Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = Flapping Wing Micro Air Vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 20836 KB  
Article
Design and Flight Experiment of a Motor-Directly-Driven Flapping-Wing Micro Air Vehicle with Extension Springs
by Seungik Choi, Changyong Oh, Taesam Kang and Jungkeun Park
Biomimetics 2025, 10(10), 686; https://doi.org/10.3390/biomimetics10100686 (registering DOI) - 12 Oct 2025
Abstract
This study presents the design, control, and flight experiments of a motor-directly-driven flapping-wing micro air vehicle with extension springs (MDD-FWMAVES). The flapping wing actuation utilizes the resonance of a linear extension spring and a flapping wing. The analysis results of the proposed MDD-FWMAVES [...] Read more.
This study presents the design, control, and flight experiments of a motor-directly-driven flapping-wing micro air vehicle with extension springs (MDD-FWMAVES). The flapping wing actuation utilizes the resonance of a linear extension spring and a flapping wing. The analysis results of the proposed MDD-FWMAVES revealed a resonant frequency of 19.59 Hz for the flapping-wing mechanism, and actual flapping experiments confirmed this to be 20 Hz. Using a six-axis load cell, we demonstrated the ability to generate roll, pitch, and yaw moments for attitude control based on wing flapping variations. All roll, pitch, and yaw moments were linearly proportional to the wing flapping variations. MEMS gyroscopes and accelerometers were used to measure roll, pitch, and yaw angular velocities and the gravity. A complementary filter was applied to these measurements to obtain the roll and pitch angles required for attitude control. A microprocessor, two motor drive circuits, one MEMS gyroscope/accelerometer, and one EEPROM for flight data storage were implemented on a single, ultra-compact electronic control board and mounted on the MDD-FWMAVES. Simple roll and pitch PD controllers were implemented on this electronic control board, and the controlled flight feasibility of the MDD-FWMAVES was explored. Flight tests demonstrated stable hovering for approximately 6 s. While yaw control was not achieved, the onboard feedback control system demonstrated stable roll and pitch control. Therefore, the MDD-FWMAVES holds the potential to be developed into a high-performance flapping-wing micro air vehicle if its flight system and controller are improved. Full article
(This article belongs to the Special Issue Bio-Inspired Flight Systems and Bionic Aerodynamics 2.0)
Show Figures

Graphical abstract

19 pages, 26314 KB  
Article
Effects of Wing Kinematics on Aerodynamics Performance for a Pigeon-Inspired Flapping Wing
by Tao Wu, Kai Wang, Qiang Jia and Jie Ding
Biomimetics 2025, 10(5), 328; https://doi.org/10.3390/biomimetics10050328 - 17 May 2025
Cited by 1 | Viewed by 879
Abstract
The wing kinematics of birds plays a significant role in their excellent unsteady aerodynamic performance. However, most studies investigate the influence of different kinematic parameters of flapping wings on their aerodynamic performance based on simple harmonic motions, which neglect the aerodynamic effects of [...] Read more.
The wing kinematics of birds plays a significant role in their excellent unsteady aerodynamic performance. However, most studies investigate the influence of different kinematic parameters of flapping wings on their aerodynamic performance based on simple harmonic motions, which neglect the aerodynamic effects of the real flapping motion. The purpose of this article was to study the effects of wing kinematics on aerodynamic performance for a pigeon-inspired flapping wing. In this article, the dynamic geometric shape of a flapping wing was reconstructed based on data of the pigeon wing profile. The 3D wingbeat kinematics of a flying pigeon was extracted from the motion trajectories of the wingtip and the wrist during cruise flight. Then, we used a hybrid RANS/LES method to study the effects of wing kinematics on the aerodynamic performance and flow patterns of the pigeon-inspired flapping wing. First, we investigated the effects of dynamic spanwise twisting on the lift and thrust performance of the flapping wing. Numerical results show that the twisting motion weakens the leading-edge vortex (LEV) on the upper surface of the wing during the downstroke by reducing the effective angle of attack, thereby significantly reducing the time-averaged lift and power consumption. Then, we further studied the effects of the 3D sweeping motion on the aerodynamic performance of the flapping wing. Backward sweeping reduces the wing area and weakens the LEV on the lower surface of the wing, which increases the lift and reduces the aerodynamic power consumption significantly during the upstroke, leading to a high lift efficiency. These conclusions are significant for improving the aerodynamic performance of bionic flapping-wing micro air vehicles. Full article
Show Figures

Figure 1

25 pages, 9712 KB  
Article
Development of a Dragonfly-Inspired High Aerodynamic Force Flapping-Wing Mechanism Using Asymmetric Wing Flapping Motion
by Jinze Liang, Mengzong Zheng, Tianyu Pan, Guanting Su, Yuanjun Deng, Mengda Cao and Qiushi Li
Biomimetics 2025, 10(5), 309; https://doi.org/10.3390/biomimetics10050309 - 11 May 2025
Cited by 1 | Viewed by 3295
Abstract
Bionic micro air vehicles are currently being popularized for military as well as civilian use and dragonflies display a wealth of skill in their remarkable flight capabilities. This study designs an asymmetric motion flapping-wing mechanism inspired by the dragonfly, using a single actuator [...] Read more.
Bionic micro air vehicles are currently being popularized for military as well as civilian use and dragonflies display a wealth of skill in their remarkable flight capabilities. This study designs an asymmetric motion flapping-wing mechanism inspired by the dragonfly, using a single actuator to achieve the coupling of stroke and pitch motion. This study simulates the motion of the dragonfly’s wings using the designed mechanism and experimentally validates the motion laws and aerodynamic characteristics of the mechanism. The analysis focuses on the asymmetry in the wing’s stroke and pitch motion and their aerodynamic implications. The flapping-wing mechanism accurately replicates the wing motion of a real dragonfly in flight, and the maximum lift-to-weight ratio can reach up to 230.2%, demonstrating significant aerodynamic benefits. This mechanism provides valuable guidance for the structural design and kinematic control of future flapping-wing vehicles. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Figure 1

15 pages, 10569 KB  
Article
Prediction and Measurement of Hovering Flapping Frequency Under Simulated Low-Air-Density and Low-Gravity Conditions
by Hyeonjun Lim, Giheon Ha and Hoon Cheol Park
Biomimetics 2025, 10(2), 83; https://doi.org/10.3390/biomimetics10020083 - 29 Jan 2025
Viewed by 1416
Abstract
The ability to predict lift is crucial for enabling flapping flights on planets with varying air densities and gravities. After determining the lift required for a flapping flight on Earth, it can be predicted under different conditions using a scaling equation as a [...] Read more.
The ability to predict lift is crucial for enabling flapping flights on planets with varying air densities and gravities. After determining the lift required for a flapping flight on Earth, it can be predicted under different conditions using a scaling equation as a function of air density and gravity, assuming the cycle-average lift coefficient remains constant. However, in flapping wings, passive deformation due to aerodynamic and inertial forces may alter the flapping-wing kinematics, complicating predictions. In this study, we investigated changes in the lift coefficient of flapping wings under various air density and gravity conditions simulated using a low-pressure chamber and tilting stand, respectively. The current study found that the cycle-averaged lift coefficients remained nearly constant, varying by less than 7% across the air density and gravity conditions. The difference between the measured and predicted hovering frequencies increased under a lower air density due to the higher vibration-induced friction. The power consumption analysis demonstrated higher energy demands in thinner atmospheres and predicted a required power of 5.14 W for a hovering flight on Mars, which is a 66% increase compared to that on Earth. Future experiments will test Martian air density and gravity conditions to enable flapping flights on Mars. Full article
(This article belongs to the Special Issue Bioinspired Flapping Wing Aerodynamics: Progress and Challenges)
Show Figures

Figure 1

16 pages, 3034 KB  
Article
Kinematic and Aerodynamic Analysis of a Coccinella septempunctata Performing Banked Turns in Climbing Flight
by Lili Yang, Zhifei Fang and Huichao Deng
Biomimetics 2024, 9(12), 720; https://doi.org/10.3390/biomimetics9120720 - 22 Nov 2024
Viewed by 1064
Abstract
Many Coccinella septempunctata flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of Coccinella septempunctata using integrated kinematics and aerodynamics is [...] Read more.
Many Coccinella septempunctata flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of Coccinella septempunctata using integrated kinematics and aerodynamics is scarce. Using three orthogonally positioned high-speed cameras, we captured the Coccinella septempunctata’s banking turns in the climbing flight in the laboratory. We used the measured wing kinematics in a Navier–Stokes solver to compute the aerodynamic forces acting on the insects in five cycles. Coccinella septempunctata can rapidly climb and turn during phototaxis or avoidance of predators. During banked turning in climbing flight, the translational part of the body, and the distance flown forward and upward, is much greater than the distance flown to the right. The rotational part of the body, through banking and manipulating the amplitude of the insect flapping angle, the stroke deviation angle, and the rotation angle, actively creates the asymmetrical lift and drag coefficients of the left and right wings to generate right turns. By implementing banked turns during the climbing flight, the insect can adjust its flight path more flexibly to both change direction and maintain or increase altitude, enabling it to effectively avoid obstacles or track moving targets, thereby saving energy to a certain extent. This strategy is highly beneficial for insects flying freely in complex environments. Full article
(This article belongs to the Special Issue Bio-Inspired Fluid Flows and Fluid Mechanics)
Show Figures

Figure 1

21 pages, 36914 KB  
Article
Development of a Novel Tailless X-Type Flapping-Wing Micro Air Vehicle with Independent Electric Drive
by Yixin Zhang, Song Zeng, Shenghua Zhu, Shaoping Wang, Xingjian Wang, Yinan Miao, Le Jia, Xinyu Yang and Mengqi Yang
Biomimetics 2024, 9(11), 671; https://doi.org/10.3390/biomimetics9110671 - 3 Nov 2024
Cited by 1 | Viewed by 2332
Abstract
A novel tailless X-type flapping-wing micro air vehicle with two pairs of independent drive wings is designed and fabricated in this paper. Due to the complexity and unsteady of the flapping wing mechanism, the geometric and kinematic parameters of flapping wings significantly influence [...] Read more.
A novel tailless X-type flapping-wing micro air vehicle with two pairs of independent drive wings is designed and fabricated in this paper. Due to the complexity and unsteady of the flapping wing mechanism, the geometric and kinematic parameters of flapping wings significantly influence the aerodynamic characteristics of the bio-inspired flying robot. The wings of the vehicle are vector-controlled independently on both sides, enhancing the maneuverability and robustness of the system. Unique flight control strategy enables the aircraft to have multiple flight modes such as fast forward flight, sharp turn and hovering. The aerodynamics of the prototype is analyzed via the lattice Boltzmann method of computational fluid dynamics. The chordwise flexible deformation of the wing is implemented via designing a segmented rigid model. The clap-and-peel mechanism to improve the aerodynamic lift is revealed, and two air jets in one cycle are shown. Moreover, the dynamics experiment for the novel vehicle is implemented to investigate the kinematic parameters that affect the generation of thrust and maneuver moment via a 6-axis load cell. Optimized parameters of the flapping wing motion and structure are obtained to improve flight dynamics. Finally, the prototype realizes controllable take-off and flight from the ground. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

19 pages, 18764 KB  
Article
Unsteady Aerodynamic Forces of Tandem Flapping Wings with Different Forewing Kinematics
by Zengshuang Chen, Yuxin Xie and Xueguang Meng
Biomimetics 2024, 9(9), 565; https://doi.org/10.3390/biomimetics9090565 - 19 Sep 2024
Cited by 5 | Viewed by 1558
Abstract
Dragonflies can independently control the movement of their forewing and hindwing to achieve the desired flight. In comparison with previous studies that mostly considered the same kinematics of the fore- and hindwings, this paper focuses on the aerodynamic interference of three-dimensional tandem flapping [...] Read more.
Dragonflies can independently control the movement of their forewing and hindwing to achieve the desired flight. In comparison with previous studies that mostly considered the same kinematics of the fore- and hindwings, this paper focuses on the aerodynamic interference of three-dimensional tandem flapping wings when the forewing kinematics is different from that of the hindwing. The effects of flapping amplitude (Φ1), flapping mean angle (ϕ1¯), and pitch rotation duration (Δtr1) of the forewing, together with wing spacing (L) are examined numerically. The results show that Φ1 and ϕ1¯ have a significant effect on the aerodynamic forces of the individual and tandem systems, but Δtr1 has little effect. At a small L, a smaller Φ1, or larger ϕ1¯ of the forewing can increase the overall aerodynamic force, but at a large L, smaller Φ1 or larger ϕ1¯ can actually decrease the force. The flow field analysis shows that Φ1 and ϕ1¯ primarily alter the extent of the impact of the previously revealed narrow channel effect, downwash effect, and wake capture effect, thereby affecting force generation. These findings may provide a direction for designing the performance of tandem flapping wing micro-air vehicles by controlling forewing kinematics. Full article
(This article belongs to the Special Issue Bio-Inspired Fluid Flows and Fluid Mechanics)
Show Figures

Figure 1

24 pages, 9159 KB  
Article
Stability and Controller Research of Double-Wing FMAV System Based on Controllable Tail
by Yichen Zhang, Yiming Xiao, Qingcheng Guo, Feng Cui, Jiaxin Zhao, Guangping Wu, Chaofeng Wu and Wu Liu
Biomimetics 2024, 9(8), 449; https://doi.org/10.3390/biomimetics9080449 - 24 Jul 2024
Cited by 2 | Viewed by 1806
Abstract
This study aimed to enhance the stability and response speed of a passive stabilized double-wing flapping micro air vehicle (FMAV) by implementing a feedback-controlled biomimetic tail. A model for flapping wings accurately calculated the lift force with only a 2.4% error compared to [...] Read more.
This study aimed to enhance the stability and response speed of a passive stabilized double-wing flapping micro air vehicle (FMAV) by implementing a feedback-controlled biomimetic tail. A model for flapping wings accurately calculated the lift force with only a 2.4% error compared to the experimental data. Experimental tests established the relationship between control torque and tail area, swing angle, and wing–tail spacing. A stability model for the double-wing FMAV was developed, incorporating stabilizing sails. Linearization of the hovering state facilitated the design of a simulation controller to improve response speed. By adjusting the feedback loops of velocity, angle, and angular velocity, the tail controller reduced the angle simulation response time from 4 s to 0.1 s and the velocity response time from 5.64 s to 0.1 s. In take-off experiments, a passive stabilized prototype with an adjustable tail angle exhibited enhanced flight stability compared to fixed tails, reducing standard deviation by 72.96% at a 0° take-off angle and 56.85% at a 5° take-off angle. The control axis standard deviation decreased by 38.06% compared to the passive stability axis, confirming the effectiveness of the designed tail angle controller in reducing angular deflection and improving flight stability. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

14 pages, 14114 KB  
Article
Investigating the Mechanical Performance of Bionic Wings Based on the Flapping Kinematics of Beetle Hindwings
by Chao Liu, Tianyu Shen, Huan Shen, Mingxiang Ling, Guodong Chen, Bo Lu, Feng Chen and Zhenhua Wang
Biomimetics 2024, 9(6), 343; https://doi.org/10.3390/biomimetics9060343 - 6 Jun 2024
Cited by 3 | Viewed by 2045
Abstract
The beetle, of the order Coleoptera, possesses outstanding flight capabilities. After completing flight, they can fold their hindwings under the elytra and swiftly unfold them again when they take off. This sophisticated hindwing structure is a result of biological evolution, showcasing the strong [...] Read more.
The beetle, of the order Coleoptera, possesses outstanding flight capabilities. After completing flight, they can fold their hindwings under the elytra and swiftly unfold them again when they take off. This sophisticated hindwing structure is a result of biological evolution, showcasing the strong environmental adaptability of this species. The beetle’s hindwings can provide biomimetic inspiration for the design of flapping-wing micro air vehicles (FWMAVs). In this study, the Asian ladybird (Harmonia axyridis Pallas) was chosen as the bionic research object. Various kinematic parameters of its flapping flight were analyzed, including the flight characteristics of the hindwings, wing tip motion trajectories, and aerodynamic characteristics. Based on these results, a flapping kinematic model of the Asian ladybird was established. Then, three bionic deployable wing models were designed and their structural mechanical properties were analyzed. The results show that the structure of wing vein bars determined the mechanical properties of the bionic wing. This study can provide a theoretical basis and technical reference for further bionic wing design. Full article
Show Figures

Graphical abstract

25 pages, 3082 KB  
Article
Aerodynamic Analysis of Hovering Flapping Wing Using Multi-Plane Method and Quasi-Steady Blade Element Theory
by Ruiqi Ye, Ziming Liu, Jin Cui, Chenyang Wang and Yirong Wu
Appl. Sci. 2024, 14(10), 4258; https://doi.org/10.3390/app14104258 - 17 May 2024
Cited by 1 | Viewed by 1782
Abstract
In the design of flapping-wing micro-size air vehicles capable of hovering, wings serve as the primary source of hovering power, making the analysis of aerodynamics and aerodynamic efficiency crucial. Traditional quasi-steady models treat the wings as single rigid plane, neglecting the deformable characteristics [...] Read more.
In the design of flapping-wing micro-size air vehicles capable of hovering, wings serve as the primary source of hovering power, making the analysis of aerodynamics and aerodynamic efficiency crucial. Traditional quasi-steady models treat the wings as single rigid plane, neglecting the deformable characteristics of flexible wings. This paper proposes a multi-plane method that, in conjunction with various design parameters of flexible wings in a two-dimensional plane, analyzes their deformation characteristics under the assumption of multiple planes in three-dimensional space, and describes the deformation of wings during flapping. By combining the quasi-steady aerodynamic model, aerodynamic analysis of the deformed wings can be conducted. The relationship between the slack angle, wing flapping position, and wing deformation are analyzed, along with their effects on aerodynamics and aerodynamic efficiency. Experiments validate the deformation patterns of wings during flapping and compare the simulated aerodynamic forces with measured ones. The results indicate that wing deformation can be accurately described by adjusting the parameters in the multi-plane method and that the aerodynamic analysis using this method closely approximates the average lift results. Additionally, the multi-plane method establishes a connection between wing morphology and aerodynamic forces and efficiency, providing valuable insights for aerodynamic analysis. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

2 pages, 116 KB  
Abstract
On the Flight Control of Flapping Wing Micro Air Vehicles with Model-Based Reinforcement Learning
by Romain Poletti, Lilla Koloszar and Miguel Alfonso Mendez
Proceedings 2024, 107(1), 33; https://doi.org/10.3390/proceedings2024107033 - 15 May 2024
Viewed by 589
Abstract
Hummingbirds and insects can hover in disturbed conditions, escape from predators with a very fast response, fly for miles without landing, etc [...] Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Biomimetics)
17 pages, 4983 KB  
Article
HiFly-Dragon: A Dragonfly Inspired Flapping Flying Robot with Modified, Resonant, Direct-Driven Flapping Mechanisms
by He Ma, Peiyi Gong, Yuqiang Tian, Qingnan Wu, Min Pan, Hao Yin, Youjiang Liu and Chilai Chen
Drones 2024, 8(4), 126; https://doi.org/10.3390/drones8040126 - 28 Mar 2024
Cited by 10 | Viewed by 7306
Abstract
This paper describes a dragonfly-inspired Flapping Wing Micro Air Vehicle (FW-MAV), named HiFly-Dragon. Dragonflies exhibit exceptional flight performance in nature, surpassing most of the other insects, and benefit from their abilities to independently move each of their four wings, including adjusting the flapping [...] Read more.
This paper describes a dragonfly-inspired Flapping Wing Micro Air Vehicle (FW-MAV), named HiFly-Dragon. Dragonflies exhibit exceptional flight performance in nature, surpassing most of the other insects, and benefit from their abilities to independently move each of their four wings, including adjusting the flapping amplitude and the flapping amplitude offset. However, designing and fabricating a flapping robot with multi-degree-of-freedom (multi-DOF) flapping driving mechanisms under stringent size, weight, and power (SWaP) constraints poses a significant challenge. In this work, we propose a compact microrobot dragonfly with four tandem independently controllable wings, which is directly driven by four modified resonant flapping mechanisms integrated on the Printed Circuit Boards (PCBs) of the avionics. The proposed resonant flapping mechanism was tested to be able to enduringly generate 10 gf lift at a frequency of 28 Hz and an amplitude of 180° for a single wing with an external DC power supply, demonstrating the effectiveness of the resonance and durability improvement. All of the mechanical parts were integrated on two PCBs, and the robot demonstrates a substantial weight reduction. The latest prototype has a wingspan of 180 mm, a total mass of 32.97 g, and a total lift of 34 gf. The prototype achieved lifting off on a balance beam, demonstrating that the directly driven robot dragonfly is capable of overcoming self-gravity with onboard batteries. Full article
Show Figures

Figure 1

15 pages, 3834 KB  
Article
The Functions of Phasic Wing-Tip Folding on Flapping-Wing Aerodynamics
by Yiming Li, Keyu Li, Fang Fu, Yao Li and Bing Li
Biomimetics 2024, 9(3), 183; https://doi.org/10.3390/biomimetics9030183 - 18 Mar 2024
Cited by 2 | Viewed by 2411
Abstract
Insects produce a variety of highly acrobatic maneuvers in flight owing to their ability to achieve various wing-stroke trajectories. Among them, beetles can quickly change their flight velocities and make agile turns. In this work, we report a newly discovered phasic wing-tip-folding phenomenon [...] Read more.
Insects produce a variety of highly acrobatic maneuvers in flight owing to their ability to achieve various wing-stroke trajectories. Among them, beetles can quickly change their flight velocities and make agile turns. In this work, we report a newly discovered phasic wing-tip-folding phenomenon and its aerodynamic basis in beetles. The wings’ flapping trajectories and aerodynamic forces of the tethered flying beetles were recorded simultaneously via motion capture cameras and a force sensor, respectively. The results verified that phasic active spanwise-folding and deployment (PASFD) can exist during flapping flight. The folding of the wing-tips of beetles significantly decreased aerodynamic forces without any changes in flapping frequency. Specifically, compared with no-folding-and-deployment wings, the lift and forward thrust generated by bilateral-folding-and-deployment wings reduced by 52.2% and 63.0%, respectively. Moreover, unilateral-folding-and-deployment flapping flight was found, which produced a lateral force (8.65 mN). Therefore, a micro-flapping-wing mechanism with PASFD was then designed, fabricated, and tested in a motion capture and force measurement system to validate its phasic folding functions and aerodynamic performance under different operating frequencies. The results successfully demonstrated a significant decrease in flight forces. This work provides valuable insights for the development of flapping-wing micro-air-vehicles with high maneuverability. Full article
(This article belongs to the Special Issue Design, Fabrication and Control of Bioinspired Soft Robots)
Show Figures

Figure 1

18 pages, 516 KB  
Article
Distributed State Estimation for Flapping-Wing Micro Air Vehicles with Information Fusion Correction
by Xianglin Zhang, Mingqiang Luo, Simeng Guo and Zhiyang Cui
Biomimetics 2024, 9(3), 167; https://doi.org/10.3390/biomimetics9030167 - 10 Mar 2024
Viewed by 1839
Abstract
In this paper, we explore a nonlinear interactive network system comprising nodalized flapping-wing micro air vehicles (FMAVs) to address the distributed H state estimation problem associated with FMAVs. We enhance the model by introducing an information fusion function, leading to an information-fusionized [...] Read more.
In this paper, we explore a nonlinear interactive network system comprising nodalized flapping-wing micro air vehicles (FMAVs) to address the distributed H state estimation problem associated with FMAVs. We enhance the model by introducing an information fusion function, leading to an information-fusionized estimator model. This model ensures both estimation accuracy and the completeness of FMAV topological information within a unified framework. To facilitate the analysis, each FMAV’s received signal is individually sampled using independent and time-varying samplers. Transforming the received signals into equivalent bounded time-varying delays through the input delay method yields a more manageable and analyzable time-varying nonlinear network error system. Subsequently, we construct a Lyapunov–Krasovskii functional (LKF) and integrate it with the refined Wirtinger and relaxed integral inequalities to derive design conditions for the FMAVs’ distributed H state estimator, minimizing conservatism. Finally, we validate the effectiveness and superiority of the designed estimator through simulations. Full article
(This article belongs to the Special Issue Bio-Inspired Design and Control of Unmanned Aerial Vehicles (UAVs))
Show Figures

Figure 1

18 pages, 13630 KB  
Article
Maneuvering Characteristics of Bilateral Amplitude–Asymmetric Flapping Motion Based on a Bat-Inspired Flexible Wing
by Chuyi Lilong and Yongliang Yu
Biomimetics 2024, 9(3), 148; https://doi.org/10.3390/biomimetics9030148 - 29 Feb 2024
Viewed by 1850
Abstract
Flapping-wing micro air vehicles (FWMAVs) have gained much attention from researchers due to their exceptional performance at low Reynolds numbers. However, the limited understanding of active aerodynamic modulation in flying creatures has hindered their maneuverability from reaching that of their biological counterparts. In [...] Read more.
Flapping-wing micro air vehicles (FWMAVs) have gained much attention from researchers due to their exceptional performance at low Reynolds numbers. However, the limited understanding of active aerodynamic modulation in flying creatures has hindered their maneuverability from reaching that of their biological counterparts. In this article, experimental investigations were conducted to examine the effect of the bilateral amplitude asymmetry of flexible flapping wings. A reduced bionic model featuring bat-like wings is built, and a dimensionless number ΔΦ* is introduced to scale the degree of bilateral amplitude asymmetry in flapping motion. The experimental results suggest that the bilateral amplitude–asymmetric flapping motion primarily induces maneuvering control forces of coupling roll moment and yaw moment. Also, roll moment and yaw moment have a good linear relationship. To achieve more efficient maneuvers based on this asymmetric motion, it is advisable to maintain ΔΦ* within the range of 0 to 0.4. The magnitude of passive pitching deformation during the downstroke is significantly greater than that during the upstroke. The phase of the peak of the passive pitching angle advances with the increase in flapping amplitude, while the valleys lag. And the proportion of pronation and supination in passive pitching motion cannot be adjusted by changing the flapping amplitude. These findings have important practical relevance for regulating turning maneuvers based on amplitude asymmetry and help to understand the active aerodynamic modulation mechanism through asymmetric wing kinematics. Full article
Show Figures

Figure 1

Back to TopTop