Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (331)

Search Parameters:
Keywords = GC × GC-TOF-MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 5132 KB  
Article
Multi-Technique Flavoromics for Identifying Key Differential Volatile Compounds Underlying Sensory Profiles in Lager Beers
by Yiyuan Chen, He Huang, Ruiyang Yin, Xiuli He, Liyun Guo, Yumei Song, Dongrui Zhao, Jinyuan Sun, Jinchen Li, Mingquan Huang and Baoguo Sun
Foods 2025, 14(19), 3428; https://doi.org/10.3390/foods14193428 - 5 Oct 2025
Viewed by 390
Abstract
In this study, inter-brand variations in volatile flavor compound profiles of four lager beers were systematically investigated by integrating sensory evaluation with GC-MS, GC×GC-TOF-MS, and GC-O-MS. A total of 594 volatile compounds were identified, of which 71 with odor activity values (OAV) ≥ [...] Read more.
In this study, inter-brand variations in volatile flavor compound profiles of four lager beers were systematically investigated by integrating sensory evaluation with GC-MS, GC×GC-TOF-MS, and GC-O-MS. A total of 594 volatile compounds were identified, of which 71 with odor activity values (OAV) ≥ 1 were found to contribute directly to aroma expression. Additionally, 59 compounds with taste activity values (TAV) ≥ 1 were identified and may also contribute to taste perception. Furthermore, 53 aroma-active compounds were confirmed through GC-O-MS, providing additional evidence for their sensory contribution. Partial least squares discriminant analysis (PLS-DA), correlation analysis, and flavor addition experiments revealed brand-specific differential flavor compounds. Ultimately, twenty key differential flavor compounds, encompassing esters, alcohols, aromatic compounds, acids, lactones, and others, were confirmed to contribute to fruity, floral, burnt, and sweet notes. Phenethyl alcohol, with concentrations varying from 1377.1 mg/L in QD to 3297.5 mg/L in HR, showed a more than 2.4-fold difference across brands and was strongly associated with fruity (r = 0.553) and floral (r = 0.564) aroma. These compounds acted in combination to shape distinct aroma profiles. This study provides a molecular-level basis for understanding lager beer flavor and offers practical guidance for targeted flavor modulation in brewing. Full article
(This article belongs to the Special Issue Sensory Detection and Analysis in Food Industry)
Show Figures

Graphical abstract

22 pages, 3938 KB  
Article
Tree Species Overcome Edaphic Heterogeneity in Shaping the Urban Orchard Soil Microbiome and Metabolome
by Emoke Dalma Kovacs and Melinda Haydee Kovacs
Horticulturae 2025, 11(10), 1163; https://doi.org/10.3390/horticulturae11101163 - 30 Sep 2025
Viewed by 538
Abstract
Despite the increasing recognition of the role of urban orchard ecosystems in sustainable urban development, the mechanistic understanding of how tree species soil biochemical heterogeneity drives microbial community assembly, the spatial patterns governing microbe-environment interactions, and their collective contributions to ecosystem multifunctionality remain [...] Read more.
Despite the increasing recognition of the role of urban orchard ecosystems in sustainable urban development, the mechanistic understanding of how tree species soil biochemical heterogeneity drives microbial community assembly, the spatial patterns governing microbe-environment interactions, and their collective contributions to ecosystem multifunctionality remain poorly characterized. This study investigated how Prunus species and soil depth affect microbial biodiversity and metabolomic signatures in an urban orchard in Cluj-Napoca, Romania. Soil samples were collected from five fruit tree species (apricot, peach, plum, cherry, and sour cherry) across three depths (0–10, 10–20, and 20–30 cm), resulting in 225 samples. The microbial community structure was analyzed through phospholipid fatty acid (PLFA) profiling, whereas the soil metabolome was analyzed by mass spectrometry techniques, including gas chromatography–mass spectrometry (GC–MS/MS) and MALDI time-of-flight (TOF/TOF) MS, which identified 489 compounds across 18 chemical classes. The results revealed significant tree species-specific effects on soil microbial biodiversity, with bacterial biomarkers dominating and total microbial biomass varying among species. The soils related to apricot trees presented the highest microbial activity, particularly in the surface layers. Metabolomic analysis revealed 247 distinct KEGG-annotated metabolites, with sour cherry exhibiting unique organic acid profiles and cherry showing distinctive quinone accumulation. Depth stratification influenced both microbial communities and metabolite composition, reflecting oxygen gradients and substrate availability. These findings provide mechanistic insights into urban orchard soil biogeochemistry, suggesting that strategic species selection can harness tree species-soil microbe interactions to optimize urban soil ecosystem services and enhance urban biodiversity conservation. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

24 pages, 2415 KB  
Article
Antibacterial, Antifungal, and Wound-Healing Activities and Chemical Characterization of Propolis from Apis mellifera in Michoacan, Mexico
by Ana Bertha Hernandez-Hernandez, Mario Rodriguez-Canales, Pilar Dominguez-Verano, Uriel Nava-Solis, Marco Aurelio Rodriguez-Monroy and María Margarita Canales-Martinez
Molecules 2025, 30(19), 3880; https://doi.org/10.3390/molecules30193880 - 25 Sep 2025
Viewed by 395
Abstract
The aim of this study was to evaluate the antibacterial and antifungal activities, wound-healing efficacy, and chemical characteristics of hexanic, chloroformic, and methanolic extracts of propolis from Michoacan, Mexico. Antibacterial activity was determined using Gram-positive and Gram-negative bacteria, antifungal activity was determined using [...] Read more.
The aim of this study was to evaluate the antibacterial and antifungal activities, wound-healing efficacy, and chemical characteristics of hexanic, chloroformic, and methanolic extracts of propolis from Michoacan, Mexico. Antibacterial activity was determined using Gram-positive and Gram-negative bacteria, antifungal activity was determined using yeast and filamentous fungi and wound-healing efficacy was determined using the tensiometric and histological methods in mouse skin. Antioxidant capacity, phenols, and total flavonoids were quantified. Propolis was subjected to high-performance liquid chromatography (HPLC-DAD), high-performance liquid chromatography–mass spectrometry (HPLC-TOF-MS), and gas chromatography–mass spectrometry (GC-MS). The methanolic extract showed the best antibacterial activity, and the most sensitive bacteria was Staphylococcus aureus. For antifungal activity, yeasts and filamentous fungi showed sensitivity to the methanolic extract, with Candida albicans and Trichophyton mentagrophytes being the strains with the highest sensitivity to the extract. Regarding wound-healing efficacy, when using the tensiometric method, the methanolic extract presented the highest efficacy, surpassing the positive control (Recoveron). In the histological evaluation, the methanolic extract provided more resistance to the wound and demonstrated an antioxidant capacity of 12.23 µg/mL, a total phenolic content of 580 mg GAE/g, and a total flavonoid content of 12.35 mg QE/g. In the chemical analysis, flavanols, flavones, and flavanones were identified. Full article
(This article belongs to the Special Issue Bee Products: Recent Progress in Health Benefits Studies, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 1928 KB  
Article
Chemometric Discrimination of Korean and Chinese Kimchi Using Untargeted Metabolomics
by Quynh-An Nguyen, Dong-Shin Kim, Hyo-Dong Kim, Kyu-Bin Kim, Kyung-Sik Ham, Yonghoon Lee and Hyun-Jin Kim
Metabolites 2025, 15(10), 640; https://doi.org/10.3390/metabo15100640 - 25 Sep 2025
Viewed by 363
Abstract
Background/Objectives: Kimchi has gained global recognition for its unique taste and health benefits, but its quality is totally different according to its geographical origin of materials and production methods. Methods: In this study, differences between Korean (53 samples) and Chinese kimchi (72 samples) [...] Read more.
Background/Objectives: Kimchi has gained global recognition for its unique taste and health benefits, but its quality is totally different according to its geographical origin of materials and production methods. Methods: In this study, differences between Korean (53 samples) and Chinese kimchi (72 samples) were investigated through comprehensive metabolomic analysis using gas chromatography–mass spectrometry (GC-MS) and ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS). Results: Multivariate statistical analyses revealed a clear separation between the two groups. Thirty-four metabolites contributing to the separation were identified. Korean kimchi was enriched in sucrose, quinic acid, sinapic acid derivatives, rutin, capsicosin, and capsianoside, while Chinese kimchi contained higher levels of trihydroxy octadecenoic acid, 2-hydroxypalmitic acid, pinellic acid, maltose, glucuronic acid, and corchorifatty acid F. In particular, the univariate Bayesianlogistic regression analysis revealed that among these metabolites, rutin, capsicosin derivatives, and sinapic acid derivatives showed strong potential as origin-discriminant markers of kimchi, providing insights into how these metabolites influence its nutritional and sensory properties. Conclusions: These compositional differences may be attributed to variations in raw materials and production methods of kimchi. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Graphical abstract

20 pages, 6146 KB  
Article
Integrated Multi-Omics Approaches Provide Novel Insights into the Mechanisms Underlying Signature Flavor Development in Mulberry Fruits
by Jiamei He, Xing Zhang, Song Chen, Jiahu Yang and Zhengang Li
Foods 2025, 14(19), 3309; https://doi.org/10.3390/foods14193309 - 24 Sep 2025
Viewed by 373
Abstract
With the increasing consumption of mulberry fruits in commercial markets, flavor profiles have emerged as critical determinants of consumer preference and market acceptance. This investigation utilized four Morus laevigata (Morus L.) accessions exhibiting pronounced variations in fruit pigmentation and flavor characteristics as [...] Read more.
With the increasing consumption of mulberry fruits in commercial markets, flavor profiles have emerged as critical determinants of consumer preference and market acceptance. This investigation utilized four Morus laevigata (Morus L.) accessions exhibiting pronounced variations in fruit pigmentation and flavor characteristics as experimental materials. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOF MS) was employed to identify key volatile aromatic compounds, while integrated untargeted metabolomics and transcriptomics approaches were applied to elucidate the underlying mechanisms of flavor biosynthesis. Analysis revealed that aldehydes, ketones, lactones, and heterocyclic compounds constitute the primary volatile organic compounds responsible for M. laevigata flavor complexity. The biosynthesis of these volatile aromatic compounds exhibits a direct correlation with lipid metabolite oxidation pathways. Concurrently, oxidative processes are modulated by M. laevigata flavonoid metabolites with antioxidant properties, which subsequently regulate both the compositional profile and quantitative distribution of volatile aromatic compounds. These findings offer novel insights into the metabolite–volatile compound interactions within mulberry systems, establishing a foundational framework for advancing fruit flavor research and cultivar development programs. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

18 pages, 5707 KB  
Article
Comparison of the Metabolic and Flavor Characteristics of the Egg Yolks of BIAN Chicken and Hy-Line Brown Chicken Using LC-MS and GC × GC-TOF MS Techniques
by Bochi Zhang, Xianyi Song, Kaige Li, Kai Zhang, Rui Zhao, Chunlei Yang and Liying Du
Metabolites 2025, 15(9), 609; https://doi.org/10.3390/metabo15090609 - 12 Sep 2025
Viewed by 428
Abstract
Objectives: This study systematically compared the differences in egg quality between the BIAN chicken, an indigenous breed of Shanxi Province, and the Hy-Line Brown, a commercial breed, through the integration of non-targeted metabolomics and volatile flavoromics methods. Methods: A total of 675 metabolites [...] Read more.
Objectives: This study systematically compared the differences in egg quality between the BIAN chicken, an indigenous breed of Shanxi Province, and the Hy-Line Brown, a commercial breed, through the integration of non-targeted metabolomics and volatile flavoromics methods. Methods: A total of 675 metabolites and 84 volatile flavor compounds were identified in eggs from 300-day-old laying hens using LC-MS and GC × GC-TOF MS techniques. Results: BIAN chicken eggs exhibited notable advantages in flavor quality. The relative odor activity value (ROAV) of 1-octen-3-ol, a key flavor component, was 27.01 in BIAN compared with 13.46 in Hy-Line Brown, contributing to the characteristic mushroom aroma of BIAN eggs. Furthermore, the levels of heptaldehyde, 2-pentylfuran, and styrene in BIAN chicken eggs were significantly elevated, contributing to its characteristic flavor profile. Metabolomic analysis identified 40 breed-specific metabolites in BIAN chicken, with 21 up-regulated and 19 down-regulated. These metabolites were primarily involved in biological processes such as α-linolenic acid metabolism, cholesterol metabolism, and unsaturated fatty acid biosynthesis, highlighting the distinctive lipid metabolism regulation in BIAN chicken. Sensory evaluation based on relative odor activity values (ROAV) demonstrated that BIAN chicken eggs exhibited enhanced sweet, fruity, herbal, and citrus aromas, which correlated with the enriched lipid metabolism pathways. Conclusions: This study elucidates the molecular basis of distinctive egg quality characteristics in local chicken breeds, offering a scientific rationale for the conservation and utilization of indigenous breeds and the documentation of their unique metabolic and sensory properties. Furthermore, it furnishes a theoretical framework for understanding breed-specific flavor development and provides baseline data for future genetic selection and nutritional intervention strategies. Full article
(This article belongs to the Special Issue Metabolomics in Food Science and Nutrition Using GC-MS)
Show Figures

Figure 1

17 pages, 1171 KB  
Review
Applications and Challenges of Modern Analytical Techniques for the Identification of Plant Gum in the Polychrome Cultural Heritage
by Liang Xu, Weijia Zhu, Xi Chen and Xinyou Liu
Coatings 2025, 15(9), 1042; https://doi.org/10.3390/coatings15091042 - 5 Sep 2025
Viewed by 435
Abstract
Plant gums have long served as essential binding media in polychrome cultural heritage, contributing to pigment adhesion, surface cohesion, and long-term stability. This review evaluates recent advances in analytical technologies, including FTIR, Raman spectroscopy, GC-MS, LC-MS/MS, MALDI-TOF MS, hyperspectral imaging, and immunological assays, [...] Read more.
Plant gums have long served as essential binding media in polychrome cultural heritage, contributing to pigment adhesion, surface cohesion, and long-term stability. This review evaluates recent advances in analytical technologies, including FTIR, Raman spectroscopy, GC-MS, LC-MS/MS, MALDI-TOF MS, hyperspectral imaging, and immunological assays, for the identification of gums such as gum arabic, peach gum, and tragacanth in diverse cultural contexts. Drawing on case studies from 19th-century watercolours, ancient Egyptian coffins, and Maya murals, the paper demonstrates how these methods enable precise chemical characterization even in complex, aged, and mineral-rich matrices. Such information directly aids conservators in selecting compatible restoration materials, tailoring treatment protocols, and assessing deterioration mechanisms. Persistent challenges remain, including gum degradation, spectral interference from pigments and restoration materials, sample heterogeneity, and limited reference libraries, particularly for non-European species. Future research directions emphasize multi-modal, non-invasive workflows that integrate hyperspectral imaging with spectroscopic and chromatographic methods, drone-assisted micro-Raman for inaccessible surfaces, machine learning-assisted spectral databases, and bio-inspired adhesives replicating historical rheology. By linking molecular identification to conservation decision-making, plant gum analysis not only deepens our understanding of historical material practices but also strengthens the scientific basis for sustainable heritage preservation strategies. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

14 pages, 1756 KB  
Article
In-Depth Investigation of the Chemical Profile of Pelargonium odoratissimum (L.) L’Hér. Hydrolate by SPME-GC/MS, GC/MS, LVI-GC/MS and PTR-Tof-MS Techniques
by Cosimo Taiti, Vittorio Vinciguerra, Monica Mollica Graziano, Elisa Masi and Stefania Garzoli
Chemosensors 2025, 13(9), 325; https://doi.org/10.3390/chemosensors13090325 - 1 Sep 2025
Viewed by 538
Abstract
Hydrolates are aromatic aqueous solutions saturated with volatile water-soluble compounds of essential oil. Despite their potential, hydrolates remain less explored than essential oils. In this work, the hydrolate of Pelargonium odoratissimum (L.) L’Hér. has been analyzed by multiple analytical techniques in order to [...] Read more.
Hydrolates are aromatic aqueous solutions saturated with volatile water-soluble compounds of essential oil. Despite their potential, hydrolates remain less explored than essential oils. In this work, the hydrolate of Pelargonium odoratissimum (L.) L’Hér. has been analyzed by multiple analytical techniques in order to describe its chemical composition. Headspace (HS-) and Direct Immersion-Solid Phase Microextraction-Gas Chromatography/Mass spectrometry (DI-SPME-GC/MS) and Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were employed to reveal the VOC emission from the hydrolate. Further, a direct injection of the pure hydrolate and of the hydrolate after extraction with hexane was performed by Large-Volume Injection Gas Chromatography/Mass Spectrometry (LVI-GC/MS) and GC/MS. The results obtained by HS- and DI-SPME-GC/MS highlighted a nearly overlapping chemical profile with linalool, isomenthone, and α-terpineol as the main volatiles. On the other hand, analysis of the hydrolate by GC/MS after solvent extraction revealed a lower overall number of compounds but allowed the detection of thujone and cis-linalool oxide. In comparison, LVI-GC/MS was the technique that allowed the identification of a higher number of volatiles with citronellol, linalool, and α-terpineol as the principal compounds. Finally, PTR-ToF-MS was a fundamental approach to quantify and evaluate total terpene emissions from this complex matrix starting from low-molecular-weight compounds such as acetylene, methanol, acetaldehyde, acetone, and ethanol, which were the most abundant. Among the detected compounds, dimethyl sulfide and small amounts of dimethyl-furan and 2-butylfuran were also identified. Overall, the findings showed that the hydrolate was rich in monoterpene compounds while sesquiterpene compounds were missing. A very low intensity relating to sesquiterpenes was recorded only by PTR-ToF-MS technique. Full article
Show Figures

Figure 1

13 pages, 771 KB  
Article
Two-Dimensional GC–ToFMS Analysis of Volatile Organic Compounds in Fermented Camel Milk (Shubat)
by Sagyman Zhadyra, Fei Tao and Ping Xu
Foods 2025, 14(17), 2995; https://doi.org/10.3390/foods14172995 - 27 Aug 2025
Viewed by 678
Abstract
Shubat, a traditional fermented camel milk from Kazakhstan, is renowned for its unique flavor and nutritional properties, though its volatile compound profile remains poorly characterized. In this study, headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (HS-SPME-GC×GC–ToFMS) was employed to [...] Read more.
Shubat, a traditional fermented camel milk from Kazakhstan, is renowned for its unique flavor and nutritional properties, though its volatile compound profile remains poorly characterized. In this study, headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (HS-SPME-GC×GC–ToFMS) was employed to qualitatively identify and semi-quantitatively analyze volatile metabolites in seven Shubat samples collected from four regions of Kazakhstan. Of the 372 volatile organic compounds initially detected, 202 were retained after screening, predominantly comprising esters, acids, alcohols, ketones, and aldehydes. Esters, acids, and alcohol were found to be the most abundant categories. Diversity analyses (α and β) revealed substantial variation across regions, likely influenced by Shubat’s rich and region-specific microbiome. An UpSet analysis demonstrated that 75 volatile compounds were shared among all samples, accounting for over 87% of the total volatile content, indicating a chemically stable core. These findings underscore the chemical complexity of Shubat and provide novel insights into its metabolite composition, thereby establishing a foundation for future sensory, microbial, and quality-related research. Full article
(This article belongs to the Special Issue Food Microorganism Contribution to Fermented Foods)
Show Figures

Figure 1

15 pages, 6299 KB  
Article
Qualitative and Quantitative Metabolite Comparison of Grain, Persimmon, and Apple Vinegars with Antioxidant Activities
by Hyun-Ji Tak, Sowon Yang, So-Young Kim, Na-Rae Lee and Choong Hwan Lee
Antioxidants 2025, 14(8), 1029; https://doi.org/10.3390/antiox14081029 - 21 Aug 2025
Viewed by 1038
Abstract
Fermented vinegars have been highlighted globally for their health benefits. The benefits can differ according to the type of vinegar; therefore, we investigated the differences of 15 grain (GV), 10 persimmon (PV), and 14 apple vinegars (AV) using integrated non-targeted and targeted metabolome [...] Read more.
Fermented vinegars have been highlighted globally for their health benefits. The benefits can differ according to the type of vinegar; therefore, we investigated the differences of 15 grain (GV), 10 persimmon (PV), and 14 apple vinegars (AV) using integrated non-targeted and targeted metabolome analyses. We profiled non-volatile and volatile metabolites using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), ultra-high-performance liquid chromatography–orbitrap–tandem mass spectrometry, and headspace–solid-phase microextraction–GC-TOF-MS. Among the 132 identified metabolites, 73 non-volatile and 40 volatile metabolites showed significant differences across the three vinegar types. Amino acids, hydroxy fatty acids, phenolic compounds, aldehydes, pyrazines, and sulfides were abundant in GV. Some phenolic compounds, alcohols, and esters were abundant in PV, whereas carbohydrates, flavonoids, and terpenoids were abundant in AV, contributing to nutrients, tastes, and flavors. Bioactivity assays revealed that GV showed notable antioxidant activity, whereas PV and AV had the highest total phenolic and flavonoid contents, respectively. Through quantitative analysis, we revealed that acetic acid, propionic acid, butanoic acid, lactic acid, and alanine were major components in the three types of vinegar, although their composition was different in each vinegar. Our comprehensive qualitative and quantitative metabolite comparison provides insights into the differences among the three vinegar types, classified according to their raw materials. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

17 pages, 1886 KB  
Article
Volatilomic and Sensorial Profiles of Cabernet Sauvignon Wines Fermented with Different Commercial Yeasts
by Alejandra Chávez-Márquez, Alfonso A. Gardea, Humberto González-Rios, Maria del Refugio Robles-Burgueño and Luz Vázquez-Moreno
Fermentation 2025, 11(8), 485; https://doi.org/10.3390/fermentation11080485 - 21 Aug 2025
Viewed by 842
Abstract
Volatilomic and sensory analyses of wine are excellent tools for enologists and winemakers when selecting commercial yeast based on the production of metabolites related to desirable wine characteristics. Integrating this holistic approach could lead to the terroir description, characterization, and quality control improvement [...] Read more.
Volatilomic and sensory analyses of wine are excellent tools for enologists and winemakers when selecting commercial yeast based on the production of metabolites related to desirable wine characteristics. Integrating this holistic approach could lead to the terroir description, characterization, and quality control improvement of the vinification process. Volatilomic and sensory profiles of Cabernet Sauvignon Mexican wines fermented with three commercial yeasts (WLP740, ICVD254, and ICVD80) were obtained using HS-SPME-GC-qTOF/MS and CATA evaluation. A total of 100 volatile compounds were identified, with unique entities per strain. WLP740 wines were rated as high quality, presenting fruity and minty aromas with fewer off-aromas, while ICVD254 wines showed higher levels of compounds associated with off-notes and were rated as low quality. ICVD80 wines were of medium quality, with fruity esters and higher alcohols descriptors. Volatilomic profiles highlighted the role of specific compounds in differentiating strains and sensory attributes, while yeast selection significantly impacts wine aroma and quality. The authors acknowledge the need for further analyses, including an increased sample size, yeast species, diverse vineyards, and vinification processes, which will result in a solid and robust methodology. Full article
(This article belongs to the Special Issue Science and Technology of Winemaking)
Show Figures

Figure 1

24 pages, 1381 KB  
Article
Evaluation of the In Vitro Blood–Brain Barrier Transport of Ferula persica L. Bioactive Compounds
by Pouya Mohammadnezhad, Alberto Valdés, Melis Cokdinleyen, Jose A. Mendiola and Alejandro Cifuentes
Int. J. Mol. Sci. 2025, 26(16), 8017; https://doi.org/10.3390/ijms26168017 - 19 Aug 2025
Viewed by 687
Abstract
Species of the Ferula genus are known for their traditional medicinal applications against diverse illnesses. Our previous study was the first to suggest the cholinesterase inhibitory activity of Ferula persica L. However, the neuroprotective efficacy of therapeutic molecules is often limited by their [...] Read more.
Species of the Ferula genus are known for their traditional medicinal applications against diverse illnesses. Our previous study was the first to suggest the cholinesterase inhibitory activity of Ferula persica L. However, the neuroprotective efficacy of therapeutic molecules is often limited by their ability to cross the blood–brain barrier (BBB) and reach the brain. In the present study, the BBB permeability of the main molecules present in the aerial parts and roots of F. persica L. extracted under optimum conditions was assessed using two well-established methods: the parallel artificial membrane permeability assay (PAMPA) and the HBMEC cell culture in vitro model. The results demonstrated a high permeability of several neuroprotective compounds, such as apigenin, diosmetin, and α-cyperone. Additionally, the neuroprotective potential of F. persica extracts was evaluated using SH-SY5Y neuron-like cells exposed to different insults, including oxidative stress (H2O2), excitotoxicity (L-glutamate), and Aβ1-42 peptide toxicity. However, none of the obtained extracts provided significant protection. This study highlights the importance of in vitro cell culture models for a better understanding of BBB permeability mechanisms and reports the tentative identification of newly formed sulfated metabolites derived from the metabolism of ferulic acid, apigenin, and diosmetin by HBMEC cells. Full article
Show Figures

Graphical abstract

14 pages, 793 KB  
Article
Chemometric Fingerprinting of Petroleum Hydrocarbons Within Oil Sands Tailings Using Comprehensive Two-Dimensional Gas Chromatography
by Mike Dereviankin, Lesley Warren and Gregory F. Slater
Separations 2025, 12(8), 211; https://doi.org/10.3390/separations12080211 - 12 Aug 2025
Viewed by 430
Abstract
Base Mine Lake (BML) is the first full-scale demonstration of water-capped tailing technology in a pit lake to reclaim lands impacted by surface mining in the Alberta Oil Sands Region (AOSR). Biogeochemical cycling and/or exchange near the fluid water interface (FWI) of the [...] Read more.
Base Mine Lake (BML) is the first full-scale demonstration of water-capped tailing technology in a pit lake to reclaim lands impacted by surface mining in the Alberta Oil Sands Region (AOSR). Biogeochemical cycling and/or exchange near the fluid water interface (FWI) of the organic-rich fluid fine tailings (FFT) can hinder the reclamation process. To monitor this activity, sedimentary depth profiles were collected from three platforms (P1 to P3) at BML. Seventy-four chromatographically well-resolved petroleum hydrocarbon (PHC) isomers were quantified at each depth interval using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC/TOFMS). The range of total concentrations of all isomers examined across the FFT was the highest at P1 (range = 3.6 × 100–5.5 × 103 ng/g TOC), second highest at P2 (range = 3.8 × 100–1.9 × 103 ng/g TOC), and lowest at P3 (range = 5.6 × 100–7.1 × 102 ng/g TOC). The elevated levels of the same isomers across platforms suggest a consistent source fingerprint. While the source fingerprint was mostly consistent across the platforms and depths, Principal Component Analysis (PCA) identified small differences between geospatial locations caused by variations in specific isomer concentrations. Hierarchical Clustering Analysis (HCA) identified the isomers responsible for the PCA separation, showing that the concentrations of low-molecular-weight n-alkanes (C11–C13) and drimane varied compared to the heavier PHCs with depth. These alkanes are the most biodegradable of the compounds identified in this study, and their variations may reflect biogeochemical cycling within the FFT. Combining these statistical tools provided deeper insight into how isomer concentrations vary with depth, helping to identify possible influences like changing inputs, biogeochemical cycling, and species exchange with the water column. Full article
(This article belongs to the Section Forensics/Toxins)
Show Figures

Figure 1

31 pages, 3929 KB  
Article
Application of Multiplatform Mass Spectrometry to the Study of Babesia divergens Metabolism and the Pathogenesis of Human Babesiosis
by Miguel Fernández-García, Luis Miguel Gonzalez, Elena Sevilla, Aitor Gil, Henrique Santos-Oliveira, Belen Revuelta, Coral Barbas, Mª Fernanda Rey-Stolle, Estrella Montero and Antonia García
Int. J. Mol. Sci. 2025, 26(16), 7677; https://doi.org/10.3390/ijms26167677 - 8 Aug 2025
Viewed by 536
Abstract
Babesia divergens is a tick-borne apicomplexan parasite that causes human babesiosis, a malaria-like disease. B. divergens metabolism remains poorly characterized. Here, we employed a multiplatform mass spectrometry-based metabolomics approach (using CE-TOF/MS, GC-QTOF/MS, LC-QTOF/MS, and LC-QqQ/MS) to profile intra- and extracellular metabolic changes in [...] Read more.
Babesia divergens is a tick-borne apicomplexan parasite that causes human babesiosis, a malaria-like disease. B. divergens metabolism remains poorly characterized. Here, we employed a multiplatform mass spectrometry-based metabolomics approach (using CE-TOF/MS, GC-QTOF/MS, LC-QTOF/MS, and LC-QqQ/MS) to profile intra- and extracellular metabolic changes in B. divergens-infected and uninfected red blood cells (RBCs) and their supernatants. Our results indicate alterations in the metabolome caused by B. divergens infection and proliferation within RBCs. These findings are consistent with the major metabolic dependencies of B. divergens, including extracellular glucose, glutamine, and arginine, accompanied by the accumulation of glycolytic and TCA cycle intermediates. We identified altered nucleotide metabolism, pentose phosphate pathway activity, and redox imbalance. Depletion of lysoglycerophospholipids, glucose, arginine, and glutamine, and accumulation of free heme and sphingolipids suggested pathogenic effects. Growth experiments indicate that glucose and glutamine, but not hypoxanthine, are required for parasite growth. We additionally discovered a phosphorylated HEPES derivative (PEPES) produced upon B. divergens infection of RBCs in vitro. Collectively, these findings and their global interpretation provide insights into B. divergens metabolism and metabolic dependencies and host–parasite metabolic interactions and outline potential directions for future studies on human babesiosis diagnosis, prognosis assessment, and treatment. Full article
(This article belongs to the Special Issue Research Progress of Metabolomics in Health and Disease)
Show Figures

Figure 1

19 pages, 3543 KB  
Article
Chemometric Approach for Discriminating the Volatile Profile of Cooked Glutinous and Normal-Amylose Rice Cultivars from Representative Japanese Production Areas Using GC × GC-TOFMS
by Takayoshi Tanaka, Junhan Zhang, Shuntaro Isoya, Tatsuro Maeda, Kazuya Hasegawa and Tetsuya Araki
Foods 2025, 14(15), 2751; https://doi.org/10.3390/foods14152751 - 6 Aug 2025
Viewed by 698
Abstract
Cooked-rice aroma strongly affects consumer choice, yet the chemical traits distinguishing glutinous rice from normal-amylose japonica rice remain underexplored because earlier studies targeted only a few dozen volatiles using one-dimensional gas chromatography–mass spectrometry (GC-MS). In this study, four glutinous and seven normal Japanese [...] Read more.
Cooked-rice aroma strongly affects consumer choice, yet the chemical traits distinguishing glutinous rice from normal-amylose japonica rice remain underexplored because earlier studies targeted only a few dozen volatiles using one-dimensional gas chromatography–mass spectrometry (GC-MS). In this study, four glutinous and seven normal Japanese cultivars were cooked under identical conditions, their headspace volatiles trapped with MonoTrap and qualitatively profiled by comprehensive GC × GC-TOFMS. The two-dimensional platform resolved 1924 peaks—about ten-fold previous coverage—and, together with hierarchical clustering, PCA, heatmap visualization and volcano plots, cleanly separated the starch classes (78.3% cumulative PCA variance; Euclidean distance > 140). Volcano plots highlighted 277 compounds enriched in the glutinous cultivars and 295 in Koshihikari, including 270 compounds that were not previously documented in rice. Normal cultivars were dominated by ethers, aldehydes, amines and other nitrogenous volatiles associated with grainy, grassy and toasty notes. Glutinous cultivars showed abundant ketones, furans, carboxylic acids, thiols, steroids, nitro compounds, pyrroles and diverse hydrocarbons and aromatics, yielding sweeter, fruitier and floral accents. These results expand the volatile library for japonica rice, provide molecular markers for flavor-oriented breeding and demonstrate the power of GC × GC-TOFMS coupled with chemometrics for grain aroma research. Full article
Show Figures

Figure 1

Back to TopTop