Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Earth–Moon distant retrograde orbit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1369 KB  
Article
Precise Orbit Determination for Cislunar Space Satellites: Planetary Ephemeris Simplification Effects
by Hejin Lv, Nan Xing, Yong Huang and Peijia Li
Aerospace 2025, 12(8), 716; https://doi.org/10.3390/aerospace12080716 - 11 Aug 2025
Viewed by 701
Abstract
The cislunar space navigation satellite system is essential infrastructure for lunar exploration in the next phase. It relies on high-precision orbit determination to provide the reference of time and space. This paper focuses on constructing a navigation constellation using special orbital locations such [...] Read more.
The cislunar space navigation satellite system is essential infrastructure for lunar exploration in the next phase. It relies on high-precision orbit determination to provide the reference of time and space. This paper focuses on constructing a navigation constellation using special orbital locations such as Earth–Moon libration points and distant retrograde orbits (DRO), and it discusses the simplification of planetary perturbation models for their autonomous orbit determination on board. The gravitational perturbations exerted by major solar system bodies on spacecraft are first analyzed. The minimum perturbation required to maintain a precision of 10 m during a 30-day orbit extrapolation is calculated, followed by a simulation analysis. The results indicate that considering only gravitational perturbations from the Moon, Sun, Venus, Saturn, and Jupiter is sufficient to maintain orbital prediction accuracy within 10 m over 30 days. Based on these findings, a method for simplifying the ephemeris is proposed, which employs Hermite interpolation for the positions of the Sun and Moon at fixed time intervals, replacing the traditional Chebyshev polynomial fitting used in the JPL DE ephemeris. Several simplified schemes with varying time intervals and orders are designed. The simulation results of the inter-satellite links show that, with a 6-day orbit arc length, a 1-day lunar interpolation interval, and a 5-day solar interpolation interval, the accuracy loss for cislunar space navigation satellites remains within the meter level, while memory usage is reduced by approximately 60%. Full article
(This article belongs to the Special Issue Precise Orbit Determination of the Spacecraft)
Show Figures

Figure 1

22 pages, 3073 KB  
Article
Research on Sliding-Window Batch Processing Orbit Determination Algorithm for Satellite-to-Satellite Tracking
by Yingjie Xu, Xuan Feng, Shuanglin Li, Jinghui Pu, Shixu Chen and Wenbin Wang
Aerospace 2025, 12(8), 662; https://doi.org/10.3390/aerospace12080662 - 25 Jul 2025
Viewed by 435
Abstract
In response to the increasing demand for high-precision navigation of satellites operating in the cislunar space, this study introduces an onboard orbit determination algorithm considering both convergence and computational efficiency, referred to as the Sliding-Window Batch Processing (SWBP) algorithm. This algorithm combines the [...] Read more.
In response to the increasing demand for high-precision navigation of satellites operating in the cislunar space, this study introduces an onboard orbit determination algorithm considering both convergence and computational efficiency, referred to as the Sliding-Window Batch Processing (SWBP) algorithm. This algorithm combines the strengths of data batch processing and the sequential processing algorithm, utilizing measurement data from multiple historical and current epochs to update the orbit state of the current epoch. This algorithm facilitates rapid convergence in orbit determination, even in instances where the initial orbit error is large. The SWBP algorithm has been used to evaluate the navigation performance in the Distant Retrograde Orbit (DRO) and the Earth–Moon transfer orbit. The scenario involves a low-Earth-orbit (LEO) satellite establishing satellite-to-satellite tracking (SST) links with both a DRO satellite and an Earth–Moon transfer satellite. The LEO satellite can determine its orbit accurately by receiving GNSS signals. The experiments show that the DRO satellite achieves an orbit determination accuracy of 100 m within 100 h under an initial position error of 500 km, and the transfer orbit satellite reaches an orbit determination accuracy of 600 m within 3.5 h under an initial position error of 100 km. When the Earth–Moon transfer satellite exhibits a large initial orbital error (on the order of hundreds of kilometers) or the LEO satellite’s positional accuracy is degraded, the SWBP algorithm demonstrates superior convergence speed and precision in orbit determination compared to the Extended Kalman Filter (EKF). This confirms the proposed algorithm’s capability to handle complex orbital determination scenarios effectively. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

23 pages, 4454 KB  
Article
A Lunar-Orbiting Satellite Constellation for Wireless Energy Supply
by Francesco Lopez, Anna Mauro, Stefano Mauro, Giuseppe Monteleone, Domenico Edoardo Sfasciamuro and Andrea Villa
Aerospace 2023, 10(11), 919; https://doi.org/10.3390/aerospace10110919 - 28 Oct 2023
Cited by 13 | Viewed by 3660
Abstract
The goal of this research is to define a lunar-orbiting system that provides power to the lunar surface through wireless power transmission. To meet the power demand of a lunar base, a constellation of satellites placed in stable orbits is used. Each satellite [...] Read more.
The goal of this research is to define a lunar-orbiting system that provides power to the lunar surface through wireless power transmission. To meet the power demand of a lunar base, a constellation of satellites placed in stable orbits is used. Each satellite of this constellation consists of solar arrays and batteries that supply a power transmission system. This system is composed of a laser that transmits power to receivers on the lunar surface. The receivers are photonic power converters, photovoltaic cells optimized for the laser’s monochromatic light. The outputs of this work will cover the architecture of the system by studying different orbits, specifically analyzing some subsystems such as the laser, the battery pack and the receiver placed on the lunar ground. The study is conducted considering two different energy demands and thus two different receivers location: first, at the strategic location of the Artemis missions’ landing site, the Shackleton Crater near the lunar south pole; second, on the lunar equator, in anticipation of future and new explorations. The goal is to evaluate the possible configurations to satisfy the power required for a lunar base, estimated at approximately 100 kW. To do this, several cases were analyzed: three different orbits, one polar, one frozen and one equatorial (Earth–Moon distant retrograde orbit) with different numbers of satellites and different angles of the receiver’s cone of transmission. The main objective of this paper is to perform a comprehensive feasibility study of the aforementioned system, with specific emphasis placed on selected subsystems. While thermal control, laser targeting, and attitude control subsystems are briefly introduced and discussed, further investigation is required to delve deeper into these areas and gain a more comprehensive understanding of their implementation and performance within the system. Full article
(This article belongs to the Special Issue Advanced Spacecraft/Satellite Technologies)
Show Figures

Figure 1

24 pages, 2057 KB  
Article
Results of Long-Duration Simulation of Distant Retrograde Orbits
by Gary Turner
Aerospace 2016, 3(4), 37; https://doi.org/10.3390/aerospace3040037 - 8 Nov 2016
Cited by 20 | Viewed by 9953
Abstract
Distant Retrograde Orbits in the Earth–Moon system are gaining in popularity as stable “parking” orbits for various conceptual missions. To investigate the stability of potential Distant Retrograde Orbits, simulations were executed, with propagation running over a thirty-year period. Initial conditions for the vehicle [...] Read more.
Distant Retrograde Orbits in the Earth–Moon system are gaining in popularity as stable “parking” orbits for various conceptual missions. To investigate the stability of potential Distant Retrograde Orbits, simulations were executed, with propagation running over a thirty-year period. Initial conditions for the vehicle state were limited such that the position and velocity vectors were in the Earth–Moon orbital plane, with the velocity oriented such that it would produce retrograde motion about Moon. The resulting trajectories were investigated for stability in an environment that included the eccentric motion of Moon, non-spherical gravity of Earth and Moon, gravitational perturbations from Sun, Jupiter, and Venus, and the effects of radiation pressure. The results indicate that stability may be enhanced at certain resonant states within the Earth–Moon system. Full article
Show Figures

Graphical abstract

Back to TopTop