Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,375)

Search Parameters:
Keywords = Fe3+/Co2+/Ni2+

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2494 KB  
Article
Martensitic Transformation Induced by B2 Phase Precipitation in an Fe-20 Ni-4.5 Al-1.0 C Alloy Steel Following Solution Treatment and Subsequent Isothermal Holding
by Rosemary Chemeli Korir, Yen-Ting Huang and Wei-Chun Cheng
Metals 2025, 15(10), 1135; https://doi.org/10.3390/met15101135 - 12 Oct 2025
Abstract
Phase transformations significantly influence the mechanical properties of Fe-based alloys, making their understanding essential for the design of high-performance alloy materials. This study investigates microstructural evolution and martensitic transformations induced by B2 phase precipitation in an Fe-20Ni-4.5Al-1.0C (wt.%) alloy. The alloy was solution-treated [...] Read more.
Phase transformations significantly influence the mechanical properties of Fe-based alloys, making their understanding essential for the design of high-performance alloy materials. This study investigates microstructural evolution and martensitic transformations induced by B2 phase precipitation in an Fe-20Ni-4.5Al-1.0C (wt.%) alloy. The alloy was solution-treated at 1100 °C, followed by isothermal holding between 750 °C and 1000 °C, and water quenching. Microstructural analysis revealed that the as-quenched alloy consisted of a single-phase austenite (γ). Isothermal holding led to the precipitation of a (Ni,Al)-rich B2 phase within the grains and along grain boundaries. An α′-martensitic phase was also observed within γ-grains adjacent to the B2 precipitates in the isothermally held samples. Martensitic transformation is attributed to localized nickel depletion in the matrix surrounding B2, which reduced γ-phase stability and raised the martensite start temperature (Ms), promoting γ-to-α′ transformation during cooling. The co-existence of B2 and α′ phases significantly increased the hardness of the alloy, with a maximum observed at an 850 °C holding temperature. At higher temperatures, coarsening and partial dissolution of B2, as well reduced martensite formation, led to a decline in hardness. These findings highlight the role of B2 precipitation in promoting martensitic transformation and optimizing mechanical properties through controlled heat treatment. Full article
Show Figures

Figure 1

22 pages, 3343 KB  
Article
Experimental Investigation of Nickel-Based Co-Catalysts for Photoelectrochemical Water Splitting Using Hematite and Cupric Oxide Nanostructured Electrodes
by Maria Aurora Mancuso, Rossana Giaquinta, Carmine Arnese, Patrizia Frontera, Anastasia Macario, Angela Malara and Stefano Trocino
Nanomaterials 2025, 15(20), 1551; https://doi.org/10.3390/nano15201551 - 11 Oct 2025
Viewed by 23
Abstract
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series [...] Read more.
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series of nickel-based co-catalysts can improve photoelectrochemical activity. Photoanodic (NiOx, NiFeOx, NiWO4) and photocathodic (Ni, NiCu, NiMo) co-catalysts were synthesized via co-precipitation and mechanochemical methods and characterized through X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Transmission Electron Microscopy–Energy Dispersive X-ray Spectroscopy (TEM-EDX), Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) gas-adsorption analyses to clarify their crystallographic, morphological, and compositional properties, as well as their surface chemistry and textural properties (surface area and porosity). Electrochemical tests under 1 SUN illumination showed that NiOx significantly improves the photocurrent of hematite photoanodes. Among the cathodic co-catalysts, NiMo demonstrated the best performance when combined with CuO photocathodes. For both photoelectrodes, an optimal co-catalyst loading was identified, beyond which performance declined due to potential charge transfer limitations and light attenuation. These findings highlight the critical role of co-catalyst composition and loading in optimizing the efficiency of PEC systems based on earth-abundant materials, offering a pathway toward scalable and cost-effective hydrogen production. Full article
(This article belongs to the Special Issue Hydrogen Production and Evolution Based on Nanocatalysts)
Show Figures

Graphical abstract

14 pages, 21454 KB  
Article
Microstructure and Mechanical Properties of Y-Doped AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Fabricated by PBF-LB/M
by Gang Wang, Xiangyu Xu, Runbo Zhang, Ren Yuan and Xuteng Lv
Metals 2025, 15(10), 1130; https://doi.org/10.3390/met15101130 - 11 Oct 2025
Viewed by 35
Abstract
A Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy was fabricated via powder bed fusion-laser melting/metal (PBF-LB/M), and the effects of the rare-earth element Y on its microstructure and mechanical properties were investigated. The results indicate that Y addition preserves the fine eutectic microstructure inherent [...] Read more.
A Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy was fabricated via powder bed fusion-laser melting/metal (PBF-LB/M), and the effects of the rare-earth element Y on its microstructure and mechanical properties were investigated. The results indicate that Y addition preserves the fine eutectic microstructure inherent to the PBF-LB/M process, while inducing lattice distortion within the face-centered cubic (FCC) matrix and promoting grain refinement. During solidification, Y facilitates heterogeneous nucleation and, due to its strong affinity with Al, increases both the volume fraction of the body-centered cubic (BCC) phase and the proportion of high-angle grain boundaries. X-ray diffraction (XRD) analysis further confirms that Y suppresses the formation of the ordered B2 phase. Tensile testing reveals that Y doping improves the tensile strength from 1383 MPa to 1475 MPa and enhances the elongation from 13.0% to 16.3%. Fractography shows a transition from quasi-cleavage to ductile fracture mode, indicating that Y significantly enhances the strength–ductility synergy of the alloy. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

21 pages, 2871 KB  
Article
Assessment of Microplastic and Heavy Metal Contamination in Durban Harbour Sediments: Ecological Implications for Grandidierella lignorum
by Refilwe Precious Mofokeng and David Glassom
Microplastics 2025, 4(4), 74; https://doi.org/10.3390/microplastics4040074 (registering DOI) - 11 Oct 2025
Viewed by 65
Abstract
This study investigated how metal concentrations and microplastic abundance co-vary temporally and spatially in sediments in Durban Harbour, South Africa. The effects of sediment contamination on the amphipod Grandidierella lignorum was additionally investigated. Sediments from five sites in the harbour, namely Little Lagoon [...] Read more.
This study investigated how metal concentrations and microplastic abundance co-vary temporally and spatially in sediments in Durban Harbour, South Africa. The effects of sediment contamination on the amphipod Grandidierella lignorum was additionally investigated. Sediments from five sites in the harbour, namely Little Lagoon (LL), Yacht Bank (YB), Marina Bank (MB), Western Bank (WB), and Central Bank (CB), were analysed for metals using ICP-OES, and microplastic particles were counted. Sediment metal concentrations varied across sites and seasons, with Al and Fe dominating. Elevated levels of Cu, Zn, and Pb were observed, particularly in areas with high industrial activity, suggesting point-source contamination. Trace concentrations of As, Cd, and Ni were found and these metals were excluded from further analysis. Abundance ranged from 0.2 to 2.5 particles per gram dry weight, and differed significantly among sites (p < 0.01) with the highest concentrations in LL and YB. Amphipod survival rates following exposure to sediment did not significantly differ among sites but correlated moderately with microplastic abundance (p > 0.05, R2 = 0.57). Tissue analysis revealed selective metal accumulation, following the trend Al > Fe > Zn > Cu > Cr, with Mn, As, and Pb undetected. These results highlight the spatial heterogeneity of sediment contamination in Durban Harbour and demonstrate the bioaccumulation potential and ability to regulate metals in G. lignorum, particularly for essential metals like Fe and Zn. Despite no clear evidence linking microplastics to metal concentrations, the findings highlight the complex interactions between contaminants and their potential ecological impact. Full article
Show Figures

Figure 1

11 pages, 1301 KB  
Article
Artificial Neural Network Approach for Hardness Prediction in High-Entropy Alloys
by Makachi Nchekwube, A. K. Maurya, Dukhyun Chung, Seongmin Chang and Youngsang Na
Materials 2025, 18(20), 4655; https://doi.org/10.3390/ma18204655 - 10 Oct 2025
Viewed by 235
Abstract
High-entropy alloys (HEAs) are highly concentrated, multicomponent alloys that have received significant attention due to their superior properties compared to conventional alloys. The mechanical properties and hardness are interrelated, and it is widely known that the hardness of HEAs depends on the principal [...] Read more.
High-entropy alloys (HEAs) are highly concentrated, multicomponent alloys that have received significant attention due to their superior properties compared to conventional alloys. The mechanical properties and hardness are interrelated, and it is widely known that the hardness of HEAs depends on the principal alloying elements and their composition. Therefore, the desired hardness prediction to develop new HEAs is more interesting. However, the relationship of these compositions with the HEA hardness is very complex and nonlinear. In this study, we develop an artificial neural network (ANN) model using experimental data sets (535). The compositional elements—Al, Co, Cr, Cu, Mn, Ni, Fe, W, Mo, and Ti—are considered input parameters, and hardness is considered as an output parameter. The developed model shows excellent correlation coefficients (Adj R2) of 99.84% and 99.3% for training and testing data sets, respectively. We developed a user-friendly graphical interface for the model. The developed model was used to understand the effect of alloying elements on hardness. It was identified that the Al, Cr, and Mn were found to significantly enhance hardness by promoting the formation and stabilization of BCC and B2 phases, which are inherently harder due to limited active slip systems. In contrast, elements such as Co, Cu, Fe, and Ni led to a reduction in hardness, primarily due to their role in stabilizing the ductile FCC phase. The addition of W markedly increased the hardness by inducing severe lattice distortion and promoting the formation of hard intermetallic compounds. Full article
(This article belongs to the Special Issue Machine Learning for Materials Design)
Show Figures

Figure 1

13 pages, 1795 KB  
Article
Enhanced Wear and Corrosion Resistance of AlCoCrFeNiMoTi High-Entropy Alloy via B Addition by Laser Cladding
by Sansan Ao, Jiaxun Sun, Ziyuan Qi, Youxiang Wei, Hongyu Chen and Yang Li
Materials 2025, 18(20), 4651; https://doi.org/10.3390/ma18204651 - 10 Oct 2025
Viewed by 201
Abstract
To address the synergistic degradation mechanisms in engineering service environments, we propose a boron microalloying strategy to enhance the multifunctional surface performance of AlCoCrFeNiMo-based high-entropy alloys. AlCoCrFeNiMoTiBx coatings (x = 0, 0.5, 1, and 1.5) were fabricated on Q235 steel substrates using laser [...] Read more.
To address the synergistic degradation mechanisms in engineering service environments, we propose a boron microalloying strategy to enhance the multifunctional surface performance of AlCoCrFeNiMo-based high-entropy alloys. AlCoCrFeNiMoTiBx coatings (x = 0, 0.5, 1, and 1.5) were fabricated on Q235 steel substrates using laser cladding. The microstructure of the coatings was characterized using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), while their wear and corrosion resistance were evaluated through tribological and electrochemical tests. The key findings indicate that boron addition preserves the original body-centered cubic (BCC) and σ phases in the coating while promoting the in situ formation of TiB2, leading to lattice distortion. With increasing B content, the BCC phase becomes refined, and both the fraction and size of TiB2 particles increase. Boron incorporation improves the coating’s microhardness and wear resistance, with the highest wear resistance achieved at x = 1, where abrasive and oxidative wear predominate. At lower content (x = 0.5), B enhances the stability of the passive film and thereby improves corrosion resistance. In contrast, excessive formation of large TiB2 particles introduces defects into the passive film, accelerating its degradation. Full article
Show Figures

Figure 1

18 pages, 2227 KB  
Article
Assessment of Heavy Metal Concentrations in Urban Soil of Novi Sad: Correlation Analysis and Leaching Potential
by Ivana Jelić, Dušan Topalović, Maja Rajković, Danica Jovašević, Kristina Pavićević, Marija Janković and Marija Šljivić-Ivanović
Appl. Sci. 2025, 15(19), 10842; https://doi.org/10.3390/app151910842 - 9 Oct 2025
Viewed by 178
Abstract
Soil samples from the urban area of Novi Sad were analyzed to determine the total concentrations of heavy metals including Cr, Pb, Cu, Zn, As, Mn, Ni, Co, Cd and Fe. In addition, leaching tests according to CEN 12457-2—Milli-Q deionized leaching procedure and [...] Read more.
Soil samples from the urban area of Novi Sad were analyzed to determine the total concentrations of heavy metals including Cr, Pb, Cu, Zn, As, Mn, Ni, Co, Cd and Fe. In addition, leaching tests according to CEN 12457-2—Milli-Q deionized leaching procedure and ISO/TS 21268-2—CaCl2 solution leaching procedure were conducted to assess the mobility of these metals. Multivariate statistical methods, including Pearson’s correlation, Principal Component Analysis (PCA) and Cluster Analysis, were applied to identify pollution sources and grouping patterns among elements. The results revealed a distinct clustering of Pb and Zn, separate from other metals, indicating their predominant origin from anthropogenic activities. Contamination Factor (CF), Pollution Load Index (PLI), and Geoaccumulation Index (Igeo) were calculated to evaluate the degree of pollution. Combining total concentration, mobility, and multivariate analyses offers a more comprehensive insight into the extent and origin of pollution in the urban area of Novi Sad. The results obtained are valuable for evaluating the soil conditions in the Western Balkans, which have been recognized as a necessity by the EU. Full article
Show Figures

Figure 1

18 pages, 2990 KB  
Article
CoFeNi-Layered Double Hydroxide Combined Activation of PMS and Ozone for the Degradation of Rhodamine B in Water
by Xiaohan Zhu, Liang Song and Jia Miao
Separations 2025, 12(10), 276; https://doi.org/10.3390/separations12100276 - 9 Oct 2025
Viewed by 257
Abstract
The development of efficient and sustainable advanced oxidation processes (AOPs) for organic pollutant removal is of great significance for water purification. In this study, a CoFeNi-layered double hydroxide (CoFeNi-LDH) catalyst was synthesized and applied for the simultaneous activation of peroxymonosulfate (PMS) and ozone [...] Read more.
The development of efficient and sustainable advanced oxidation processes (AOPs) for organic pollutant removal is of great significance for water purification. In this study, a CoFeNi-layered double hydroxide (CoFeNi-LDH) catalyst was synthesized and applied for the simultaneous activation of peroxymonosulfate (PMS) and ozone to degrade rhodamine B (RhB) in aqueous solution. The CoFeNi-LDH/PMS/ozone system achieved a remarkable RhB removal efficiency of 95.2 ± 1.2% within 8 min under neutral pH conditions. Systematic parametric studies revealed that synergistic interactions among CoFeNi-LDH, PMS, and ozone contributed to the generation of reactive oxygen species (ROS), primarily sulfate radicals (SO4•−) and singlet oxygen (1O2), as confirmed by EPR and quenching experiments. Density functional theory (DFT) calculations demonstrated that ozone enhanced PMS adsorption and activation at CoFeNi catalytic sites. The catalyst exhibited robust magnetic recyclability and structural stability after repeated use. This work highlights a synergistic catalytic strategy for PMS/ozone activation, offering an effective and environmentally friendly platform for dye wastewater remediation. Full article
Show Figures

Figure 1

33 pages, 77489 KB  
Article
Chemistry and Fe Isotopes of Magnetites in the Orbicular Bodies in the Tanling Diorite and Implications for the Skarn Iron Mineralization in the North China Craton
by Ruipeng Li, Shangguo Su and Peng Wang
Minerals 2025, 15(10), 1061; https://doi.org/10.3390/min15101061 - 9 Oct 2025
Viewed by 101
Abstract
Skarn-type iron ore is economically significant, and numerous skarn ore deposits have been identified in the North China Craton. The newly discovered orbicular diorite in this region is distinguished from other analogous rocks due to the accumulation of large magnetite particles, which may [...] Read more.
Skarn-type iron ore is economically significant, and numerous skarn ore deposits have been identified in the North China Craton. The newly discovered orbicular diorite in this region is distinguished from other analogous rocks due to the accumulation of large magnetite particles, which may shed new light on the genesis of this ore type. The magnetite in different parts of the orbicular structure exhibits distinct compositional differences. For example, magnetite at the edge has a small particle size (200 μm) and is associated with the minerals plagioclase and hornblende, indicating that it crystallized from normal diorite magma. By contrast, magnetite in the core has a relatively large particle size (>1000 μm), is associated with apatite and actinolite, and contains apatite inclusions as well as numerous pores. The size of magnetite in the mantle falls between that of the edge and the core. The syngenetic minerals of magnetite in the mantle include epidote and plagioclase. The magnetites in the cores of orbicules have a higher content of Ti, Al, Ni, Cr, Sc, Zn, Co, Ga, and Nb than those in the rim. The δ56Fe value of the core magnetite (0.46‰–0.78‰) is much higher than that of the mantle and rim magnetite in orbicules. Moreover, the δ56Fe value of magnetite increases as the V content of magnetite gradually decreases. This large iron isotope fractionation is likely driven by liquid immiscibility that forms iron-rich melts under high oxygen fugacity. The reaction between magma and carbonate xenoliths (Ca, Mg)CO3 during magma migration generates abundant CO2, which significantly increases the oxygen fugacity of the magmatic system. Under the action of CO2 and other volatile components, liquid immiscibility occurs in the magma chamber, and Fe-rich oxide melts are formed by the melting of carbonate xenoliths. Iron oxides (Fe3O4/Fe2O3) will crystallize close to the liquidus due to high oxygen fugacity. These characteristics of magnetite in the Tanling orbicular diorite (Wuan, China) indicate that diorite magma reacts with carbonate xenoliths to form “Fe-rich melts”, and skarn iron deposits are probably formed by the reaction of intermediate-basic magma with carbonate rocks that generate such “Fe-rich melts”. A possible reaction is as follows: diorite magma + carbonate → (magnetite-actinolite-apatite) + garnet + epidote + feldspar + hornblende + CO2↑. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

19 pages, 5636 KB  
Review
Application of Ultrasonic-Enhanced Leaching for the Recovery of Metal Elements from Mineral Raw Materials and Secondary Resources
by Yusufujiang Mubula, Mingming Yu, Heyue Niu, Zhehan Zhu and Kun Xu
Metals 2025, 15(10), 1115; https://doi.org/10.3390/met15101115 - 8 Oct 2025
Viewed by 289
Abstract
Driven by the practical needs of reducing mining costs and protecting the environment, and with the growing focus on the green and efficient recovery of metal elements (Cu, Mn, Ni, Co, Li, V, Al, Fe, REEs) from mineral raw materials and secondary resources, [...] Read more.
Driven by the practical needs of reducing mining costs and protecting the environment, and with the growing focus on the green and efficient recovery of metal elements (Cu, Mn, Ni, Co, Li, V, Al, Fe, REEs) from mineral raw materials and secondary resources, ultrasonic-enhanced leaching has emerged as an effective method for achieving the resource recovery of the aforementioned metals. As the ultrasonic-enhanced leaching process can effectively recover metal elements from mineral resources and secondary resources, it can effectively reduce the energy consumption, shorten the recycling time, and effectively improve the efficiency of the recovery of metal elements in the recycling process. This paper provides a comprehensive overview of the latest references and scientific knowledge in the field of ultrasonic-enhanced leaching, classifies and summarizes the application of ultrasonic-enhanced leaching in the recovery of metal elements from mineral resources and secondary resources, and discusses the mechanisms of ultrasonic-enhanced leaching in detail. Full article
(This article belongs to the Special Issue Metal Leaching and Recovery)
Show Figures

Graphical abstract

14 pages, 4737 KB  
Article
Microstructural Stability and Densification Behavior of Cantor-Type High-Entropy Alloy Processed by Spark Plasma Sintering
by Marcin Madej, Beata Leszczyńska-Madej, Anna Kopeć-Surzyn, Paweł Nieroda and Stanislav Rusz
Materials 2025, 18(19), 4625; https://doi.org/10.3390/ma18194625 - 7 Oct 2025
Viewed by 343
Abstract
High-entropy alloys (HEAs) of the Cantor type (CoCrFeMnNi) are widely recognized as model systems for studying the relationships between composition, microstructure, and functional performance. In this study, atomized Cantor alloy powders were consolidated using spark plasma sintering (SPS) under systematically varied process parameters [...] Read more.
High-entropy alloys (HEAs) of the Cantor type (CoCrFeMnNi) are widely recognized as model systems for studying the relationships between composition, microstructure, and functional performance. In this study, atomized Cantor alloy powders were consolidated using spark plasma sintering (SPS) under systematically varied process parameters (temperature and dwell time). The densification behavior, microstructural evolution, and mechanical response were investigated using Archimedes’ density measurements, Vickers hardness testing, compression tests, scanning electron microscopy, and EDS mapping. The results reveal a non-linear relationship between sintering temperature and densification, with maximum relative densities obtained at 1050 °C and 1100 °C for short dwell times. Despite the ultrafast nature of SPS, grain growth was observed, particularly at elevated temperatures and extended dwell times, challenging the assumption that SPS inherently limits grain coarsening. All sintered samples retained a single-phase FCC structure with homogeneous elemental distribution, and no phase segregation or secondary precipitates were detected. Compression testing showed that samples sintered at 1050 °C and 1070 °C exhibited the highest strength, demonstrating the strong interplay between sintering kinetics and grain cohesion. Full article
Show Figures

Figure 1

24 pages, 4302 KB  
Article
New Data on Phase Composition and Geochemistry of the Muschelkalk Carbonate Rocks of the Upper Silesian Province in Poland
by Katarzyna J. Stanienda-Pilecki and Rafał Jendruś
Appl. Sci. 2025, 15(19), 10751; https://doi.org/10.3390/app151910751 - 6 Oct 2025
Viewed by 151
Abstract
Detailed description of phase composition and geochemistry of the Muschelkalk carbonate rocks of the Upper Silesian Province in Poland were presented in this article. The tests were carried out to determine mineralogical features and geochemical properties. The samples were collected from the formations [...] Read more.
Detailed description of phase composition and geochemistry of the Muschelkalk carbonate rocks of the Upper Silesian Province in Poland were presented in this article. The tests were carried out to determine mineralogical features and geochemical properties. The samples were collected from the formations of the Lower Muschelkalk (Gogolin Unit), Middle Muschelkalk (Diplopore Dolomite Unit) and Upper Muschelkalk (Tarnowice Unit, Boruszowice Unit). The following research methods were used: macroscopic description, X-Ray Diffraction, Fourier transform infrared spectroscopy, X-Ray Fluorescence and Atomic spectrometry with plasma intensification. The following carbonate phases were identified: a low-Mg calcite, a high-Mg calcite, a proto-dolomite, an ordered dolomite and a huntite. The results of XRD analysis allowed the determination of the chemical formulas of the mineral phases. XRF and ICP AES analyses allowed to establish the content of following trace elements: Sr, Ba, Al, Si, Fe, Mn, K, Na, S, Cl, Ti, Cr, Ni, Zn, Rb, Zr, Pb, As, V, Be, B, Co, Cu, Br, Mo and Cd. Apart from Sr and Ba, they are not fundamental components of carbonate rocks. They indicate the presence of minerals such as silicates, aluminosilicates, oxides and sulfides. Full article
Show Figures

Figure 1

19 pages, 4254 KB  
Article
Microstructure and Mechanical and Corrosion Behavior of Novel High-Entropy CoCrFeNiSiVx (x = 0.25; 0.5; 0.75; 1.0) Alloys
by Rafał Babilas, Monika Spilka, Katarzyna Młynarek-Żak, Adrian Radoń, Wojciech Łoński, Krzysztof Matus and Jakub Bicz
Materials 2025, 18(19), 4616; https://doi.org/10.3390/ma18194616 - 6 Oct 2025
Viewed by 337
Abstract
In this work, a series of novel high-entropy alloys CoCrFeNiSiVx (x = 0.25; 0.5; 0.75; 1.0) with an intermetallic compound structure was proposed. The effect of vanadium addition on the structure, as well as selected mechanical and corrosion properties, was investigated. In [...] Read more.
In this work, a series of novel high-entropy alloys CoCrFeNiSiVx (x = 0.25; 0.5; 0.75; 1.0) with an intermetallic compound structure was proposed. The effect of vanadium addition on the structure, as well as selected mechanical and corrosion properties, was investigated. In the case of the CoCrFeNiSiV0.25 alloy, the structural analysis revealed the formation of a dual-phase structure consisting of Fe1.812V0.907Si0.906-type and Fe5Ni3Si2-type intermetallic phases. The increase in vanadium concentration results in the crystallization of one Fe1.812V0.907Si0.906 intermetallic phase detected by the X-ray diffraction method. The increase in vanadium content had a beneficial influence on the corrosion resistance of CoCrFeNiSiVx alloys in 3.5% NaCl. The CoCrFeNiSiV alloy exhibited the lowest corrosion current density of 0.17 μA/cm2 and the highest corrosion potential of −0.228 V. The hardness of the alloys investigated increased with vanadium content, reaching 1006 HV for the equimolar alloy. In turn, the lowest friction coefficient of 0.63 ± 0.06 was obtained for the CoCrFeNiSiV0.75 alloy. The abrasive, fatigue, and oxidative wear were identified as the main wear mechanisms. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 5454 KB  
Article
The Role of the Transition Metal in M2P (M = Fe, Co, Ni) Phosphides for Methane Activation and C–C Coupling Selectivity
by Abdulrahman Almithn
Catalysts 2025, 15(10), 954; https://doi.org/10.3390/catal15100954 - 5 Oct 2025
Viewed by 389
Abstract
Achieving selective, direct conversion of methane into value-added chemicals requires catalysts that can navigate the intrinsic trade-off between C–H bond activation and over-dehydrogenation. Transition metal phosphides (TMPs) have emerged as promising catalysts that can tune this selectivity. This work utilizes density functional theory [...] Read more.
Achieving selective, direct conversion of methane into value-added chemicals requires catalysts that can navigate the intrinsic trade-off between C–H bond activation and over-dehydrogenation. Transition metal phosphides (TMPs) have emerged as promising catalysts that can tune this selectivity. This work utilizes density functional theory (DFT) to systematically assess how the transition metal’s identity (M = Fe, Co, Ni) in isostructural M2P phosphides governs this balance. The findings reveal that the high reactivity of Fe2P and Co2P, which facilitates initial methane activation, also promotes facile deep dehydrogenation pathways to coke precursors like CH*. In stark contrast, Ni2P exhibits a moderated reactivity that kinetically hinders CH* formation while simultaneously exhibiting the lowest activation barrier for the C–C coupling of CH2* intermediates to form ethylene. This revealed trade-off between the high reactivity of Fe/Co phosphides and the high selectivity of Ni2P offers a guiding principle for the rational design of advanced bimetallic phosphides for efficient methane upgrading. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

18 pages, 7510 KB  
Article
Effects of the Addition of Iron and Chromium on the Structure and Properties of the Ni-Co-Mn-In Alloy
by Edyta Matyja and Krystian Prusik
Materials 2025, 18(19), 4597; https://doi.org/10.3390/ma18194597 - 3 Oct 2025
Viewed by 244
Abstract
In this work, small amounts of Fe or Cr were added to Ni47Co3Mn36.5In13.5 alloy (x = 0) to produce five-component alloys with nominal compositions of Ni47Co3Mn35.5In13.5Fe1, [...] Read more.
In this work, small amounts of Fe or Cr were added to Ni47Co3Mn36.5In13.5 alloy (x = 0) to produce five-component alloys with nominal compositions of Ni47Co3Mn35.5In13.5Fe1, Ni47Co3Mn33.5In13.5Fe3, Ni47Co3Mn35.5In13.5Cr1, and Ni47Co3Mn33.5In13.5Cr3, which are denoted as Ni47Co3Mn36.5−xIn13.5Fex/Crx (x = 1, 3 at.% Cr/Fe) series or as Mn-series (due to the addition of alloying elements instead of Mn), and Ni47Co3Mn36.5In12.5Fe1, Ni47Co3Mn36.5In10.5Fe3, Ni47Co3Mn36.5In12.5Cr1, and Ni47Co3Mn36.5In10.5Cr3, denoted as Ni47Co3Mn36.5In13.5−x (x = 1, 3 at.% Cr/Fe) series or In-series (due to the addition of alloying elements instead of In). The polycrystalline alloys were produced using the vacuum arc melting technique. The as-received alloys were characterized in structure, homogeneity, phase composition, martensitic transformation, and microhardness. The results showed that the addition of 1 at.% of Cr or Fe positively impacted the microstructure of the alloys. The quaternary alloy exhibited a single-phase coarse-grained structure. The addition of Fe and Cr (1 at.%) caused microstructure refinement with small Fe/Cr- and Co-rich γ particles appropriately distributed in the matrix, while the addition of 3% Fe or Cr resulted in γ formation in a dendritic form distributed more randomly. The addition of 1 at.% and 3 at.% of Cr or Fe significantly influenced the martensitic transformation temperatures. The microhardness increased by 21% in the Ni47Co3Mn33.5In13.5Fe3 alloy compared to the quaternary alloy. Full article
(This article belongs to the Special Issue Processing of Metals and Alloys)
Show Figures

Figure 1

Back to TopTop