Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (392)

Search Parameters:
Keywords = Fenton catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2398 KB  
Article
Synergistic Radical and Non-Radical Pathways in Phenol Degradation: Electron Transfer Mechanism Dominated by N-Doped Carbon/Peroxymonosulfate System
by Qiongqiong He, Xuewen Wu, Ping Ma, Xiaoqi Wu and Zhenyong Miao
Catalysts 2025, 15(10), 968; https://doi.org/10.3390/catal15100968 - 10 Oct 2025
Viewed by 42
Abstract
Phenolic compounds constitute the predominant group of recalcitrant organic contaminants in coal chemical wastewater. In this study, humic acid and urea were used as carbon and nitrogen sources to prepare nitrogen-doped carbon material (labeled as NC-800) through a two-step calcination process. Using this [...] Read more.
Phenolic compounds constitute the predominant group of recalcitrant organic contaminants in coal chemical wastewater. In this study, humic acid and urea were used as carbon and nitrogen sources to prepare nitrogen-doped carbon material (labeled as NC-800) through a two-step calcination process. Using this catalyst (NC-800) to activate PMS for phenol degradation achieved 100% phenol removal across a wide pH range (1–9). The removal rate remained at 99.62% even with high concentrations of inorganic anions or natural organic matter, breaking through the limitations of traditional Fenton-like reactions in terms of acid–base environment and anion influence. The quenching experiment and electron spin resonance (ESR) spectroscopy results indicated that the N-C/PMS system generated three active species hydroxyl radicals (•OH), superoxide radicals (O2•−), and singlet oxygen (1O2) through the active sites in electron-rich regions such as graphite nitrogen, pyrrole nitrogen, and C=O. An electrochemical test revealed that the system formed a metastable NC-800-PMS* complex during the reaction, indicating the existence of a non-radical pathway of electron transfer. The combination of free radicals (•OH, O2•−) and non-free radicals (1O2, electron transfer) facilitated the rapid degradation of phenol, providing a theoretical basis for phenol degradation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

17 pages, 4728 KB  
Article
Construction of Hierarchical Fe-MFI Nanosheets with Enhanced Fenton-like Degradation Performance
by Haibo Jiang, Lin Xu, Qingrun Meng, Xu Feng, Junxuan Wang, Yankai Li and Junjie Li
Molecules 2025, 30(19), 4030; https://doi.org/10.3390/molecules30194030 - 9 Oct 2025
Viewed by 58
Abstract
Introducing hierarchical structure into zeolites or synthesizing two-dimensional (2D) zeolite nanosheets have drawn much attention in catalysis and separation process due to the improvement in zeolites’ diffusion properties. In this study, Fe incorporated on the MFI zeolite framework (Fe-MFI) with the nanosheet morphology [...] Read more.
Introducing hierarchical structure into zeolites or synthesizing two-dimensional (2D) zeolite nanosheets have drawn much attention in catalysis and separation process due to the improvement in zeolites’ diffusion properties. In this study, Fe incorporated on the MFI zeolite framework (Fe-MFI) with the nanosheet morphology and unique hierarchical pore structure was successfully synthesized and applied for the adsorption and degradation of Rhodamine B (RhB) in a Fenton-like reaction in the presence of H2O2. The synthesis involved a seed-directed hydrothermal method in the presence of NH4F and a subsequent NaOH treatment made the synthesized hierarchical Fe-MFI nanosheets (Fe-20-10) characterized by abundant highly dispersed framework Fe3+ species. As a result of these features, the Fe-20-10 showed excellent ability of adsorption and degradation efficiency of RhB, and enhanced durability due to negligible leaching of framework Fe3+ species. Moreover, the hydroxyl radicals were determined as the main the reactive oxygen species of RhB degradation, and a possible adsorption–degradation pathway was proposed. This work offers guidance for developing high-performance Fenton-like degradation catalysts. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Graphical abstract

17 pages, 1608 KB  
Article
Sludge-Derived Hercynite–Carbon as a Low-Cost Catalyst for Efficient Degradation of Refractory Pollutants in Wastewater
by Md Manik Mian, Jiaxin Zhu, Xiangzhe Jiang and Shubo Deng
Water 2025, 17(19), 2908; https://doi.org/10.3390/w17192908 - 9 Oct 2025
Viewed by 193
Abstract
Developing a robust Fenton-like catalyst through a feasible method is a significant challenge and is crucial for sustainability in wastewater treatment. Herein, we report a novel dual-phase H2O2 activation for OH generation via both heterogeneous surface-mediated reactions and homogeneous [...] Read more.
Developing a robust Fenton-like catalyst through a feasible method is a significant challenge and is crucial for sustainability in wastewater treatment. Herein, we report a novel dual-phase H2O2 activation for OH generation via both heterogeneous surface-mediated reactions and homogeneous radical propagation pathways. Mechanistic investigations revealed that the surface Fe2+/Fe3+ redox cycle was the primary driver of catalysis at pH 5. Notably, the catalyst produced fewer secondary pollutants than Fenton reactions and was effective in treating pollutants with high concentrations. The oxidative performance of the PAS-ISe was comparable to that of commercial FeSO4·7H2O in terms of chemical oxygen demand (COD) removal efficiency and reaction kinetics. Besides, the utility of the catalyst was 2-75-fold greater than that of state-of-the-art Fenton or photo-Fenton-like catalysts. A detailed techno-economic analysis confirmed the feasibility of this strategy and significant cost advantages over existing heterogeneous catalyst synthesis methods. This study concurrently proposes a low-cost approach to valorizing hazardous sludge and effectively treating industrial wastewater, which may support circular economic principles. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

26 pages, 4484 KB  
Article
Banana (Musa sapientum) Waste-Derived Biochar–Magnetite Magnetic Composites for Acetaminophen Removal via Photochemical Fenton Oxidation
by Manasik M. Nour, Maha A. Tony, Mai Kamal Fouad and Hossam A. Nabwey
Catalysts 2025, 15(10), 955; https://doi.org/10.3390/catal15100955 - 5 Oct 2025
Viewed by 261
Abstract
Recently, researchers have been focused on the recycling as well as transforming of bio-waste streams into a valuable resource. Banana peels are promising for such application, due to their wide availability. In this context, the integration of banana peel-derived biochar with environmentally benign [...] Read more.
Recently, researchers have been focused on the recycling as well as transforming of bio-waste streams into a valuable resource. Banana peels are promising for such application, due to their wide availability. In this context, the integration of banana peel-derived biochar with environmentally benign magnetite has significantly broadened its potential applications as a solar photocatalyst compared to the conventional photocatalysts. The materials are mixed in varied proportions of Ban-Char500-Mag@-(0:1), Ban-Char500@Mag-(1:1) and Ban-Char500@Mag-(2:1) and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) augmented with dispersive X-ray spectroscopy (EDX). Such modification is leading to an improvement in its application as a solar photocatalyst using the photochemical solar collector facility. The study discusses the factors controlling acetaminophen removal from aqueous effluent within 30 min of solar illumination time. Furthermore, the highlighted optimum parameters are pH 3.0, using 10 mg/L of the Ban-Char500@Mag-(1:1) catalyst and 100 mg/L of the hydrogen peroxide as a Fenton combination system for removing a complete acetaminophen from wastewater (100% oxidation). Also, the temperature influence in the oxidation system is studied and the high temperature is unfavorable, which verifies that the reaction is exothermic in nature. The catalyst is signified as a sustainable (recoverable, recyclable and reusable) substance, and showed a 72% removal even though it was in the six cyclic uses. Further, the kinetic study is assessed, and the experimental results revealed the oxidation process is following the first-order kinetic reaction. Also, the kinetic–thermodynamic parameters of activation are investigated and it is confirmed that the oxidation is exothermic and non-spontaneous in nature. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

25 pages, 1671 KB  
Article
Life Cycle Assessment of a Cu/Fe-Pillared Clay Catalyzed Photo-Fenton Process for Paracetamol Removal
by Claudia Alanis, Alejandro Padilla-Rivera, Rubi Romero, Armando Ramírez-Serrano and Reyna Natividad
Processes 2025, 13(10), 3165; https://doi.org/10.3390/pr13103165 - 4 Oct 2025
Viewed by 341
Abstract
Due to its efficiency, advanced oxidation processes (AOP), such as photo-Fenton, have become an alternative for removing emerging contaminants like paracetamol. The objective of this work was to perform a life cycle assessment (LCA) according to ISO 14040/44 for a heterogeneous photo-Fenton process [...] Read more.
Due to its efficiency, advanced oxidation processes (AOP), such as photo-Fenton, have become an alternative for removing emerging contaminants like paracetamol. The objective of this work was to perform a life cycle assessment (LCA) according to ISO 14040/44 for a heterogeneous photo-Fenton process catalyzed by Cu/Fe-pillared clays (PILC) for the removal of paracetamol from water. The study covered catalyst synthesis and four treatment scenarios, with inventories built from experimental data and ecoinvent datasets; treatment time was 120 min per functional unit. Environmental impacts for catalyst synthesis were quantified with ReCiPe 2016 (midpoint), while toxicity-related impacts of the degradation stage were assessed with USEtox™ (human carcinogenic toxicity, human non-carcinogenic toxicity, and freshwater ecotoxicity). Catalyst synthesis dominated most midpoint categories, the global warming potential for 1 g of Cu/Fe-PILC was 10.98 kg CO2 eq. Toxicity results for S4 (photo-Fenton Cu/Fe PILC) showed very low values: 9.73 × 10−12 CTUh for human carcinogenic and 1.29 × 10−13 CTUh for human non-carcinogenic. Freshwater ecotoxicity ranged from 5.70 × 10−4 PAF·m3·day at pH 2.7 (≥60 min) to 1.67 × 10−4 PAF·m3·day at pH 5.8 (120 min). Overall, optimizing pH and reaction time, are key levers to improve the environmental profile of AOP employing Cu/Fe-PILC catalysts. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes for Waste Treatment)
Show Figures

Figure 1

34 pages, 3419 KB  
Review
Emerging Strategies for the Photoassisted Removal of PFAS from Water: From Fundamentals to Applications
by Lázaro Adrián González Fernández, Nahum Andrés Medellín Castillo, Manuel Sánchez Polo, Javier E. Vilasó-Cadre, Iván A. Reyes-Domínguez and Lorena Díaz de León-Martínez
Catalysts 2025, 15(10), 946; https://doi.org/10.3390/catal15100946 - 2 Oct 2025
Viewed by 714
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic fluorinated compounds widely used in industrial and consumer products due to their exceptional thermal stability and hydrophobicity. However, these same properties contribute to their environmental persistence, bioaccumulation, and potential adverse health effects, [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic fluorinated compounds widely used in industrial and consumer products due to their exceptional thermal stability and hydrophobicity. However, these same properties contribute to their environmental persistence, bioaccumulation, and potential adverse health effects, including hepatotoxicity, immunotoxicity, endocrine disruption, and increased cancer risk. Traditional water treatment technologies, such as coagulation, sedimentation, biological degradation, and even advanced membrane processes, have demonstrated limited efficacy in removing PFAS, as they primarily separate or concentrate these compounds rather than degrade them. In response to these limitations, photoassisted processes have emerged as promising alternatives capable of degrading PFAS into less harmful products. These strategies include direct photolysis using UV or VUV irradiation, heterogeneous photocatalysis with materials such as TiO2 and novel semiconductors, light-activated persulfate oxidation generating sulfate radicals, and photo-Fenton reactions producing highly reactive hydroxyl radicals. Such approaches leverage the generation of reactive species under irradiation to cleave the strong carbon–fluorine bonds characteristic of PFAS. This review provides a comprehensive overview of emerging photoassisted technologies for PFAS removal from water, detailing their fundamental principles, degradation pathways, recent advancements in material development, and integration with hybrid treatment processes. Moreover, it discusses current challenges related to energy efficiency, catalyst deactivation, incomplete mineralization, and scalability, outlining future perspectives for their practical application in sustainable water treatment systems to mitigate PFAS pollution effectively. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Figure 1

18 pages, 3305 KB  
Article
Removal of Cu(II) from Aqueous Medium with LDH-Mg/Fe and Its Subsequent Application as a Sustainable Catalyst
by Edgar Oswaldo Leyva Cruz, Ricardo Lopez-Medina, Deyanira Angeles-Beltrán and Refugio Rodríguez-Vázquez
Catalysts 2025, 15(10), 930; https://doi.org/10.3390/catal15100930 - 1 Oct 2025
Viewed by 312
Abstract
In this work, the removal of Cu(II) ions from an aqueous effluent was studied using an Mg/Fe layered double hydroxide (LDH) as the adsorbent. The material was synthesized and characterized before and after the adsorption process to identify structural and morphological changes induced [...] Read more.
In this work, the removal of Cu(II) ions from an aqueous effluent was studied using an Mg/Fe layered double hydroxide (LDH) as the adsorbent. The material was synthesized and characterized before and after the adsorption process to identify structural and morphological changes induced by copper uptake. Techniques such as X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and nitrogen physisorption (BET) were employed to confirm the interaction between the metal ions and the LDH surface. The LDH-Mg/Fe exhibited a high maximum adsorption capacity of 526 mg/g, and the adsorption kinetics followed a pseudo-second-order model, achieving over 90% removal of Cu(II) within 2.5 h. The Cu(II)-loaded material was subsequently evaluated as a sustainable catalyst in two applications: (i) an organic synthesis via “click” chemistry, reaching yields of up to 85%, and (ii) the decoloration of Congo Red via a Fenton-like process, achieving a decoloration efficiency of at least 84%. These dual uses demonstrate the potential of Cu(II)-loaded LDH as a cost-effective and environmentally friendly approach to simultaneous pollutant removal and catalytic valorization. Full article
Show Figures

Graphical abstract

14 pages, 2557 KB  
Article
Composite Material Formation Based on Biochar and Nickel (II)-Copper (II) Ferrites
by Nina P. Shabelskaya, Alexandr V. Vyaltsev, Neonilla G. Sundukova, Vera A. Baranova, Sergej I. Sulima, Elena V. Sulima, Yulia A. Gaidukova, Asatullo M. Radzhbov, Elena V. Vasileva and Elena A. Yakovenko
Molecules 2025, 30(19), 3900; https://doi.org/10.3390/molecules30193900 - 26 Sep 2025
Viewed by 244
Abstract
This paper studies the formation process of a composite material based on an organic substance, biochar from sunflower husks, and an inorganic substance, nickel (II)-copper (II) ferrites of the composition CuxNi1−xFe2O4 (x = 0.0; 0.5; 1.0). [...] Read more.
This paper studies the formation process of a composite material based on an organic substance, biochar from sunflower husks, and an inorganic substance, nickel (II)-copper (II) ferrites of the composition CuxNi1−xFe2O4 (x = 0.0; 0.5; 1.0). The obtained materials were characterized by X-ray phase analysis, scanning electron microscopy, and FTIR spectroscopy. It is shown that when replacing copper (II) cations with nickel (II) cations, the average parameters and volume of the unit cell gradually decrease, and the cation–anion distances in both the tetrahedral and octahedral spinel grids also decrease with regularity. The oxide materials were found to form a film on the surface of biochar, repeating its porous structure. The obtained materials exhibit high catalytic activity in the methyl orange decomposition reaction under the action of hydrogen peroxide in an acidic medium; the degradation of methyl orange in an aqueous solution occurs 30 min after the start of the reaction. This result may be associated with the formation of the Fenton system during the oxidation–reduction process. A significant increase in the reaction rate in the system containing mixed nickel–copper ferrite as a catalyst may be associated with the formation of a more defective structure due to the Jahn–Teller effect manifestation, which creates additional active centers on the catalyst surface. Full article
Show Figures

Figure 1

18 pages, 582 KB  
Review
A Review on the Application of Magnetic Nanomaterials for Environmental and Ecological Remediation
by Nan Lu, Yingying Sun, Yan Li, Zhe Liu, Na Wang, Tingting Meng and Yuhu Luo
Toxics 2025, 13(10), 814; https://doi.org/10.3390/toxics13100814 - 25 Sep 2025
Viewed by 532
Abstract
Despite the immense potential in environmental remediation, the translation of magnetic nanomaterials (MNMs) from laboratory innovations to practical, field-scale applications remains hindered by significant technical and environmental challenges. This is particularly evident in soil environments—which are inherently more complex than aquatic systems and [...] Read more.
Despite the immense potential in environmental remediation, the translation of magnetic nanomaterials (MNMs) from laboratory innovations to practical, field-scale applications remains hindered by significant technical and environmental challenges. This is particularly evident in soil environments—which are inherently more complex than aquatic systems and have received comparatively less research attention. Beginning with an outline of the fundamental properties that make iron-based MNMs effective as adsorbents and catalysts for heavy metals and organic pollutants, this review systematically examines their core contaminant removal mechanisms. These include adsorption, catalytic degradation (e.g., via Fenton-like reactions), and magnetic recovery. However, the practical implementation of MNMs is constrained by several key limitations, such as particle agglomeration, oxidative instability, and reduced efficacy in multi-pollutant systems. More critically, major uncertainties persist regarding their long-term environmental fate and biocompatibility. In light of these challenges, we propose that future efforts should prioritize the rational design of stable, selective, and intelligent MNMs through advanced surface engineering and interdisciplinary collaboration. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

15 pages, 4118 KB  
Article
Highly Efficient Conversion of Methane to Methanol on Fe-Cu/ZSM-5 Under Mild Conditions: Effective Utilization of Free Radicals by Favorable Valence Ratios
by Huajie Zhang, Yunhan Pu, Yanjun Li and Mingli Fu
Surfaces 2025, 8(4), 69; https://doi.org/10.3390/surfaces8040069 - 23 Sep 2025
Viewed by 408
Abstract
The selective oxidation of methane to methanol under mild conditions remains a significant challenge due to its stable C-H bond and the propensity for overoxidation of products. Herein, we investigated the Fe- and Cu-modified ZSM-5 catalysts using H2O2 as an [...] Read more.
The selective oxidation of methane to methanol under mild conditions remains a significant challenge due to its stable C-H bond and the propensity for overoxidation of products. Herein, we investigated the Fe- and Cu-modified ZSM-5 catalysts using H2O2 as an oxidant for the selective oxidation of methane. It was found that the Fe/Cu ratio had a great impact on methanol yield. The Fe3Cu1 displayed the highest methanol yield of 29.7 mmol gcat−1 h−1 with a selectivity of 80.9% at 70 °C. Further analysis revealed that Fe3Cu1 showed the highest Fe3+ and Cu+ contents. The optimal dual valence cycle not only facilitates the efficient utilization of H2O2, promoting the activation of methane to •CH3 at the Fe site, but also suppresses the deep oxidation caused by the Fenton-like effect of Fe/H2O2, thus maintaining the high yield and high selectivity of methanol. Full article
(This article belongs to the Special Issue Surface and Interface Science in Energy Materials)
Show Figures

Figure 1

21 pages, 6570 KB  
Article
An Integrated Strategy for Pre-Disposal of Spent Cation-Exchange Resins by Repurposing Industrial By-Products
by Francesco Galluccio, Andrea Santi, Edoardo Rizzi, Fabio Fattori, Gabriele Magugliani, Veronica Piazza, Chiara Milanese, Giacomo Diego Gatta, Luca Fornara, Elena Macerata, Mario Mariani and Eros Mossini
Sustainability 2025, 17(18), 8241; https://doi.org/10.3390/su17188241 - 13 Sep 2025
Viewed by 521
Abstract
Large amounts of spent, radioactive, ion-exchange resins have been generated worldwide, and their production is expected to grow due to a renaissance of nuclear power. Such waste is being stored at individual plant sites around the world, awaiting a reliable disposal route to [...] Read more.
Large amounts of spent, radioactive, ion-exchange resins have been generated worldwide, and their production is expected to grow due to a renaissance of nuclear power. Such waste is being stored at individual plant sites around the world, awaiting a reliable disposal route to overcome the downsides of the state-of-the-art management approaches. In this work, a first-of-its-kind pre-disposal strategy is proposed, based on the integration of a heterogeneous Fenton-like treatment with conditioning in an alkali-activated matrix. In particular, the circular economy is pursued by repurposing two industrial by-products, coal fly ash and steel slag, both as catalysts of the Fenton treatment and precursors of the conditioning matrix. The obtained waste forms have been preliminarily tested for leaching and compressive strength according to the Italian waste acceptance criteria for disposal. The proposed technology, tested at laboratory scale up to 100 g of virgin cationic resin, has proven successful in decomposing the waste and synthesizing waste forms with an overall volume increase of only 30%, thereby achieving a remarkable result compared to state-of-the-art technologies. Full article
(This article belongs to the Special Issue Waste Management for Sustainability: Emerging Issues and Technologies)
Show Figures

Graphical abstract

13 pages, 3489 KB  
Article
Methods for Enhancing the Formation of Hydroxyl Radicals When Polishing Single Crystal SiC
by Dong Shi, Kaiping Feng and Tianchen Zhao
Materials 2025, 18(18), 4276; https://doi.org/10.3390/ma18184276 - 12 Sep 2025
Viewed by 349
Abstract
To enhance the formation of hydroxyl radicals (•OH) when polishing single crystal silicon carbide (SiC), this study proposes a catalytic-assisted polishing approach based on a Fe3O4/ZnO/graphite hybrid system. Firstly, methyl orange degradation experiments were conducted using Fe3O [...] Read more.
To enhance the formation of hydroxyl radicals (•OH) when polishing single crystal silicon carbide (SiC), this study proposes a catalytic-assisted polishing approach based on a Fe3O4/ZnO/graphite hybrid system. Firstly, methyl orange degradation experiments were conducted using Fe3O4/ZnO/graphite hybrid catalysts. Secondly, a resin-based abrasive tool embedded with the Fe3O4/ZnO/graphite hybrid was developed. Subsequently, polishing experiments under dry, water, and hydrogen peroxide conditions were performed based on the abrasive tool. The corresponding surface roughness (Sa) were 26.51 nm, 12.955 nm and 4.593 nm, separately. The material removal rate were 0.733 mg/h (1.586 μm/h), 2.800 mg/h (6.057 μm/h) and 4.733 mg/h (10.239 μm/h), respectively. The results demonstrate that the Fe3O4/ZnO/graphite hybrid synergistically enhanced •OH generation through Fenton reactions and tribocatalysis of ZnO. Therefore, the increased •OH productivity contributes to SiC oxidation and SiO2 removal, improving both polishing efficiency and surface finish. The catalytic-assisted polishing provides a novel approach for the high-efficiency ultra-precision machining for SiC. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

17 pages, 2810 KB  
Article
Magnetic Intensification of Fenton Processes Using Superconducting Technology for Enhanced Treatment of Printing and Dyeing Wastewater: Mechanisms and Applications
by Qian Luo, Zhenchang Yin, Zhengfeng Hu, Wei Zhang, Yu Zhang, Huimin Huang, Zhihui Chen, Junjie Xu and Rongwu Mei
Water 2025, 17(18), 2686; https://doi.org/10.3390/w17182686 - 11 Sep 2025
Viewed by 430
Abstract
The rapid industrial development in recent years has led to severe pollution of aquatic environments. It is necessary to develop green and highly efficient treatment technologies for addressing environmental pollution and realizing carbon peaking and carbon neutrality goals. This study aims to explore [...] Read more.
The rapid industrial development in recent years has led to severe pollution of aquatic environments. It is necessary to develop green and highly efficient treatment technologies for addressing environmental pollution and realizing carbon peaking and carbon neutrality goals. This study aims to explore the effect of magnetic fields on chemical oxygen demand (COD) degradation by Fenton reaction. The experimental results demonstrated the following: (1) Magnetic fields convert macromolecular organic compounds into low-molecular-weight organic compounds, promoting the attack of radicals on organic pollutants. (2) The magnetic Fenton process achieved COD removal efficiency of 60.0%. (magnetic field intensity: 1.5 T, magnetization duration: 5 min, pH = 5.0, Fe2+ = 2.0 mmol/L, H2O2 = 2.0 mmol/L, reaction time: 40 min). (3) The magnetic Fenton process consumes less acidic reagent. Notably, it achieves a 33.3% reduction in both catalyst and oxidant usage under the same COD removal efficiency. This study verifies the feasibility of applying the method in real sewage treatment plants, demonstrating promising application prospects. Full article
(This article belongs to the Special Issue Fate and Transport of Contaminants in Soil and Water)
Show Figures

Figure 1

17 pages, 5755 KB  
Article
CeO2-Cobalt Ferrite Composite as a Dual-Function Catalyst for Hydrogen Peroxide Decomposition and Organic Pollutants Degradation
by Tetiana Tatarchuk and Volodymyr Kotsyubynsky
Metals 2025, 15(9), 985; https://doi.org/10.3390/met15090985 - 4 Sep 2025
Viewed by 612
Abstract
This study reports the hydrothermal synthesis, characterization, and Fenton-like catalytic performance of CeO2–CoFe2O4 nanocomposites for degrading Congo Red (CR) dye and the oxytetracycline (OTC) antibiotic. A series of Ce-doped cobalt ferrite samples was prepared using a hydrothermal reaction. [...] Read more.
This study reports the hydrothermal synthesis, characterization, and Fenton-like catalytic performance of CeO2–CoFe2O4 nanocomposites for degrading Congo Red (CR) dye and the oxytetracycline (OTC) antibiotic. A series of Ce-doped cobalt ferrite samples was prepared using a hydrothermal reaction. Additionally, the 50Ce-CFO sample was further activated with H2O2 treatment. XRD, FTIR, and SEM analyses confirmed the formation of a spinel phase alongside segregated CeO2, which acts as a grain-growth inhibitor. The increased Ce content promotes particle amorphization. FTIR showed changes in the intensity of the M–O stretching band, indicating Ce-induced bond polarization in the spinel lattice. In H2O2 decomposition tests, the 50Ce-CFO catalyst fully decomposes H2O2 in 160 min, while the activated sample completes it in 125 min. Fenton-like degradation of CR and OTC by untreated and activated 50Ce-CFO sample followed pseudo-first-order kinetics. Catalyst stability was confirmed using post-reaction XRD, FTIR, and SEM analyses. Incorporation of CeO2 into CoFe2O4 refines the crystallite size, increases the BET surface area, and enhances adsorption capacity, while the Ce4+/Ce3+ redox couple promotes reactive oxygen species generation. Owing to this dual structural and catalytic role, the CeO2-CoFe2O4 composites exhibit significantly improved Fenton-like catalytic activity, enabling the efficient degradation of organic pollutants. Full article
(This article belongs to the Section Powder Metallurgy)
Show Figures

Figure 1

52 pages, 2983 KB  
Systematic Review
Niobium-Based Catalysts in Advanced Oxidation Processes: A Systematic Review of Mechanisms, Material Engineering, and Environmental Applications
by Michel Z. Fidelis, Julia Faria, William Santacruz, Thays S. Lima, Giane G. Lenzi and Artur J. Motheo
Environments 2025, 12(9), 311; https://doi.org/10.3390/environments12090311 - 4 Sep 2025
Viewed by 1116
Abstract
Water contamination by emerging pollutants poses a significant environmental challenge, demanding innovative treatment technologies beyond conventional methods. Advanced oxidation processes (AOPs) utilizing niobium-based catalysts, particularly niobium oxide (Nb2O5) and its modified forms, are prominent due to their high chemical [...] Read more.
Water contamination by emerging pollutants poses a significant environmental challenge, demanding innovative treatment technologies beyond conventional methods. Advanced oxidation processes (AOPs) utilizing niobium-based catalysts, particularly niobium oxide (Nb2O5) and its modified forms, are prominent due to their high chemical stability, effective reactive oxygen species (ROS) generation, and versatility. This review systematically examines recent advancements in Nb2O5-based catalysts across various AOPs, including heterogeneous photocatalysis, electrocatalysis, and Fenton-like reactions, highlighting their mechanisms, material modifications, and performance. Following PRISMA and InOrdinatio guidelines, 381 papers were selected for this synthesis. The main findings indicate that niobium incorporation enhances pollutant degradation by extending light absorption, reducing electron–hole recombination, and increasing ROS generation. Structural modifications such as crystalline phase tuning, defect engineering, and the formation of heterostructures further amplify catalytic efficiency and stability. These catalysts demonstrate considerable potential for water treatment, effectively degrading a broad range of persistent contaminants such as dyes, pharmaceuticals, pesticides, and personal care products. This review underscores the environmental benefits and practical relevance of Nb2O5-based systems, identifying critical areas for future research to advance sustainable water remediation technologies. Full article
(This article belongs to the Special Issue Advanced Research on Micropollutants in Water, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop