoltaic (PV) accommodation rates in port microgrids, which are caused by the coupling of uncertainties in new energy output and load randomness, this paper proposes an optimized scheduling method that integrates scenario analysis with multi-energy complementarity. Firstly, based on the improved Iterative Self-organizing Data Analysis Techniques Algorithm (ISODATA) clustering algorithm and backward reduction method, a set of typical scenarios that represent the uncertainties of PV and load is generated. Secondly, a multi-energy complementary system model is constructed, which includes thermal power, PV, energy storage, electric vehicle (EV) clusters, and demand response. Then, a planning model centered on economy is established. Through multi-energy coordinated optimization, supply–demand balance and cost control are achieved. The simulation results based on the port microgrid of the LEKKI Port in Nigeria show that the proposed method can significantly reduce system operating costs by 18% and improve the PV accommodation rate through energy storage time-shifting, flexible EV scheduling, and demand response incentives. The research findings provide theoretical and technical support for the low-carbon transformation of energy systems in high-volatility load scenarios, such as ports. Full article
Show Figures

Figure 1

24 pages, 6185 KB  
Article
Decentralized Energy Management for Efficient Electric Vehicle Charging in DC Microgrids: A Piece-Wise Droop Control Approach
by Mallareddy Mounica, Bhooshan Avinash Rajpathak, Mohan Lal Kolhe, K. Raghavendra Naik, Janardhan Rao Moparthi, Sravan Kumar Kotha and Devasuth Govind
Processes 2025, 13(6), 1748; https://doi.org/10.3390/pr13061748 - 2 Jun 2025
Viewed by 1007
Abstract
This paper addresses the challenges of efficient electric vehicle (EV) charging integration in Direct Current (DC) microgrids (MGs), particularly the impact of intermittent EV loads on power sharing and voltage regulation. Traditional droop control methods suffer from inherent trade-offs between performance indices of [...] Read more.
This paper addresses the challenges of efficient electric vehicle (EV) charging integration in Direct Current (DC) microgrids (MGs), particularly the impact of intermittent EV loads on power sharing and voltage regulation. Traditional droop control methods suffer from inherent trade-offs between performance indices of parallel distributed energy resources (DERs), which in turn results in improper source utilization. We propose a novel decentralized piece-wise droop control (PDC) approach with voltage compensation for EV charging to overcome this limitation and to minimize the unequal cable resistance effect on power sharing. This strategy dynamically optimises the droop characteristics based on EV charging load profiles, partitioning the droop curve to optimize power sharing accuracy and voltage stability considering the constraints of maximum allowable voltage deviation and loading. Simulation and experimental results demonstrate significant improvements in power sharing, enhanced DER utilization, and voltage deviations consistently within 2.5% when compared with traditional strategies. PDC offers a robust solution for enabling efficient and reliable EV charging in MGs, as it is not sensitive for EV load prediction errors and measurement noise. Full article
Show Figures

Figure 1

28 pages, 4244 KB  
Article
Optimized Non-Integer with Disturbance Observer Frequency Control for Resilient Modern Airport Microgrid Systems
by Amr A. Raslan, Mokhtar Aly, Emad A. Mohamed, Waleed Alhosaini, Emad M. Ahmed, Loai S. Nasrat and Sayed M. Said
Fractal Fract. 2025, 9(6), 354; https://doi.org/10.3390/fractalfract9060354 - 28 May 2025
Viewed by 838
Abstract
Various sectors focus on transitioning to clean and renewable energy sources, particularly airport microgrids (AMGs), which offer the potential for highly reliable and resilient operations. As airports increasingly integrate renewable energy sources, ensuring stable and efficient power becomes a critical challenge. In this [...] Read more.
Various sectors focus on transitioning to clean and renewable energy sources, particularly airport microgrids (AMGs), which offer the potential for highly reliable and resilient operations. As airports increasingly integrate renewable energy sources, ensuring stable and efficient power becomes a critical challenge. In this context, maintaining proper frequency is essential for the reliable operation of AMGs, which helps maintain grid stability and reliable operation. This paper proposes a new hybrid disturbance observer-based controller with a fractional-order controller (DOBC/FOC) for operating AMGs with high levels of renewable energy integration and advanced frequency regulation (FR) capabilities. The proposed controller utilizes DOBC coupled with a non-integer FOC for load frequency control (LFC), optimized for peak performance under varying operational conditions. In addition, a decentralized control strategy is introduced to manage the participation of electric vehicles and lithium-ion battery systems within the airport’s energy ecosystem, enabling effective demand response and energy storage utilization. Furthermore, the parameters of these controllers are optimized simultaneously to ensure optimal performance in both transient and steady-state conditions. The proposed DOBC/FOC controller demonstrates strong performance and reliability according to simulation outcomes, showcasing its superior performance in maintaining frequency stability, reducing fluctuations, and ensuring continuous power supply in diverse operating scenarios, such as 55.5% and 76.5% in step load perturbations when compared to the utilization of electric vehicles (EVs) and electric aircraft (EAC), respectively. These results underline the potential of this approach in enhancing the resilience and sustainability of AMG and contributing to more intelligent and eco-friendly airport infrastructure. Full article
(This article belongs to the Special Issue Fractional-Order Dynamics and Control in Green Energy Systems)
Show Figures

Figure 1

30 pages, 3187 KB  
Article
A Smart Microgrid Platform Integrating AI and Deep Reinforcement Learning for Sustainable Energy Management
by Badr Lami, Mohammed Alsolami, Ahmad Alferidi and Sami Ben Slama
Energies 2025, 18(5), 1157; https://doi.org/10.3390/en18051157 - 26 Feb 2025
Cited by 6 | Viewed by 3444
Abstract
Smart microgrids (SMGs) have emerged as a key solution to enhance energy management and sustainability within decentralized energy systems. This paper presents SmartGrid AI, a platform integrating deep reinforcement learning (DRL) and neural networks to optimize energy consumption, predict demand, and facilitate peer-to-peer [...] Read more.
Smart microgrids (SMGs) have emerged as a key solution to enhance energy management and sustainability within decentralized energy systems. This paper presents SmartGrid AI, a platform integrating deep reinforcement learning (DRL) and neural networks to optimize energy consumption, predict demand, and facilitate peer-to-peer (P2P) energy trading. The platform dynamically adapts to real-time energy demand and supply fluctuations, achieving a 23% reduction in energy costs, a 40% decrease in grid dependency, and an 85% renewable energy utilization rate. Furthermore, AI-driven P2P trading mechanisms demonstrate that 18% of electricity consumption is handled through efficient decentralized exchanges. The integration of vehicle-to-home (V2H) technology allows electric vehicle (EV) batteries to store surplus renewable energy and supply 15% of household energy demand during peak hours. Real-time data from Saudi Arabia validated the system’s performance, highlighting its scalability and adaptability to diverse energy market conditions. The quantitative results suggest that SmartGrid AI is a revolutionary method of sustainable and cost-effective energy management in SMGs. Full article
(This article belongs to the Special Issue Advances and Optimization of Electric Energy System—2nd Edition)
Show Figures

Figure 1

28 pages, 16912 KB  
Article
Power Flow and Voltage Control Strategies in Hybrid AC/DC Microgrids for EV Charging and Renewable Integration
by Zaid H. Ali and David Raisz
World Electr. Veh. J. 2025, 16(2), 104; https://doi.org/10.3390/wevj16020104 - 14 Feb 2025
Cited by 2 | Viewed by 1435
Abstract
This study outlines the creation and lab verification of a low-voltage direct current (LVDC) back-to-back (B2B) converter intended as a versatile connection point for low-voltage users. The converter configuration features dual inverters that regulate the power distribution to AC loads and grid connections [...] Read more.
This study outlines the creation and lab verification of a low-voltage direct current (LVDC) back-to-back (B2B) converter intended as a versatile connection point for low-voltage users. The converter configuration features dual inverters that regulate the power distribution to AC loads and grid connections through a shared DC circuit. This arrangement enables the integration of various DC generation sources, such as photovoltaic systems, as well as DC consumers, like electric vehicle chargers, supported by DC/DC converters. Significant advancements include sensorless current estimation for grid-forming inverters, which removes the necessity for conventional current sensors by employing mathematical models and established system parameters. The experimental findings validate the system’s effectiveness in grid-connected and isolated microgrid modes, demonstrating its ability to sustain energy quality and system stability under different conditions. Our results highlight the considerable potential of integrating grid-forming functionalities in inverters to improve microgrid operations. Full article
Show Figures

Figure 1

29 pages, 5108 KB  
Article
Consideration of Wind-Solar Uncertainty and V2G Mode of Electric Vehicles in Bi-Level Optimization Scheduling of Microgrids
by Zezhou Chang, Xinyuan Liu, Qian Zhang, Ying Zhang, Ziren Wang, Yuyuan Zhang and Wei Li
Energies 2025, 18(4), 823; https://doi.org/10.3390/en18040823 - 11 Feb 2025
Cited by 1 | Viewed by 1112
Abstract
In recent years, the global electric vehicle (EV) sector has experienced rapid growth, resulting in major load variations in microgrids due to uncontrolled charging behaviors. Simultaneously, the unpredictable nature of distributed energy output complicates effective integration, leading to frequent limitations on wind and [...] Read more.
In recent years, the global electric vehicle (EV) sector has experienced rapid growth, resulting in major load variations in microgrids due to uncontrolled charging behaviors. Simultaneously, the unpredictable nature of distributed energy output complicates effective integration, leading to frequent limitations on wind and solar energy utilization. The combined integration of distributed energy sources with electric vehicles introduces both opportunities and challenges for microgrid scheduling; however, relevant research to inform practical applications is currently insufficient. This paper tackles these issues by first introducing a method for generating typical wind–solar output scenarios through kernel density estimation and a combination strategy using Frank copula functions, accounting for the complementary traits and uncertainties of wind and solar energy. Building on these typical scenarios, a two-level optimization model for a microgrid is created, integrating demand response and vehicle-to-grid (V2G) interactions of electric vehicles. The model’s upper level aims to minimize operational and environmental costs, while the lower level seeks to reduce the total energy expenses of electric vehicles. Simulation results demonstrate that this optimization model improves the economic efficiency of the microgrid system, fosters regulated EV electricity consumption, and mitigates load variations, thus ensuring stable microgrid operation. Full article
Show Figures

Figure 1

44 pages, 6278 KB  
Article
Enhancing Smart Microgrid Resilience Under Natural Disaster Conditions: Virtual Power Plant Allocation Using the Jellyfish Search Algorithm
by Kadirvel Kanchana, Tangirala Murali Krishna, Thangaraj Yuvaraj and Thanikanti Sudhakar Babu
Sustainability 2025, 17(3), 1043; https://doi.org/10.3390/su17031043 - 27 Jan 2025
Cited by 5 | Viewed by 2119
Abstract
Electric power networks face critical challenges from extreme weather events and natural disasters, disrupting socioeconomic activities and jeopardizing energy security. This study presents an innovative approach incorporating virtual power plants (VPPs) within networked microgrids (MGs) to address these challenges. VPPs integrate diverse distributed [...] Read more.
Electric power networks face critical challenges from extreme weather events and natural disasters, disrupting socioeconomic activities and jeopardizing energy security. This study presents an innovative approach incorporating virtual power plants (VPPs) within networked microgrids (MGs) to address these challenges. VPPs integrate diverse distributed energy resources such as solar- and wind-based generation, diesel generators, shunt capacitors, battery energy storage systems, and electric vehicles (EVs). These resources enhance MG autonomy during grid disruptions, ensuring uninterrupted power supply to critical services. EVs function as mobile energy storage units during emergencies, while shunt capacitors stabilize the system. Excess energy from distributed generation is stored in battery systems for future use. The seamless integration of VPPs and networked technologies enables MGs to operate independently under extreme weather conditions. Prosumers, acting as both energy producers and consumers, actively strengthen system resilience and efficiency. Energy management and VPP allocation are optimized using the jellyfish search optimization algorithm, enhancing resource scheduling during outages. This study evaluates the proposed approach’s resilience, reliability, stability, and emission reduction capabilities using real-world scenarios, including the IEEE 34-bus and Indian 52-bus radial distribution systems. Various weather conditions are analyzed, and a multi-objective function is employed to optimize system performance during disasters. The results demonstrate that networked microgrids with VPPs significantly enhance distribution grid resilience, offering a promising solution to mitigate the impacts of extreme weather events on energy infrastructure. Full article
Show Figures

Figure 1

49 pages, 33277 KB  
Article
Efficient Frequency Management for Hybrid AC/DC Power Systems Based on an Optimized Fuzzy Cascaded PI−PD Controller
by Awadh Ba Wazir, Sultan Alghamdi, Abdulraheem Alobaidi, Abdullah Ali Alhussainy and Ahmad H. Milyani
Energies 2024, 17(24), 6402; https://doi.org/10.3390/en17246402 - 19 Dec 2024
Cited by 6 | Viewed by 1435
Abstract
A fuzzy cascaded PI−PD (FCPIPD) controller is proposed in this paper to optimize load frequency control (LFC) in the linked electrical network. The FCPIPD controller is composed of fuzzy logic, proportional integral, and proportional derivative with filtered derivative mode controllers. Utilizing renewable energy [...] Read more.
A fuzzy cascaded PI−PD (FCPIPD) controller is proposed in this paper to optimize load frequency control (LFC) in the linked electrical network. The FCPIPD controller is composed of fuzzy logic, proportional integral, and proportional derivative with filtered derivative mode controllers. Utilizing renewable energy sources (RESs), a dual-area hybrid AC/DC electrical network is used, and the FCPIPD controller gains are designed via secretary bird optimization algorithm (SBOA) with aid of a novel objective function. Unlike the conventional objective functions, the proposed objective function is able to specify the desired LFCs response. Under different load disturbance situations, a comparison study is conducted to compare the performance of the SBOA-based FCPIPD controller with the one-to-one (OOBO)-based FCPIPD controller and the earlier LFC controllers published in the literature. The simulation’s outcomes demonstrate that the SBOA-FCPIPD controller outperforms the existing LFC controllers. For instance, in the case of variable load change and variable RESs profile, the SBOA-FCPIPD controller has the best integral time absolute error (ITAE) value. The SBOA-FCPIPD controller’s ITAE value is 0.5101, while sine cosine adopted an improved equilibrium optimization algorithm-based adaptive type 2 fuzzy PID controller and obtained 4.3142. Furthermore, the work is expanded to include electric vehicle (EV), high voltage direct current (HVDC), generation rate constraint (GRC), governor dead band (GDB), and communication time delay (CTD). The result showed that the SBOA-FCPIPD controller performs well when these components are equipped to the system with/without reset its gains. Also, the work is expanded to include a four-area microgrid system (MGS), and the SBOA-FCPIPD controller excelled the SBOA-CPIPD and SBOAPID controllers. Finally, the SBOA-FCPIPD controller showed its superiority against various controllers for the two-area conventionally linked electrical network. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

29 pages, 11635 KB  
Article
A Feed-Forward Back-Propagation Neural Network Approach for Integration of Electric Vehicles into Vehicle-to-Grid (V2G) to Predict State of Charge for Lithium-Ion Batteries
by Alice Cervellieri
Energies 2024, 17(23), 6107; https://doi.org/10.3390/en17236107 - 4 Dec 2024
Cited by 2 | Viewed by 1169
Abstract
The accurate prediction and efficient management of the State of Charge (SoC) of electric vehicle (EV) batteries are critical challenges in the integration of vehicle-to-grid (V2G) systems within multi-energy microgrid (MMO) models. Inaccurate SoC estimation can lead to inefficiencies, increased costs, and potential [...] Read more.
The accurate prediction and efficient management of the State of Charge (SoC) of electric vehicle (EV) batteries are critical challenges in the integration of vehicle-to-grid (V2G) systems within multi-energy microgrid (MMO) models. Inaccurate SoC estimation can lead to inefficiencies, increased costs, and potential disruptions in power generation. This paper addresses the problem of optimizing SoC estimation to enhance the reliability and efficiency of V2G scheduling and MMO coordination. In this work, we develop a Feed-Forward Back-Propagation Network (FFBPN) using MATLAB 2024 software, employing the Levenberg–Marquardt algorithm and varying the number of hidden neurons to achieve better performance; performance was measured by the maximum coefficient of determination (R2) and the minimum mean squared error (MSE). Utilizing the NASA Prognostics Center of Excellence (PCoE) dataset, we validate the model’s capability to accurately predict the life cycle of EV batteries. Our proposed FFBPN model demonstrates superior performance compared to existing methods from the literature, offering significant implications for future V2G system developments. The comparison between training, validation, and testing phases underscores the model’s validity and precisely identifies the characteristic curves of FFBPN, showcasing its potential to enhance profitability, efficiency, production, energy savings, and minimize environmental impact. Full article
(This article belongs to the Special Issue Advances in Battery Technologies for Electric Vehicles)
Show Figures

Figure 1

Back to TopTop