Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (223)

Search Parameters:
Keywords = FKBP51

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9866 KB  
Article
Dysferlin Protein–Protein Interaction Pathways in the Organ of Corti and Spiral Ganglion Intersect with Alzheimer’s Protein Pathways
by Marian J. Drescher, Dennis G. Drescher, Khalid M. Khan, James S. Hatfield and Darshi Hemani
Int. J. Mol. Sci. 2025, 26(19), 9559; https://doi.org/10.3390/ijms26199559 - 30 Sep 2025
Viewed by 242
Abstract
Dysferlin direct protein–protein interactions (PPI) previously have been elucidated with surface plasmon resonance (SPR) and predicted to underlie membrane repair in mechanotransducing myofibrils. In mechanotransducing inner ear hair cells, dysferlin is detected with Z-stack confocal immunofluorescence in the stereocilia and their inserts in [...] Read more.
Dysferlin direct protein–protein interactions (PPI) previously have been elucidated with surface plasmon resonance (SPR) and predicted to underlie membrane repair in mechanotransducing myofibrils. In mechanotransducing inner ear hair cells, dysferlin is detected with Z-stack confocal immunofluorescence in the stereocilia and their inserts in the tectorial membrane (TM) co-localizing with FKBP8, consistent with the SPR determination of tight, positively Ca2+-dependent interaction. FKBP8, a direct binding partner of mechanotransducing TMC1, when overexpressed, evokes an elevation in anti-apoptotic BCL2, inhibition of ryanodine receptor (RYR) activity, and a consequent reduction in Ca2+ release. RYR3 has now been immunolocalized to the tip of the TM in close association with a third-row outer hair cell (OHC) stereociliary BCL2-positive insertion. Dysferlin, annexin A2, and Alzheimer’s proteins BACE1 and amyloid precursor protein (APP) are also accumulated in these stereociliary insertions. RYR2 and RYR1 have been immunolocalized to the TM core, in position to influence TM Ca2+. Dysferlin PPI pathways also intersect with AD protein pathways in the spiral ganglion (SG). Dysferlin segregates with FKBP8, BACE1, and RYR3 in the interiors of SG type I cell bodies. RYR1, RYR2, PSEN1, BCL2, and caspase 3 are primarily confined to plasma membrane sites. RYR3 pathways traverse the plasma membrane to the cell body interior. Western analysis of dysferlinopathy proteins links FKBP8 and BCL2 overexpression with RYR inhibition, indicative of dysferlin targets that are ameliorative in AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

18 pages, 4971 KB  
Article
Identification of Pyroptosis-Related Genes and Immune Landscape in Myocardial Ischemia–Reperfusion Injury
by Yanfang Zhu, Haoyan Zhu, Jia Zhou, Jiahe Wu, Xiaorong Hu, Chenze Li, Huanhuan Cai and Zhibing Lu
Biomedicines 2025, 13(9), 2114; https://doi.org/10.3390/biomedicines13092114 - 29 Aug 2025
Viewed by 507
Abstract
Background: Cardiomyocyte death is a key factor in myocardial ischemia–reperfusion injury (MI/RI), and the expression patterns and molecular mechanisms of pyroptosis-related genes (PRGs) in ischemia–reperfusion injury are poorly understood. Methods: The mouse MI/RI injury-related datasets GSE61592 and GSE160516 were obtained from [...] Read more.
Background: Cardiomyocyte death is a key factor in myocardial ischemia–reperfusion injury (MI/RI), and the expression patterns and molecular mechanisms of pyroptosis-related genes (PRGs) in ischemia–reperfusion injury are poorly understood. Methods: The mouse MI/RI injury-related datasets GSE61592 and GSE160516 were obtained from the Gene Expression Omnibus database, and differential expression analysis was performed on each to identify differentially expressed genes (DEGs). The DEGs were intersected with the PRGs obtained from GeneCards to identify differentially expressed PRGs in MI/RI. Enrichment analysis identified key pathways, while PPI network analysis revealed hub genes. The expression patterns and immune cell infiltration of hub genes were also investigated. The molecular docking prediction of key genes was performed using MOE software in conjunction with the ZINC small molecular compounds database. Key gene expression was validated in an external dataset (GSE4105), a mouse MI/RI model, and an HL-1 cell hypoxia/reoxygenation model via RT-qPCR. Results: A total of 29 differentially expressed PRGs were identified, which are primarily associated with pathways such as “immune system process”, “response to stress”, “identical protein binding”, and “extracellular region”. Seven key genes (Fkbp10, Apoe, Col1a2, Ppic, Tlr2, Fstl1, Serpinh1) were screened, all strongly correlated with immune infiltration. Seven FDA-approved small molecule compounds exhibiting the highest docking potential with each key gene were selected based on a comprehensive evaluation of S-scores and hydrogen bond binding energies. Apoe, Tlr2, and Serpinh1 were successfully validated across external datasets, the mouse MI/RI model, and the cardiomyocyte H/R model. Conclusions: Apoe, Tlr2, and Serpinh1 may be key genes involved in MI/RI-related pyroptosis. Targeting these genes may provide new insights into the treatment of MI/RI. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnosis, and Treatment of Cardiomyopathy)
Show Figures

Figure 1

13 pages, 1802 KB  
Article
NR3C1/GLMN-Mediated FKBP12.6 Ubiquitination Disrupts Calcium Homeostasis and Impairs Mitochondrial Quality Control in Stress-Induced Myocardial Damage
by Jingze Cong, Lihui Liu, Rui Shi, Mengting He, Yuchuan An, Xiaowei Feng, Xiaoyu Yin, Yingmin Li, Bin Cong and Weibo Shi
Int. J. Mol. Sci. 2025, 26(17), 8245; https://doi.org/10.3390/ijms26178245 - 25 Aug 2025
Viewed by 853
Abstract
Excessive stress disrupts cardiac homeostasis via complex and multifactorial mechanisms, resulting in cardiac dysfunction, cardiovascular disease, or even sudden cardiac death, yet the underlying molecular mechanisms remain poorly understood. Accordingly, we aimed to elucidate how stress induces calcium dysregulation and contributes to cardiac [...] Read more.
Excessive stress disrupts cardiac homeostasis via complex and multifactorial mechanisms, resulting in cardiac dysfunction, cardiovascular disease, or even sudden cardiac death, yet the underlying molecular mechanisms remain poorly understood. Accordingly, we aimed to elucidate how stress induces calcium dysregulation and contributes to cardiac dysfunction and injury through the nuclear receptor subfamily 3 group c member 1 (NR3C1)/Glomulin (GLMN)/FK506-binding protein 12.6 (FKBP12.6) signaling pathway. Using mouse models of acute and chronic restraint stress, we observed that stress-exposed mice exhibited reduced left ventricular ejection fraction, ventricular wall thickening, elevated serum and myocardial cTnI levels, along with pathological features of myocardial ischemia and hypoxia, through morphological, functional, and hormonal assessments. Using transmission electron microscopy and Western blotting, we found that stress disrupted mitochondrial quality control in cardiomyocytes, evidenced by progressive mitochondrial swelling, cristae rupture, decreased expression of fusion proteins (MFN1/OPA1) and biogenesis regulator PGC-1α, along with aberrant accumulation of fission protein (FIS1) and autophagy marker LC3. At the cellular level, ChIP-qPCR and siRNA knockdown confirmed that stress activates the glucocorticoid receptor NR3C1 to repress its downstream target GLMN, thereby preventing FKBP12.6 ubiquitination and degradation, resulting in calcium leakage and overload, which ultimately impairs mitochondrial quality control and damages cardiomyocytes. In conclusion, our findings reveal that stress induces myocardial damage through NR3C1/GLMN-mediated FKBP12.6 ubiquitination, disrupting calcium homeostasis and mitochondrial quality control, and lay a theoretical foundation for dissecting the intricate molecular network of stress-induced cardiomyopathy. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

22 pages, 3101 KB  
Article
The Influence of Genetic Polymorphisms and Psychosocial Determinants on Suicidal Behaviors: A Case–Control Study of CRHR1, NTRK2, and FKBP5
by Mihaela Elvira Cîmpianu, Emilian Onișan, Viviana Maria Sărac, Ioan Sărac, Mariana Ganea, Gligor Octavia, Ștefana Bâlici, Gheorghe Zsolt Nicula, Elena Maria Domșa, Teodora Cîmpianu, Sergiu Ionica Rusu, Horia George Coman, Mihaela Laura Vică Matei and Costel Vasile Siserman
Int. J. Mol. Sci. 2025, 26(16), 8053; https://doi.org/10.3390/ijms26168053 - 20 Aug 2025
Viewed by 519
Abstract
Suicide, a major contributor to global mortality rates, especially among young patients, remains insufficiently integrated into public health initiatives despite notable progress in identifying its determinants. The prediction of suicidal behavior remains complex, often relying on subjective assessments rather than objective biomarkers. Single [...] Read more.
Suicide, a major contributor to global mortality rates, especially among young patients, remains insufficiently integrated into public health initiatives despite notable progress in identifying its determinants. The prediction of suicidal behavior remains complex, often relying on subjective assessments rather than objective biomarkers. Single nucleotide polymorphisms (SNPs) such as rs110402 (CRHR1 gene), rs3800373 (FKBP5 gene), and rs2289656 (NTRK2 gene) have been linked to physiological mechanisms involving stress response and activation of the hypothalamic–pituitary–adrenal (HPA) axis, which contributes to anxiety and stress regulation. This study aimed to assess stress-related gene polymorphisms in individuals with suicidal behavior compared to controls. According to our results, the presence of the A allele of rs2289656 was associated with a protective effect, while the GG genotype conferred a higher susceptibility to suicidal behaviors. Significant associations were observed between trauma and abuse history and the rs110402 polymorphism in CRHR1 gene, highlighting a protective role for the GG genotype and increased predisposition to stress-related psychiatric conditions and suicidal behavior for A allele carriers. No valid associations were found for rs3800373 in the FKBP5 gene, although suggestive trends related to depression and self-aggression were noted. Our findings underscore the need to identify reliable biomarkers associated with suicide risk, highlighting the importance of integrating hereditary and psychosocial data to better understand the underlying mechanisms and to support the development of effective early interventions. Full article
(This article belongs to the Special Issue Biological Barriers: Consciousness and Mental Illness)
Show Figures

Figure 1

24 pages, 3191 KB  
Article
Combining QCM and SERS on a Nanophotonic Chip: A Dual-Functional Sensor for Biomolecular Interaction Analysis and Protein Fingerprinting
by Cosimo Bartolini, Martina Tozzetti, Cristina Gellini, Marilena Ricci, Stefano Menichetti, Piero Procacci and Gabriella Caminati
Nanomaterials 2025, 15(16), 1230; https://doi.org/10.3390/nano15161230 - 12 Aug 2025
Viewed by 511
Abstract
We present a dual biosensing strategy integrating Quartz Crystal Microbalance (QCM) and Surface-Enhanced Raman Spectroscopy (SERS) for the quantitative and molecular-specific detection of FKBP12. Silver nanodendritic arrays were electrodeposited onto QCM sensors, optimized for SERS enhancement using Rhodamine 6G, and functionalized with a [...] Read more.
We present a dual biosensing strategy integrating Quartz Crystal Microbalance (QCM) and Surface-Enhanced Raman Spectroscopy (SERS) for the quantitative and molecular-specific detection of FKBP12. Silver nanodendritic arrays were electrodeposited onto QCM sensors, optimized for SERS enhancement using Rhodamine 6G, and functionalized with a custom-designed receptor to selectively capture FKBP12. QCM measurements revealed a two-step Langmuir adsorption behavior, enabling sensitive mass quantification with a low limit of detection. Concurrently, in situ SERS analysis on the same sensor provided vibrational fingerprints of FKBP12, resolved through comparative studies of the free protein, surface-bound receptor, and surface-bound receptor–protein complex. Ethanol-induced denaturation confirmed protein-specific peaks, while shifts in receptor vibrational modes—linked to FKBP12 binding—demonstrated dynamic molecular interactions. A ratiometric parameter, derived from key peak intensities, served as a robust, concentration-dependent signature of complex formation. This platform bridges quantitative (QCM) and structural (SERS) biosensing, offering real-time mass tracking and conformational insights. The nanodendritic substrate’s dual functionality, combined with the receptor’s selectivity, advances label-free protein detection for applications in drug diagnostics, with potential adaptability to other target analytes. Full article
Show Figures

Graphical abstract

20 pages, 8071 KB  
Article
Analysis of the Differences Among Camellia oleifera Grafting Combinations in Its Healing Process
by Zhilong He, Ying Zhang, Chengfeng Xun, Zhen Zhang, Yushen Ma, Xin Wei, Zhentao Wan and Rui Wang
Plants 2025, 14(15), 2432; https://doi.org/10.3390/plants14152432 - 6 Aug 2025
Viewed by 418
Abstract
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the [...] Read more.
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the scion, assessing growth traits and conducting physiological assays (enzymatic activities of SOD and POD and levels of ROS and IAA) at multiple timepoints (0–32 days post-grafting). The results demonstrated that Comb. 4 (Xianglin 27 rootstock) exhibited superior compatibility, characterized by systemic antioxidant activation (peaking at 4–8 DPG), rapid auxin accumulation (4 DPG), and efficient sugar allocation. Transcriptome sequencing and WGCNA analysis identified 3781 differentially expressed genes, with notable enrichment in stress response pathways (Hsp70, DnaJ) and auxin biosynthesis (YUCCA), while also revealing key hub genes (FKBP19) associated with graft-healing efficiency. These findings establish that successful grafting in C. oleifera depends on coordinated rapid redox regulation, auxin-mediated cell proliferation, and metabolic reprogramming, with Comb. 4 emerging as the optimal rootstock choice. The identified molecular markers not only advance our understanding of grafting mechanisms in woody plants but also provide valuable targets for future breeding programs aimed at improving grafting success rates in this important oil crop. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

16 pages, 5410 KB  
Article
Targeted DNA Methylation Using Modified DNA Probes: A Potential Therapeutic Tool for Depression and Stress-Related Disorders
by Nishtaa Modi, Jeffrey Guo, Ryan A. Lee, Alisha Greenstein and Richard S. Lee
Int. J. Mol. Sci. 2025, 26(12), 5643; https://doi.org/10.3390/ijms26125643 - 12 Jun 2025
Viewed by 1398
Abstract
Epigenetic modifications play a crucial role in gene regulation and have been implicated in various physiological processes and disease conditions. DNA methylation (DNAm) has been implicated in the etiology and progression of many stress-related psychiatric behaviors, such as depression. The ability to manipulate [...] Read more.
Epigenetic modifications play a crucial role in gene regulation and have been implicated in various physiological processes and disease conditions. DNA methylation (DNAm) has been implicated in the etiology and progression of many stress-related psychiatric behaviors, such as depression. The ability to manipulate DNAm may provide a means to reverse and treat such disorders. Although CRISPR-based technologies have enabled locus-specific DNAm editing, their clinical applicability may be limited due to immunogenicity concerns and off-target effects. In this study, we introduce a novel approach for targeted DNAm manipulation using single-stranded methylated DNA probes. The probes were designed against the GRE of FKBP5 and the promoter region of MAOA. In both human embryonic kidney HEK293 and mouse pituitary AtT-20 cells, transfection with their respective methylated probes significantly increased DNAm at targeted CpG sites in a persistent and dose-dependent manner. Importantly, the induced methylation effectively attenuated glucocorticoid-induced upregulation of FKBP5 gene expression. Alteration of methylation was specific to single-stranded probes, as double-stranded methylated probes and unmethylated probes showed no significant effects. Some limitations include the need to further characterize factors that influence probe efficiency, such as probe length and CpG density; develop an efficient in vivo probe delivery system; and perform a more extensive consideration of possible off-target effects. Despite these limitations, our findings suggest that methylated DNA probes have the potential to function as a simple tool for targeted epigenetic manipulation and serve as a safer alternative to CRISPR-based epigenome editing tools for the treatment of stress-related disorders such as depression. Full article
(This article belongs to the Special Issue Depression: From Molecular Basis to Therapy—2nd Edition)
Show Figures

Figure 1

26 pages, 433 KB  
Review
Hyperarousal, Dissociation, Emotion Dysregulation and Re-Experiencing—Towards Understanding Molecular Aspects of PTSD Symptoms
by Aleksandra Brzozowska and Jakub Grabowski
Int. J. Mol. Sci. 2025, 26(11), 5216; https://doi.org/10.3390/ijms26115216 - 29 May 2025
Viewed by 3574
Abstract
Approximately 70% of people will experience a traumatic event in their lifetime, but post-traumatic stress disorder (PTSD) will only develop in 3.9% and complex post-traumatic stress disorder (CPTSD) in 1–8% of the population worldwide, although in some countries (e.g., Poland and Northern Ireland) [...] Read more.
Approximately 70% of people will experience a traumatic event in their lifetime, but post-traumatic stress disorder (PTSD) will only develop in 3.9% and complex post-traumatic stress disorder (CPTSD) in 1–8% of the population worldwide, although in some countries (e.g., Poland and Northern Ireland) it will develop in a much higher percentage. Stress-related disorders have a complex pathogenesis involving neurophysiological, genetic, epigenetic, neuroendocrine and environmental factors. This article reviews the current state of knowledge on the molecular aspects of selected PTSD symptoms: hypervigilance, re-experiencing, emotion dysregulation and dissociation, i.e., the symptoms with strong neurobiological components. Among analysed susceptibility factors are specific gene polymorphisms (e.g., FKBP5, COMT, CHRNA5, CRHR1, 5-HTTLPR, ADCY8 and DRD2) and their interactions with the environment, changes in the HPA axis, adrenergic hyperactivity and disturbances in the activity of selected anatomical structures (including the amygdala, prefrontal cortex, corpus callosum, anterior cingulate gyrus and hippocampus). It is worth noting that therapeutic methods with proven effectiveness in PTSD (TF-CBT and EMDR) have a substantial neurobiological rationale. Molecular aspects seem crucial when searching for effective screening/diagnostic methods and new potential therapeutic options. Full article
18 pages, 10362 KB  
Article
Genome-Wide Analysis of Tea FK506-Binding Proteins (FKBPs) Reveals That CsFKBP53 Enhances Cold-Stress Tolerance in Transgenic Arabidopsis thaliana
by Ming-Hui Xu, Jie Tang, Cai-Ning Liu, Wan-Qiao Zhang, Qian Li, Fan Yang and Dan-Dan Liu
Int. J. Mol. Sci. 2025, 26(8), 3575; https://doi.org/10.3390/ijms26083575 - 10 Apr 2025
Cited by 1 | Viewed by 704
Abstract
FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily and are involved in a wide range of biological processes including protein folding, hormone signaling, plant growth, and stress responses. However, the FKBPs and their biological functions have not been identified in [...] Read more.
FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily and are involved in a wide range of biological processes including protein folding, hormone signaling, plant growth, and stress responses. However, the FKBPs and their biological functions have not been identified in tea plants. In this study, 21 FKBP genes were identified using the conserved FK506-binding domain (PF00254) in the tea-plant genome. Their phylogeny, classification, structure, motifs, interactors, and expression patterns were analyzed. Comprehensive qRT-PCR analysis revealed distinct expression patterns of CsFKBPs in different tissues and in response to low temperature. Through a comprehensive genome-wide analysis, we characterized the low-temperature expression dynamics of the CsFKBP53 gene family and demonstrated that its overexpression significantly enhances cold tolerance in Arabidopsis. Notably, the transcript levels of CsFKBP53 exhibited pronounced variability across distinct tea (Camellia sinensis) cultivars under cold-stress conditions. These findings not only underscore the functional conservation of FKBP-type immunophilins across plant lineages but also highlight the biotechnological potential of CsFKBP53 as a genetic modulator of low-temperature resilience in crops. By integrating comparative genomics and functional validation, our study establishes a foundation for leveraging conserved stress-response mechanisms to engineer climate-resilient plants. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

12 pages, 1607 KB  
Article
Lithium Treatment Increases FKBP5 Protein but Not mRNA Expression in the Pituitary Gland of Depressive-like Rats
by Mikołaj Kubiak, Wiktoria Majewska, Maria Kachel, Antonina Dola, Weronika Koga, Joanna Nowakowska, Wojciech Langwiński and Aleksandra Szczepankiewicz
Brain Sci. 2025, 15(4), 389; https://doi.org/10.3390/brainsci15040389 - 10 Apr 2025
Viewed by 817
Abstract
Background: Depression is a common psychiatric disorder that may be caused by dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis. The glucocorticoid receptor (GR) plays a significant role in regulating this axis. One negative regulator of GR action, previously associated with depressive behavior, is [...] Read more.
Background: Depression is a common psychiatric disorder that may be caused by dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis. The glucocorticoid receptor (GR) plays a significant role in regulating this axis. One negative regulator of GR action, previously associated with depressive behavior, is the overexpression of FK506-binding protein 5 (FKBP5), which may be regulated by microRNAs, including miR-511-5p. Objectives: In a rat model of depression, we aimed to investigate the expression of Fkbp5 and its regulator, miRNA-511-5p, during short- and long-term lithium treatment in four brain regions: the hypothalamus, hippocampus, pituitary, and frontal cortex. Methods: We used a rat model of depression induced by chronic mild stress (CMS) to assess if short- and long-term lithium treatment (7 and 42 days) influences Fkbp5 expression in the brain. We also assessed the effects of lithium treatment on the blood levels of corticosterone in CMS-exposed rats as compared to control groups. The changes in the expression of Fkbp5 were assessed by qPCR and Western blot. The expression of rno-miR-511-5p was assessed using qPCR. Statistical analysis was conducted in GraphPad Prism 9. Results: We found that long-term lithium treatment increased the expression of the FKBP5 protein in the pituitary gland in the lithium-treated rats compared to the control group. We also observed significant changes in Fkbp5 mRNA levels between CMS-exposed rats compared to the control animals, without significant changes in mRNA levels observed during short- and long-term lithium treatment in any brain region. We found no expression of rno-miR-511-5p in the analyzed brain regions. The corticosterone levels were significantly higher in CMS-exposed rats compared to the control, with no significant changes found between lithium-treated and control rats. Conclusions: FKBP5 protein expression in the brain may be regulated by long-term lithium treatment, thus affecting GR signaling in the rat depression model. Full article
Show Figures

Figure 1

31 pages, 1338 KB  
Review
Epigenetic Echoes: Bridging Nature, Nurture, and Healing Across Generations
by Blerida Banushi, Jemma Collova and Helen Milroy
Int. J. Mol. Sci. 2025, 26(7), 3075; https://doi.org/10.3390/ijms26073075 - 27 Mar 2025
Cited by 4 | Viewed by 9741
Abstract
Trauma can impact individuals within a generation (intragenerational) and future generations (transgenerational) through a complex interplay of biological and environmental factors. This review explores the epigenetic mechanisms that have been correlated with the effects of trauma across generations, including DNA methylation, histone modifications, [...] Read more.
Trauma can impact individuals within a generation (intragenerational) and future generations (transgenerational) through a complex interplay of biological and environmental factors. This review explores the epigenetic mechanisms that have been correlated with the effects of trauma across generations, including DNA methylation, histone modifications, and non-coding RNAs. These mechanisms can regulate the expression of stress-related genes (such as the glucocorticoid receptor (NR3C1) and FK506 binding protein 5 (FKBP5) gene), linking trauma to biological pathways that may affect long-term stress regulation and health outcomes. Although research using model organisms has elucidated potential epigenetic mechanisms underlying the intergenerational effects of trauma, applying these findings to human populations remains challenging due to confounding variables, methodological limitations, and ethical considerations. This complexity is compounded by difficulties in establishing causality and in disentangling epigenetic influences from shared environmental factors. Emerging therapies, such as psychedelic-assisted treatments and mind–body interventions, offer promising avenues to address both the psychological and potential epigenetic aspects of trauma. However, translating these findings into effective interventions will require interdisciplinary methods and culturally sensitive approaches. Enriched environments, cultural reconnection, and psychosocial interventions have shown the potential to mitigate trauma’s impacts within and across generations. By integrating biological, social, and cultural perspectives, this review highlights the critical importance of interdisciplinary frameworks in breaking cycles of trauma, fostering resilience, and advancing comprehensive healing across generations. Full article
Show Figures

Figure 1

32 pages, 7307 KB  
Article
Experimental Conditions to Retrieve Intrinsic Cooperativity α Directly from Single Binding Assay Data Exemplified by the Ternary Complex Formation of FKBP12, MAPRE1 and Macrocyclic Molecular Glues
by Jan Schnatwinkel, Richard R. Stein, Michael Salcius, Julian L. Wong, Shu-Yu Chen, Marianne Fouché and Hans-Joerg Roth
Int. J. Mol. Sci. 2025, 26(7), 2936; https://doi.org/10.3390/ijms26072936 - 24 Mar 2025
Cited by 1 | Viewed by 1275
Abstract
The incorporation of disease-relevant targets into ternary complexes in a compound-dependent manner by utilizing an assisting chaperone has become a common modality as far as bifunctional ternary complex-forming compounds are concerned. In contrast, examples of ternary complexes formed by molecular glues are much [...] Read more.
The incorporation of disease-relevant targets into ternary complexes in a compound-dependent manner by utilizing an assisting chaperone has become a common modality as far as bifunctional ternary complex-forming compounds are concerned. In contrast, examples of ternary complexes formed by molecular glues are much rarer. Due to their lack of significant binary (independent) target affinity, their identification cannot yet be achieved by rational methods and is, therefore, much more challenging. However, it is precisely for that reason (given the associated advantages) that their systematic identification and application in drug discovery has recently attracted particular interest. In contrast to bifunctional ternary complex-forming compounds, molecular glues retrieve a significant part of their thermodynamic stability through newly induced chaperone–target or glue–target interactions that occur only in the ternary complex. These interactions lead to enhanced ligand binding—termed intrinsic cooperativity α—which can be retrieved via the apparent cooperativity either by monitoring ligand binding through the chaperone or through the target protein. In this publication, the advantage of measuring the apparent cooperativity (to determine the cooperativity α) by the weaker binding protein is discussed and illustrated using the example of ternary complexes between FKBP12, MAPRE1 and macrocyclic molecular glues derived from the rapamycin binding motif for FKBP12. Furthermore, the impact of the following three parameters on the apparent cooperativity is illustrated: (1) the concentration of the monitoring protein, (2) the excess of the counter protein, and (3) the affinity of the glue to the weaker binding protein in combination with the degree of intrinsic cooperativity α. From this, experimental conditions to determine the intrinsic cooperativity α with only one binding assay and without the need for a comprehensive mathematical model covering all simultaneous events under non-saturating conditions are highlighted. However, this framework requires a binding assay capable of measuring or at least estimating very weak binary affinities. If this is not possible for experimental reasons, but binding assays for both proteins are available within a normal bandwidth and the affinity to the stronger binding protein is not too high, it is discussed how the binding curve for the weaker binding protein in the presence of an excess of the weaker binding protein can be used to overcome the missing binary Kd for the weakly binding protein. Full article
Show Figures

Figure 1

13 pages, 696 KB  
Review
The rs1360780 Variant of FKBP5: Genetic Variation, Epigenetic Regulation, and Behavioral Phenotypes
by Marcelo Arancibia, Marcia Manterola, Ulises Ríos, Pablo R. Moya, Javier Moran-Kneer and M. Leonor Bustamante
Genes 2025, 16(3), 325; https://doi.org/10.3390/genes16030325 - 11 Mar 2025
Viewed by 3903
Abstract
FKBP5 has been of special scientific interest in the behavioral sciences since it has been involved in the pathophysiology of several mental disorders. It is a gene with pleiotropic effects which encodes the protein FKBP5, a cochaperone that decreases glucocorticoid receptor (GR) affinity [...] Read more.
FKBP5 has been of special scientific interest in the behavioral sciences since it has been involved in the pathophysiology of several mental disorders. It is a gene with pleiotropic effects which encodes the protein FKBP5, a cochaperone that decreases glucocorticoid receptor (GR) affinity for glucocorticoids by competing with FKBP4, altering the GR chaperone complex, and impairing GR activation. As a key modulator of the stress response, FKBP5 plays a critical role in regulating cortisol levels in the organism. The FKBP5 gene is regulated through a combination of transcriptional, epigenetic, post-transcriptional, and environmental mechanisms, as well as genetic polymorphisms that influence its transcription and stress responsiveness. Notably, the rs1360780 T-allele in FKBP5 significantly affects FKBP5 regulation and has been linked to stress-related disorders by influencing transcription and stress responsiveness. In this narrative review, we aim to provide an overview of the role played by the single-nucleotide polymorphism rs1360780 in the FKBP5 locus in gene expression, its epigenetic regulation, and the impact of early stress in its functioning. We discuss some brain regions with differential expression of FKBP5 and some behavioral phenotypes linked to the locus. The T-allele of rs1360780 is considered a risk variant, as it leads to high FKBP5 induction, which delays negative feedback and increases GR resistance. This results in states of relative hypercortisolemia and brain morphofunctional alterations, particularly in regions sensitive to glucocorticoid activity during critical periods of neurodevelopment. Additionally, exposure to childhood maltreatment is associated with demethylation of the glucocorticoid response elements of FKBP5, further increasing its expression levels. Among the psychological dimensions analyzed in which FKBP5 is involved are neurocognition, aggression, suicidality, and social cognition. At the level of mental disorders, the gene may play a role in the pathogenesis of post-traumatic stress disorder, depression, and bipolar disorder. In psychotic disorders, its role is less clear. This knowledge enhances the understanding of disease mechanisms that operate through psychopathological dimensions, and highlights the need to design specific, person-centered psychopharmacological and environmental therapeutic interventions. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

23 pages, 3754 KB  
Article
Depletion of Fkbp5 Protects Against the Rapid Decline in Ovarian Reserve Induced by Prenatal Stress in Female Offspring of Wild-Type Mice
by Monica Moore, Busra Cetinkaya-Un, Papri Sarkar, Umit A. Kayisli, Nihan Semerci-Gunay, Michael Teng, Charles J. Lockwood and Ozlem Guzeloglu-Kayisli
Int. J. Mol. Sci. 2025, 26(6), 2471; https://doi.org/10.3390/ijms26062471 - 10 Mar 2025
Viewed by 1224
Abstract
Prenatal stress (PNS) impairs offspring ovarian development by exerting negative long-term effects on postnatal ovarian function and folliculogenesis. FKBP51 is a stress-responsive protein that inhibits glucocorticoid and progesterone receptors. We hypothesize that FKBP51 contributes to impaired ovarian development and folliculogenesis induced by PNS. [...] Read more.
Prenatal stress (PNS) impairs offspring ovarian development by exerting negative long-term effects on postnatal ovarian function and folliculogenesis. FKBP51 is a stress-responsive protein that inhibits glucocorticoid and progesterone receptors. We hypothesize that FKBP51 contributes to impaired ovarian development and folliculogenesis induced by PNS. Timed-pregnant Fkbp5+/+ (wild-type) and Fkbp5−/− (knockout) mice were randomly assigned to either the undisturbed (nonstress) or PNS group, with exposure to maternal restraint stress from embryonic days 8 to 18. Ovaries from the offspring were harvested and stained, and follicles were counted according to their stages. Ovarian expressions of FKBP51 were evaluated by immunohistochemistry and Fkbp5 and steroidogenic enzymes were evaluated by qPCR. Compared to controls, Fkbp5+/+ PNS offspring had increased peripubertal primordial follicle atresia and fewer total follicles in the adult and middle-aged groups. In adult Fkbp5+/+ offspring, PNS elevated FKBP51 levels in granulosa cells of primary to tertiary follicles. Our results suggest that PNS administration increased FKBP51 levels, depleted the ovarian reserve, and dysregulated ovarian steroid synthesis. However, these PNS effects were tolerated in Fkbp5−/− mice, supporting the conclusion that FKBP51 contributes to reduced ovarian reserve induced by PNS. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 4461 KB  
Article
Identification of Candidate Lung Function-Related Plasma Proteins to Pinpoint Drug Targets for Common Pulmonary Diseases: A Comprehensive Multi-Omics Integration Analysis
by Yansong Zhao, Lujia Shen, Ran Yan, Lu Liu, Ping Guo, Shuai Liu, Yingxuan Chen, Zhongshang Yuan, Weiming Gong and Jiadong Ji
Curr. Issues Mol. Biol. 2025, 47(3), 167; https://doi.org/10.3390/cimb47030167 - 1 Mar 2025
Cited by 1 | Viewed by 1562
Abstract
The genome-wide association studies (GWAS) of lung disease and lung function indices suffer from challenges to be transformed into clinical interventions, due to a lack of knowledge on the molecular mechanism underlying the GWAS associations. A proteome-wide association study (PWAS) was first performed [...] Read more.
The genome-wide association studies (GWAS) of lung disease and lung function indices suffer from challenges to be transformed into clinical interventions, due to a lack of knowledge on the molecular mechanism underlying the GWAS associations. A proteome-wide association study (PWAS) was first performed to identify candidate proteins by integrating two independent largest protein quantitative trait loci datasets of plasma proteins and four large-scale GWAS summary statistics of lung function indices (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC and peak expiratory flow (PEF)), followed by enrichment analysis to reveal the underlying biological processes and pathways. Then, with a discovery dataset, we conducted Mendelian randomization (MR) and Bayesian colocalization analyses to select potentially causal proteins, followed by a replicated MR analysis with an independent dataset. Mediation analysis was also performed to explore the possible mediating role of these indices on the association between proteins and two common lung diseases (chronic obstructive pulmonary disease, COPD and Asthma). We finally prioritized the potential drug targets. A total of 210 protein–lung function index associations were identified by PWAS, and were significantly enriched in the pulmonary fibrosis and lung tissue repair. Subsequent MR and colocalization analysis identified 59 causal protein-index pairs, among which 42 pairs were replicated. Further mediation analysis identified 3 potential pathways from proteins to COPD or asthma mediated by FEV1/FVC. The mediated proportion ranges from 68.4% to 82.7%. Notably, 24 proteins were reported as druggable targets in Drug Gene Interaction Database, among which 8 were reported to interact with drugs, including FKBP4, GM2A, COL6A3, MAPK3, SERPING1, XPNPEP1, DNER, and FER. Our study identified the crucial plasma proteins causally associated with lung functions and highlighted potential mediating mechanism underlying the effect of proteins on common lung diseases. These findings may have an important insight into pathogenesis and possible future therapies of lung disorders. Full article
(This article belongs to the Special Issue Predicting Drug Targets Using Bioinformatics Methods)
Show Figures

Figure 1

Back to TopTop