Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (426)

Search Parameters:
Keywords = Electrical Resistivity Tomography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3397 KB  
Article
Challenges in the Detection of Water-Filled Cavities in Karst Environments Using Electrical Resistivity Tomography
by Sergio Negri and Dora Francesca Barbolla
Geosciences 2025, 15(9), 349; https://doi.org/10.3390/geosciences15090349 - 5 Sep 2025
Viewed by 163
Abstract
Electrical resistivity tomography (ERT) is one of the most commonly used geophysical methods for imaging the distribution of electrical resistivity in the subsurface. It is often employed to characterise heterogeneity in karst regions and locate cavities and conduits below the surface. The resistivity [...] Read more.
Electrical resistivity tomography (ERT) is one of the most commonly used geophysical methods for imaging the distribution of electrical resistivity in the subsurface. It is often employed to characterise heterogeneity in karst regions and locate cavities and conduits below the surface. The resistivity contrast between the host rock and the cavity depends on the material filling the cavity. Air has a high electrical resistivity and should therefore produce strong reflections and refractions off cavity walls. However, cavities are not always easily detectable. A decrease in resistivity contrast at the interface between rock and air may result from different physical conditions relating to pore saturation, fracturing and stress near the cavity walls. Our first goal is to understand how extensive fracturing and hydrogeological conditions in the first subsurface layers can affect electric current flow in the presence of a karst tunnel. We use the commercial Res2Dmod software 3.0 to simulate an ERT on several ground models. The results, which are based on hydrogeological models, are presented for several conditions of a karst conduit: empty; full of water within a homogeneous background; and below the groundwater level in the presence of extensive fractures in the shallow layer above it. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

25 pages, 25513 KB  
Article
Using Electrical Resistivity Tomography to Reconstruct Alpine Spring Supply: A Case Study from the Montellina Spring (Quincinetto, NW Alps, Italy)
by Cesare Comina, Domenico Antonio De Luca, Stefano Dolce, Maria Gabriella Forno, Marco Gattiglio, Franco Gianotti, Manuela Lasagna, Giovanni Pigozzi, Sandro Roux and Andrea Vergnano
GeoHazards 2025, 6(3), 51; https://doi.org/10.3390/geohazards6030051 - 2 Sep 2025
Viewed by 354
Abstract
Both studies and conservation of mountain waters are essential because of the primary role of mountains as “natural water towers” for the preservation and optimized exploitation of water reserves. In particular, under climate change stresses which induce reductions in rain and snow precipitation, [...] Read more.
Both studies and conservation of mountain waters are essential because of the primary role of mountains as “natural water towers” for the preservation and optimized exploitation of water reserves. In particular, under climate change stresses which induce reductions in rain and snow precipitation, especially in areas with rain-snow transition zones, increasing knowledge of the geological setting and hydrogeological context of mountain springs is pivotal for their preservation and optimized exploitation. However, the complexity and remoteness of mountain waters make them difficult to conceptualize and analyse, both observationally and instrumentally. In this context, using detailed geological mapping and hydrogeological surveys, geophysical data can provide useful information on the subsurface setting. Electrical resistivity tomography (ERT) surveys are utilized in this work for the investigation of the Montellina Spring (MS), which is located in the low Dora Baltea Valley and represents a significant drinking water source in the alpine context. Geophysical surveys, complemented by specific geological and hydrogeological observations, allowed a detailed reconstruction of the water circuit that supplies the spring along an articulated buried glacial valley and a loose bedrock in a DSGSD (deep-seated gravitational slope deformation) environment. The methodological approach also provides the basis for its successful application in similar geological contexts. Full article
Show Figures

Figure 1

30 pages, 20277 KB  
Article
A Multidisciplinary Approach to Mapping Morphostructural Features and Their Relation to Seismic Processes
by Simona Bongiovanni, Raffaele Martorana, Alessandro Canzoneri, Maurizio Gasparo Morticelli and Attilio Sulli
Geosciences 2025, 15(9), 337; https://doi.org/10.3390/geosciences15090337 - 1 Sep 2025
Viewed by 721
Abstract
A multidisciplinary investigation was conducted in southwestern Sicily, near the seismically active Belice Valley, based on the analysis of morphostructural features. These were observed as open fractures between 2014 and 2017; they were subsequently filled anthropogenically and then reactivated during a seismic swarm [...] Read more.
A multidisciplinary investigation was conducted in southwestern Sicily, near the seismically active Belice Valley, based on the analysis of morphostructural features. These were observed as open fractures between 2014 and 2017; they were subsequently filled anthropogenically and then reactivated during a seismic swarm in 2019. We generated a seismic event distribution map to analyze the location, magnitude, and depth of earthquakes. This analysis, combined with multitemporal satellite imagery, allowed us to investigate the spatial and temporal relationship between seismic activity and fracture evolution. To investigate the spatial variation in thickness of the superficial cover and to assess the depth to the underlying bedrock or stiffer substratum, 45 Horizontal-to-Vertical Spectral Ratio (HVSR) ambient noise measurements were conducted. This method, which analyzes the resonance frequency of the ground, produced maps of the amplitude, frequency, and vulnerability index of the ground (Kg). By inverting the HVSR curves, constrained by Multichannel Analysis of Surface Waves (MASW) results, a subsurface model was created aimed at supporting the structural interpretation by highlighting variations in sediment thickness potentially associated with fault-controlled subsidence or deformation zones. The surface investigation revealed depressed elliptical deformation zones, where mainly sands outcrop. Grain-size and morphoscopic analyses of sediment samples helped understand the processes generating these shapes and predict future surface deformation. These elliptical shapes recall the liquefaction process. To investigate the potential presence of subsurface fluids that could have contributed to this process, Electrical Resistivity Tomography (ERT) was performed. The combination of the maps revealed a correlation between seismic activity and surface deformation, and the fractures observed were interpreted as inherited tectonic and/or geomorphological structures. Full article
Show Figures

Figure 1

21 pages, 10407 KB  
Article
Detecting the Occurrence and Explaining the Origin of Lithologic Discontinuities in Low-Mountain Soils: An Example from the Carpathians, Southern Poland
by Andrzej Kacprzak and Marek Kasprzak
Geosciences 2025, 15(8), 326; https://doi.org/10.3390/geosciences15080326 - 20 Aug 2025
Viewed by 419
Abstract
This study investigates the internal structure and lithologic variability of slope deposits in a small catchment in the Polish Outer Carpathians using pedological methods supported by geochemical analyses and Electrical Resistivity Tomography (ERT). It addresses the occurrence of lithologic discontinuities in the soils [...] Read more.
This study investigates the internal structure and lithologic variability of slope deposits in a small catchment in the Polish Outer Carpathians using pedological methods supported by geochemical analyses and Electrical Resistivity Tomography (ERT). It addresses the occurrence of lithologic discontinuities in the soils of flysch-dominated mountain areas. Diagnostic criteria from the WRB system—based on particle-size distribution and the content and lithology of coarse fragments—were applied to identify lithologic discontinuities, complemented by computation of sand and silt separates on a clay-free basis. Geochemical analyses and ERT were then used to assess their likely origin. Three major vertical sections were distinguished, separated by discontinuities: an uppermost unit consisting of aeolian material mixed with solifluctional deposits; a middle unit dominated by solifluctional materials; and a lowermost unit composed of colluvial deposits. The study confirms the utility of ERT in detecting subsurface differentiation of stratified slope sediments and provides a model for interpreting pedosedimentary sequences in Carpathian low-mountain environments. Full article
Show Figures

Figure 1

19 pages, 4666 KB  
Article
Study on Detection Technology for High-Speed Railway Slope Sliding Surface Based on Complex Observation of Electrical Resistivity Tomography
by Hongli Li, Feng Wang, Jinyun Tang, Yansheng Liu, Guofu Wang and Xiaobo Jia
Appl. Sci. 2025, 15(16), 9091; https://doi.org/10.3390/app15169091 - 18 Aug 2025
Viewed by 263
Abstract
Slope landslide risk presents a critical challenge throughout high-speed railway construction and operation. Precise detection of sliding surfaces is essential for disaster prevention. This study develops an electrical detection method using complex electrode arrays, specifically addressing high-speed railway slope exploration constraints including confined [...] Read more.
Slope landslide risk presents a critical challenge throughout high-speed railway construction and operation. Precise detection of sliding surfaces is essential for disaster prevention. This study develops an electrical detection method using complex electrode arrays, specifically addressing high-speed railway slope exploration constraints including confined spaces, significant investigation depths, and complex terrain. Numerical simulations analyzed the electric field distribution characteristics of power supply electrodes under various spatial constraints (half-space and full-space), revealing resolution differences between power supply combinations for target areas. Further comparative numerical modeling demonstrated that complex electrode arrays significantly enhance imaging quality over simple arrays in complex terrain. Finally, field validation confirmed the high reliability of complex observation systems for detecting slip surfaces along high-speed railway slopes. Therefore, under complex terrain conditions, utilizing complex observation systems to acquire multi-dimensional spatial data, integrated with topography-incorporated inversion technology, enables precise slip surface detection. This approach provides a reliable method for geological hazard mitigation in high-speed railway operations. Full article
Show Figures

Figure 1

21 pages, 35452 KB  
Article
Integrated Geophysical Techniques to Investigate Water Resources in Self-Sustained Carbon-Farming Agroforestry
by John D. Alexopoulos, Vasileios Gkosios, Ioannis-Konstantinos Giannopoulos, Spyridon Dilalos, Antonios Eleftheriou and Simos Malamis
Geosciences 2025, 15(8), 317; https://doi.org/10.3390/geosciences15080317 - 13 Aug 2025
Viewed by 418
Abstract
The present paper deals with the combined application of near-surface geophysical techniques in a sustainable agriculture project. Their application is focused on the identification of any subsurface water in the context of sustainable water management for the selected living hub, located in the [...] Read more.
The present paper deals with the combined application of near-surface geophysical techniques in a sustainable agriculture project. Their application is focused on the identification of any subsurface water in the context of sustainable water management for the selected living hub, located in the semi-arid area of Agios Georgios-Mandra Attiki. The objective of the multidisciplinary geophysical study was to determine the depth of the bedrock and the thickness of the post-Alpine deposits. In addition, the subsurface karstification and the possible aquifer presence were examined. For that reason, the following techniques were implemented: Electrical Resistivity Tomography, Seismic Refraction Tomography, Ground-Penetrating Radar, and Very-Low Frequency electromagnetic technique. The study was also supported by drone LiDAR usage. The investigation revealed several hydrogeological characteristics of the area. The thickness of the post-Alpine sediments is almost 3 m. However, no shallow aquiferous systems have been developed in this formation, as indicated by their relatively high resistivity values (100–1000 Ohm.m). Furthermore, the alpine bedrock exhibits extensive karstification, facilitated by the development of fracture zones. The absence of an underlying impermeable layer prevented the development of aquiferous zones, at least up to a depth of 100 m. Full article
Show Figures

Figure 1

19 pages, 6218 KB  
Article
Quantitative Relationship Between Electrical Resistivity and Water Content in Unsaturated Loess: Theoretical Model and ERT Imaging Verification
by Hu Zeng, Qianli Zhang, Cui Du, Jie Liu and Yilin Li
Geosciences 2025, 15(8), 302; https://doi.org/10.3390/geosciences15080302 - 5 Aug 2025
Viewed by 444
Abstract
As a typical porous medium, unsaturated loess demonstrates critical hydro-mechanical coupling properties that fundamentally influence geohazard mitigation, groundwater resource evaluation, and foundation stability in geotechnical engineering. This investigation develops a novel theoretical framework to overcome the limitations of existing models in converting electrical [...] Read more.
As a typical porous medium, unsaturated loess demonstrates critical hydro-mechanical coupling properties that fundamentally influence geohazard mitigation, groundwater resource evaluation, and foundation stability in geotechnical engineering. This investigation develops a novel theoretical framework to overcome the limitations of existing models in converting electrical resistivity tomography (ERT) profiles into water content distributions for unsaturated loess through quantitative inversion modeling. Systematic laboratory investigations on remolded loess specimens with controlled density and water content conditions revealed distinct resistivity–water interaction mechanisms. A characteristic two-stage decay pattern was identified: resistivity exhibited an exponential decrease from 420 Ω·m (water saturation (Sw = 10%)) to 90 Ω·m (Sw = 40%), followed by asymptotic stabilization at Sw ≥ 40%. The derived quantitative correlation provides a robust mathematical basis for water content profile inversion. Field validation through integrated ERT and borehole data demonstrated exceptional predictive accuracy in shallow strata (<20 m depth), achieving mean absolute errors of <5%. However, inversion reliability decreased with depth (>20 m), primarily attributed to density-dependent charge transport mechanisms. This underscores the necessity of incorporating coupled thermo-hydro-mechanical processes for deep-layer characterization. This study provides a robust framework for engineering applications of ERT in loess terrains, offering significant advancements in geotechnical monitoring and geohazard prevention. Full article
Show Figures

Figure 1

21 pages, 12507 KB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Viewed by 784
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 5440 KB  
Article
An Improved Shuffled Frog Leaping Algorithm for Electrical Resistivity Tomography Inversion
by Fuyu Jiang, Likun Gao, Run Han, Minghui Dai, Haijun Chen, Jiong Ni, Yao Lei, Xiaoyu Xu and Sheng Zhang
Appl. Sci. 2025, 15(15), 8527; https://doi.org/10.3390/app15158527 - 31 Jul 2025
Viewed by 272
Abstract
In order to improve the inversion accuracy of electrical resistivity tomography (ERT) and overcome the limitations of traditional linear methods, this paper proposes an improved shuffled frog leaping algorithm (SFLA). First, an equilibrium grouping strategy is designed to balance the contribution weight of [...] Read more.
In order to improve the inversion accuracy of electrical resistivity tomography (ERT) and overcome the limitations of traditional linear methods, this paper proposes an improved shuffled frog leaping algorithm (SFLA). First, an equilibrium grouping strategy is designed to balance the contribution weight of each subgroup to the global optimal solution, suppressing the local optimum traps caused by the dominance of high-quality groups. Second, an adaptive movement operator is constructed to dynamically regulate the step size of the search, enhancing the guiding effect of the optimal solution. In synthetic data tests of three typical electrical models, including a high-resistivity anomaly with 5% random noise, a normal fault, and a reverse fault, the improved algorithm shows an approximately 2.3 times higher accuracy in boundary identification of the anomaly body compared to the least squares (LS) method and standard SFLA. Additionally, the root mean square error is reduced by 57%. In the engineering validation at the Baota Mountain mining area in Jurong, the improved SFLA inversion clearly reveals the undulating bedrock morphology. At a measuring point 55 m along the profile, the bedrock depth is 14.05 m (ZK3 verification value 12.0 m, error 17%), and at 96 m, the depth is 6.9 m (ZK2 verification value 6.7 m, error 3.0%). The characteristic of deeper bedrock to the south and shallower to the north is highly consistent with the terrain and drilling data (RMSE = 1.053). This algorithm provides reliable technical support for precise detection of complex geological structures using ERT. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

28 pages, 146959 KB  
Article
An Integrated Remote Sensing and Near-Surface Geophysical Approach to Detect and Characterize Active and Capable Faults in the Urban Area of Florence (Italy)
by Luigi Piccardi, Antonello D’Alessandro, Eutizio Vittori, Vittorio D’Intinosante and Massimo Baglione
Remote Sens. 2025, 17(15), 2644; https://doi.org/10.3390/rs17152644 - 30 Jul 2025
Viewed by 499
Abstract
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of [...] Read more.
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of its recent tectonic structures, unlike those of nearby basins that have produced Mw > 6 events. This study focuses on the southeastern sector of the basin, including the urban area of Florence, using tectonic geomorphology derived from remote sensing, in particular LiDAR data, field verification, and high-resolution geophysical surveys such as electrical resistivity tomography and seismic reflection profiles. The integration of these techniques enabled interpretation of the subdued and anthropogenically masked tectonic structures, allowing the identification of Holocene activity and significant, although limited, surface vertical offset for three NE–SW-striking normal faults, the Peretola, Scandicci, and Maiano faults. The Scandicci and Maiano faults appear to segment the southeasternmost strand of the master fault of the FPB, the Fiesole Fault, which now shows activity only along isolated segments and cannot be considered a continuous active fault. From empirical relationships, the Scandicci Fault, the most relevant among the three active faults, ~9 km long within the basin and with an approximate Late Quaternary slip rate of ~0.2 mm/year, might source Mw > 5.5 earthquakes. These findings highlight the need to reassess the local seismic hazard for more informed urban planning and for better preservation of the cultural and architectural heritage of Florence and the other artistic towns located in the FPB. Full article
Show Figures

Figure 1

19 pages, 3099 KB  
Article
Optimizing Geophysical Inversion: Versatile Regularization and Prior Integration Strategies for Electrical and Seismic Tomographic Data
by Guido Penta de Peppo, Michele Cercato and Giorgio De Donno
Geosciences 2025, 15(7), 274; https://doi.org/10.3390/geosciences15070274 - 20 Jul 2025
Viewed by 577
Abstract
The increasing demand for high-resolution subsurface imaging has driven significant advances in geophysical inversion methodologies. Despite the availability of various software packages for electrical resistivity tomography (ERT), time-domain induced polarization (TDIP), and seismic refraction tomography (SRT), significant challenges remain in selecting optimal regularization [...] Read more.
The increasing demand for high-resolution subsurface imaging has driven significant advances in geophysical inversion methodologies. Despite the availability of various software packages for electrical resistivity tomography (ERT), time-domain induced polarization (TDIP), and seismic refraction tomography (SRT), significant challenges remain in selecting optimal regularization parameters and in the effective incorporation of prior information into the inversion process. In this study, we propose new strategies to address these critical issues by developing versatile and flexible tools for electrical and seismic tomographic data inversion. Specifically, we introduce two automated procedures for regularization parameter selection: a full loop method (fixed-λ optimization) where the regularization parameter is kept constant during the inversion process, and a single-inversion approach (automaticLam) where it varies throughout the iterations. Additionally, we present a novel constrained inversion strategy that effectively balances prior information, minimizes data misfit, and promotes model smoothness. This approach is thoroughly compared with the state-of-the-art methods, demonstrating its superiority in maintaining model reliability and reducing dependence on subjective operator choices. Applications to synthetic, laboratory, and real-world case studies validate the efficacy of our strategies, showcasing their potential to enhance the robustness of geophysical models and standardize the inversion process, ensuring its independence from operator decisions. Full article
(This article belongs to the Special Issue Geophysical Inversion)
Show Figures

Figure 1

19 pages, 13404 KB  
Article
A New Bronze Age Productive Site on the Margin of the Venice Lagoon: Preliminary Data and Considerations
by Cecilia Rossi, Rita Deiana, Gaia Alessandra Garosi, Alessandro de Leo, Stefano Di Stefano, Sandra Primon, Luca Peruzzo, Ilaria Barone, Samuele Rampin, Pietro Maniero and Paolo Mozzi
Land 2025, 14(7), 1452; https://doi.org/10.3390/land14071452 - 11 Jul 2025
Viewed by 593
Abstract
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology [...] Read more.
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology planned during some water restoration works in the Giare–Mira area. Three small excavations revealed, approximately one meter below the current surface and covered by alluvial sediments, a rather complex palimpsest dated to the late Recent and the early Final Bronze Age. Three large circular pits containing exclusively purified grey/blue clay and very rare inclusions of vegetable fibres, and many large, fired clay vessels’ bases, walls and rims clustered in concentrated assemblages and random deposits point to potential on-site production. Two pyro-technological structures, one characterised by a sub-circular combustion chamber and a long inlet channel/praefurnium, and the second one with a sub-rectangular shape with arched niches along its southern side, complete the exceptional context here discovered. To analyse the relationship between the site and the natural sedimentary succession and to evaluate the possible extension of this site, three electrical resistivity tomography (ERT) and low-frequency electromagnetic (FDEM) measurements were collected. Several manual core drillings associated with remote sensing integrated the geophysical data in the analysis of the geomorphological evolution of this area, clearly related to different phases of fluvial activity, in a framework of continuous relative sea level rise. The typology and chronology of the archaeological structures and materials, currently undergoing further analyses, support the interpretation of the site as a late Recent/early Final Bronze Age productive site. Geophysical and geomorphological data provide information on the palaeoenvironmental setting, suggesting that the site was located on a fine-grained, stable alluvial plain at a distance of a few kilometres from the lagoon shore to the south-east and the course of the Brenta River to the north. The archaeological site was buried by fine-grained floodplain deposits attributed to the Brenta River. The good preservation of the archaeological structures buried by fluvial sediments suggests that the site was abandoned soon before sedimentation started. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

26 pages, 4761 KB  
Article
Effect of Use of Alkaline Waste Materials as a CO2 Sink on the Physical and Mechanical Performance of Eco-Blended Cement Mortars—Comparative Study
by Ana María Moreno de los Reyes, María Victoria Paredes, Ana Guerrero, Iñigo Vegas-Ramiro, Milica Vidak Vasić and Moisés Frías
Materials 2025, 18(14), 3238; https://doi.org/10.3390/ma18143238 - 9 Jul 2025
Viewed by 435
Abstract
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline [...] Read more.
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline waste materials (white ladle furnace slag, biomass ash, and fine concrete waste fraction) that had been previously carbonated in a static reactor at predefined humidity and CO2 concentration. The mortars’ physical (total/capillary water absorption, electrical resistivity) and mechanical properties (compressive strength up to 90 d of curing) were analyzed, and their microstructures were examined using mercury intrusion porosimetry and computed tomography. The results reveal that carbonated waste materials generate a greater heat of hydration and have a lower total and capillary water absorption capacity, while the electrical resistivity and compressive strength tests generally indicate that they behave similarly to mortars not containing carbonated minerals. Mercury intrusion porosimetry (microporosity) indicates an increase in total porosity, with no clear refinement versus non-carbonated materials, while computed tomography (macroporosity) reveals a refinement of the pore structure with a significant reduction in the number of larger pores (>0.09 mm3) and intermediate pores (0.001–0.09 mm3) when carbonated residues are incorporated that varies depending on waste material. The construction and demolition waste (CCDW-C) introduced the best physical and mechanical behavior. These studies confirm the possibility of recycling carbonated waste materials as low-carbon supplementary cementitious materials (SCMs). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 7369 KB  
Article
Freezing Behavior of Clayey Sand and Spatiotemporal Evolution of Seasonally Frozen Soil Distribution in the Qinghai–Tibet Plateau
by Yunlei Xu, Haiyan Yang, Jianhua Yue, He Wei, Rongqi Che, Qibao Duan, Shulong Zhou and Meng Sun
Appl. Sci. 2025, 15(13), 7498; https://doi.org/10.3390/app15137498 - 3 Jul 2025
Viewed by 402
Abstract
Seasonally frozen soils are widely distributed across the Qinghai–Tibet Plateau and play a crucial role in regional hydrological processes, ecosystem stability, and infrastructure development. In this study, a custom-designed freeze–thaw apparatus was employed to investigate the freezing behavior of clayey sand with varying [...] Read more.
Seasonally frozen soils are widely distributed across the Qinghai–Tibet Plateau and play a crucial role in regional hydrological processes, ecosystem stability, and infrastructure development. In this study, a custom-designed freeze–thaw apparatus was employed to investigate the freezing behavior of clayey sand with varying initial volumetric water contents. The relationship between electrical resistivity and unfrozen water content was examined through laboratory tests, while six-month resistivity monitoring tests were conducted in a representative frozen soil region of the plateau. The results show that the freezing points for samples with initial volumetric water contents of 30%, 18.5%, and 10% were −2.34 °C, −4.69 °C, and −6.48 °C, respectively, whereas the thawing temperature remained approximately −4 °C across all cases. A strong inverse correlation between resistivity and unfrozen water content was observed during the freezing process. Moreover, the resistivity exhibited a typical U-shaped trend with increasing initial water content, with a minimum level observed at 6~10%. Field resistivity profiles demonstrated limited variation between July and September, while in December, a pronounced thickening of the transition zone and an upward shift in the high-resistivity layer were evident. These findings enhance the understanding of the freeze–thaw mechanisms and the spatiotemporal evolution of frozen soils in high-altitude environments. Full article
Show Figures

Figure 1

16 pages, 1877 KB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 973
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

Back to TopTop