Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,487)

Search Parameters:
Keywords = GDS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2655 KB  
Article
Experimental Assessment of Vegetation Density and Orientation Effects on Flood-Induced Pressure Forces and Structural Accelerations
by Imran Qadir, Afzal Ahmed, Abdul Razzaq Ghumman, Manousos Valyrakis, Syed Saqib Mehboob, Ghufran Ahmed Pasha, Fakhar Muhammad Abbas and Irfan Qadir
Water 2025, 17(19), 2879; https://doi.org/10.3390/w17192879 (registering DOI) - 2 Oct 2025
Abstract
This study aims to assess the effect of vegetation angle and density on hydrostatic pressure and acceleration of a downstream house model experimentally. The vegetation cylinders were positioned at angles 30°, 45°, 60° and 90° with respect to the flow and two densities [...] Read more.
This study aims to assess the effect of vegetation angle and density on hydrostatic pressure and acceleration of a downstream house model experimentally. The vegetation cylinders were positioned at angles 30°, 45°, 60° and 90° with respect to the flow and two densities of vegetation conditions, i.e., sparse (G/d = 2.13) and intermediate (G/d = 1.09), where G is the spacing between the model vegetation elements in the cross-stream di-rection and d is the vegetation diameter. The streamwise acceleration of the house model was measured by an X2-2 accelerometer that was located downstream from the vegetation patches. Results show that the perpendicular orientation of the vegetation patch (90°) most effectively reduces hydrodynamic loads, with intermediate density (I90) achieving the highest reductions, i.e., 22.1% for acceleration and 7.4% for pressure impacts. Even sparse vegetation (S90) provided substantial protection, reducing acceleration by 21.9% and pressure by 5.8%. These findings highlight the importance of integrating vegetation density and orientation into flood management designs to enhance both their performance and reliability under varying hydraulic conditions. Full article
20 pages, 12909 KB  
Article
Corrosion Behavior and Failure Mechanism of (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 Double-Ceramic Thermal Barrier Coatings in Na2SO4 + V2O5 Environment
by Chunman Wang, Hao Mei, Yong Shang, Xunxun Hu, Huidong Wu, Haiyuan Yu, Keke Chang, Jian Sun, Guanghua Liu, Guijuan Zhou, Chunlei Wan and Shengkai Gong
Coatings 2025, 15(10), 1147; https://doi.org/10.3390/coatings15101147 (registering DOI) - 2 Oct 2025
Abstract
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the [...] Read more.
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the double-ceramic TBCs with (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 (RHZ) as the outer layer and YSZ as the inner layer; thermal cycling corrosion tests (1000 °C, Na2SO4 + V2O5 molten salt) were conducted to compare its performance with traditional single-layer YSZ. The results showed that the YSZ corrosion products were m-ZrO2 and YVO4, while RHZ/YSZ produced rare-earth vanadates, m-(Zr,Hf)O2, and t′-(Zr,Hf)O2, and corrosion degree was positively correlated with salt concentration (which was more impactful) and the number of cycles. Both coatings failed via molten salt penetration, thermochemical reaction, and crack-induced spallation. The corrosion mechanism between the RHZ/YSZ coating and the mixed salt can be explained based on the Lewis acid–base theory and the optical basicity. The RHZ layer on the surface of RHZ/YSZ coatings indeed hinders the penetration of corrosive molten salts into the underlying YSZ layer to some extent. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

19 pages, 19633 KB  
Article
Effect of Top-Coat Structure on Thermal Stress in GdYb-YSZ/YSZ Double-Ceramic-Layer Thermal Barrier Coatings
by Haitao Yun, Yuhang Zhou, Tianjie Shi, Yuncheng Wang, Chunhua Cai, Xiaoxiao Pang, Peixuan Ouyang and Shuting Zhang
Coatings 2025, 15(10), 1141; https://doi.org/10.3390/coatings15101141 - 2 Oct 2025
Abstract
Investigating the relationship between coating structure and thermal stress is crucial for improving the service performance of double-ceramic-layer (DCL) thermal barrier coatings (TBCs). This study systematically examines a DCL TBC comprising a Gd2O3-Yb2O3-Y2O [...] Read more.
Investigating the relationship between coating structure and thermal stress is crucial for improving the service performance of double-ceramic-layer (DCL) thermal barrier coatings (TBCs). This study systematically examines a DCL TBC comprising a Gd2O3-Yb2O3-Y2O3 co-doped ZrO2 (GYYZ) top layer and Y2O3-stabilized ZrO2 (YSZ) intermediate layer. Using combined finite element analysis and experimental validation, the influence of top-layer structural parameters (porosity, pore size, thickness) on thermal stress distribution under thermal shock conditions and resultant coating performance was investigated. Results indicate that coating interfaces, particularly GYYZ/YSZ and YSZ/bond coat (BC) interfaces, exhibit high sensitivity to top-layer structural parameters. Optimal GYYZ top-layer parameters were identified as: 10–15 vol.% porosity, 10–20 μm pore diameter, and ~0.15 mm thickness. Reducing the top-layer porosity from 20 vol.% to 15 vol.% increased microhardness by 12.8% and extended thermal cycling life by 87.5%. The coating failure mode shifted from the YSZ/BC interface to the GYYZ/YSZ interface, aligning with simulated thermal stress distributions. Full article
Show Figures

Figure 1

16 pages, 4979 KB  
Article
Synthesis, Structures and Corrosion Inhibition Properties of 4-Nitrophenylacetato-Rare-Earth(III) 1D Coordination Polymers
by Jacob M. Neill, Naveena Y. Salpadoru Thuppahige, Zhifang Guo, Glen B. Deacon and Peter C. Junk
Molecules 2025, 30(19), 3940; https://doi.org/10.3390/molecules30193940 - 1 Oct 2025
Abstract
The rare earth (RE) aqua 4-nitrophenylacetate (4npa) complexes {[RE(4npa)3(H2O)2]·2H2O}n (RE = La (1La), Nd (2Nd)), [Ce(4npa)3(H2O)2]n (3Ce), and {[RE2(4npa) [...] Read more.
The rare earth (RE) aqua 4-nitrophenylacetate (4npa) complexes {[RE(4npa)3(H2O)2]·2H2O}n (RE = La (1La), Nd (2Nd)), [Ce(4npa)3(H2O)2]n (3Ce), and {[RE2(4npa)6(H2O)]·2H2O}n (RE = Gd (4Gd), Dy (5Dy), Y (6Y), Er (7Er), Yb (8Yb)) were synthesised by salt metathesis reactions of REIII chlorides or nitrates with sodium 4-nitrophenylacetate Na(4npa) in aqueous ethanol. The structures of all the complexes were determined by single-crystal X-ray diffraction (SCXRD) except for RE = 4Gd, which was determined to be isomorphous with the 5Dy and 7Er complexes by X-ray powder diffraction (XRPD). All the complexes crystallise as one-dimensional polymers linked by bridging carboxylates. Complexes (1La3Ce) have mononuclear repeating units with two coordinated waters and ten coordinate RE ions, 1La and 2Nd also have two waters of crystallization, but 3Ce has none. By contrast, complexes (4Gd8Yb) have binuclear repeating units with a single coordinated water. Isomorphous 5Dy and 7Er have one nine coordinate and one eight coordinate metal ion, whilst isomorphous 6Y and 8Yb have two eight coordinate RE ions. In some cases, bulk powders have structures different from the corresponding single crystals. For example, bulk 1La is isomorphous with 3Ce owing to the loss of water of crystallization, and 8Yb exhibits coordination isomerism between single crystals and microcrystalline powder. Weight loss corrosion tests revealed that {[Dy2(4npa)6(H2O)]·2H2O}n (5Dy) has the greatest inhibition efficiency (89%) of the complexes (1La8Yb). The activities are comparable to those of the corresponding 4-hydroxyphenylacetates (4hpa) and far superior to those of 2-hydroxyphenylacetates (2hpa) and the unsubstituted phenylacetates. Whilst the coordination numbers generally decline with the lanthanoid contraction, there are deviations around 5Dy, 6Y, 7Er, and 8Yb, and the corrosion inhibition is optimised with a midrange size. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

19 pages, 25806 KB  
Article
Optimizing the Y Content of Welding Wire for TIG Welding of Sand-Cast Mg-Y-RE-Zr Alloy
by Yikai Gong, Guangling Wei, Xin Tong, Guonan Liu, Yingxin Wang and Wenjiang Ding
Materials 2025, 18(19), 4549; https://doi.org/10.3390/ma18194549 - 30 Sep 2025
Abstract
The widespread application of WE43 (Mg-4Y-2Nd-1Gd-0.5Zr) alloy castings in aerospace components is hindered by the frequent formation of defects such as cracks, pores, and especially yttria inclusions. These defects necessitate subsequent welding. However, using homologous WE43 filler wires often exacerbates these issues, leading [...] Read more.
The widespread application of WE43 (Mg-4Y-2Nd-1Gd-0.5Zr) alloy castings in aerospace components is hindered by the frequent formation of defects such as cracks, pores, and especially yttria inclusions. These defects necessitate subsequent welding. However, using homologous WE43 filler wires often exacerbates these issues, leading to high crack susceptibility and reintroduction of inclusions. Herein, we propose a novel strategy of tailoring Y content in filler wires to achieve high-quality welded joint of WE43 sand castings. Systematic investigations reveal that reducing Y content to 2 wt.% (WE23) effectively suppresses oxide inclusion formation and significantly enhances the integrity of the joint. The fusion zone microstructure evolves distinctly with varying Y levels: grain size initially increases, peaking at 24 μm with WE43 wire, then decreases with further Y addition. Moreover, eutectic compounds transition from a semi-continuous to a continuous network structure with increasing Y content, deteriorating mechanical performance. Notably, joints welded with WE23 filler exhibit minimal performance loss, with ultimate tensile strength, yield strength, and elongation reaching 93.0%, 98.0%, and 97.4% of the sand-cast base metal, respectively. The underlying strengthening mechanisms and solute-second phase relationships are elucidated, highlighting the efficacy of optimizing Y content in welding wire design. This study provides valuable insights toward defect-free welding of high-performance Mg-RE alloy castings. Full article
Show Figures

Figure 1

20 pages, 4760 KB  
Article
Enhancing High-Bay Warehouse Sustainability: High-Strength and Low-Carbon Steel for Weight, Cost, and CO2 Optimization
by Christian Dago Ngodji, Mathieu Gauchey, Géraldine Wain, Francesco Morelli, Agnese Natali, Francesco Lippi and Marina D’Antimo
Sustainability 2025, 17(19), 8775; https://doi.org/10.3390/su17198775 - 30 Sep 2025
Abstract
Online shopping has experienced rapid growth in recent years, driven by evolving consumer habits and the impact of the COVID-19 pandemic. With increasing demand for quick and efficient product delivery, retailers are turning to advanced storage solutions to support logistics and distribution. High [...] Read more.
Online shopping has experienced rapid growth in recent years, driven by evolving consumer habits and the impact of the COVID-19 pandemic. With increasing demand for quick and efficient product delivery, retailers are turning to advanced storage solutions to support logistics and distribution. High Bay Warehouses (HBW) have emerged as a key solution, offering high-density vertical storage to maximize space utilization. This study focuses on optimizing HBW structures through the use of high-strength steels, particularly HyPer® Steel grades. By replacing conventional steels such as S350GD with higher-strength alternatives, this study demonstrates the potential to reduce the overall structural weight, lower carbon emissions, and improve cost efficiency, while maintaining equivalent structural performance. The research explores how the conjunction of material optimization and the use of low-carbon steel (XCarb®) can contribute to more sustainable and efficient storage solutions for the growing demands of modern logistics. Full article
Show Figures

Figure 1

17 pages, 563 KB  
Article
Reduced Fat Taste Sensitivity and Its Association with Childhood Obesity in Tunisian Children: A Cross-Sectional Study
by Rym Ben Othman, Inchirah Karmous, Farah Aissa, Halil İbrahim Ceylan, Youssef Zanina, Henda Jamoussi, Nicola Luigi Bragazzi and Ismail Dergaa
Nutrients 2025, 17(19), 3095; https://doi.org/10.3390/nu17193095 - 29 Sep 2025
Abstract
Background: Childhood obesity is a growing public health challenge, with altered taste perception potentially influencing food choices and contributing to weight gain. Objective: To determine detection thresholds for linoleic acid (fat taste) and sucrose (sweet taste) in children aged 6–12 years, and to [...] Read more.
Background: Childhood obesity is a growing public health challenge, with altered taste perception potentially influencing food choices and contributing to weight gain. Objective: To determine detection thresholds for linoleic acid (fat taste) and sucrose (sweet taste) in children aged 6–12 years, and to explore associations with obesity, dietary intake, and food preferences. Methods: In this cross-sectional study, 100 Tunisian children (mean age: 8.05 ± 1.44 years; 54% girls; 45 obese, 55 non-obese) were recruited from an educational support center in Nabeul. Taste sensitivity was evaluated using the 3-alternative forced choice (3-AFC) method with ascending concentrations of linoleic acid (0.018–12.0 mM) for fat taste and sucrose (0.00125–0.32 mol/L) for sweet taste. Participants were categorized as tasters or non-tasters based on detection thresholds. Anthropometric measurements, 24 h dietary recalls, food frequency questionnaires, and food preference assessments were also conducted. Results: Low taste sensitivity was common (93% for sweet, 49% for fat). Girls were more often fat tasters than boys (68.6% vs. 31.4%, p = 0.003). Children with obesity had higher fat taste thresholds (median 3.00 mM, range 0.37–12.0) than non-obese peers (median 1.50 mM, range 0.018–6.0; p = 0.012), indicating reduced fat taste sensitivity. Linear regression showed a significant positive association between fat taste threshold and BMI (p = 0.001), meaning higher detection thresholds corresponded to higher BMI. Sweet taste thresholds did not differ significantly between children with and without obesity (p = 0.731). Sweet non-tasters consumed more sucrose (85.9 ± 64.9 g/d vs. 70.3 ± 62.3 g/d; p = 0.033) and reported more frequent table sugar use (p = 0.047). Fat non-tasters consumed more magnesium (425 ± 414 mg/d vs. 287 ± 60.8 mg/d; p = 0.026) and fiber (22.9 ± 7.51 g/d vs. 20.3 ± 5.32 g/d; p = 0.048) and reported higher intake frequencies of cheese (p = 0.039), sour cream (p = 0.004), and fast food (p = 0.012). Food preferences reflected similar patterns, with non-tasters generally rating high-fat or high-sugar foods more favorably. While most children demonstrated high detection thresholds, girls showed significantly higher fat taste sensitivity compared to boys (p = 0.03). Children with obesity exhibited significantly higher fat taste detection thresholds compared to non-obese children (p = 0.012), with thresholds ranging from 0.37 to 12.0 mM versus 0.018 to 6.0 mM, respectively. No significant difference was observed for sweet taste perception between weight groups (p = 0.731). Conclusions: Nearly half of the children exhibited reduced fat taste sensitivity, which was moderately associated with obesity and positively linked to BMI. Full article
Show Figures

Graphical abstract

24 pages, 3450 KB  
Article
Identification of Anticancer Targets in Ovarian Cancer Using Genomic Drug Sensitivity Data
by Yebin Son and Jae Yong Ryu
Int. J. Mol. Sci. 2025, 26(19), 9530; https://doi.org/10.3390/ijms26199530 - 29 Sep 2025
Abstract
PARP inhibitors exploit synthetic lethality in BRCA1/2-mutated ovarian cancers but are limited by emerging therapeutic resistance. Therefore, novel biomarkers predicting PARP inhibitor response are urgently needed. In this study, we performed integrative analysis using drug sensitivity, patient survival, gene dependency, and expression [...] Read more.
PARP inhibitors exploit synthetic lethality in BRCA1/2-mutated ovarian cancers but are limited by emerging therapeutic resistance. Therefore, novel biomarkers predicting PARP inhibitor response are urgently needed. In this study, we performed integrative analysis using drug sensitivity, patient survival, gene dependency, and expression data to identify biomarkers associated with PARP inhibitor response in ovarian cancer. Mutations in BRCA1, MLL2, NF1, and SMARCA4 were associated with increased sensitivity to PARP inhibitors, suggesting potential synthetic lethality with PARP1. In contrast, SMAD4 mutations were linked to PARP inhibitor resistance, and low SMAD4 expression was associated with poor overall survival in patients with ovarian cancer. Further gene dependency score (GDS)-based screening revealed 51 candidate genes potentially involved in SMAD4-mediated resistance. Functional enrichment revealed associations with stress response, tumor-associated signaling pathways, and additional processes. Subsequent correlation and survival analyses nominated ACACA, PRPF4B, and TUBD1 as potential therapeutic targets. Notably, low ACACA expression in patients with low SMAD4 expression was associated with improved survival, indicating its relevance in overcoming PARP inhibitor resistance. This study contributes to predicting clinical outcomes in ovarian cancer and developing personalized treatment strategies. Full article
(This article belongs to the Special Issue Bioinformatics of Gene Regulations and Structure–2025)
Show Figures

Figure 1

17 pages, 2022 KB  
Article
Genotype-by-Environment Interaction Stability Analysis of New Quinoa (Chenopodium quinoa Willd.) Varieties in the Mediterranean Zone of Chile
by Pablo Olguín, Samuel Contreras, Claudia Rojas and Francisco Fuentes
Plants 2025, 14(19), 3007; https://doi.org/10.3390/plants14193007 - 28 Sep 2025
Abstract
Quinoa (Chenopodium quinoa Willd.), a crop native to the Andean region, exhibits variable performance in yield components under rainfed Mediterranean conditions. Consequently, identifying varieties that demonstrate stability in key agronomic traits—regardless of environmental fluctuations—is essential for enhancing crop reliability and productivity. In [...] Read more.
Quinoa (Chenopodium quinoa Willd.), a crop native to the Andean region, exhibits variable performance in yield components under rainfed Mediterranean conditions. Consequently, identifying varieties that demonstrate stability in key agronomic traits—regardless of environmental fluctuations—is essential for enhancing crop reliability and productivity. In this work, new five varieties belonging to the sea-level ecotype (Pangal, Nieves, Pincoya, Chucao and Regalona), with superior performance to local materials used by farmers in terms of uniformity, stability, yield characteristics, grain diameter, thousand-grain weight, protein percentage, and saponins, were established in three environments (Pichilemu 34°29′ S/72°01′ W, Coihueco 36°42′ S/72°42′ W, Cañete 37°51′ S/73°24′ W) during two consecutive seasons (2019/2020, 2020/2021). Data analysis confirmed narrow variability among the varieties analyzed and between season and environment in all characteristics evaluated. The Pichilemu area (close to the coast) was the most productive over the two years of cultivation studied, with grain yields reaching 2975 kg·ha−1. In the Cañete (coastal) and Coihueco (foothill) environments, grain yields were 2892 and 2453 kg·ha−1, respectively. The Pangal variety (pearl) had the highest grain yield, reaching 3162 kg·ha−1 in all environments. Nieves (white) variety had the best grain diameter (GD = 1.88 mm) and the best thousand-grain weight (TGW = 3.10 g). Regarding grain protein concentration, the Pincoya (black) variety had the highest score (GP = 16.31%). The lowest concentration of Saponin was obtained in Chucao (red) variety (GS = 1.46%). The Additive Main Effects and Multiplicative Interaction (AMMI) analysis did not identify any variety that exhibited greater yield and stability. Consequently, over the two years of study, the Nieves and Pangal varieties presented the best yield in the Pichilemu environment, with 3673 and 3788 kg·ha−1, respectively. These varieties also stood out in the Cañete environment as obtaining the best yields (3547 and 3169 kg·ha−1); however, they did not obtain the highest yield in the Coihueco environment. The Chucao variety was considered to have greater stability obtaining average yield in all study environments. This study presents a comprehensive phenotypic characterization of newly developed varieties, offering insights into their adaptive relationships with Mediterranean environments. To further elucidate the influence of environmental stressors on agronomic performance and grain quality traits, future trials are recommended in more extreme ecological settings. Full article
Show Figures

Figure 1

29 pages, 3932 KB  
Article
Dynamic Spatiotemporal Evolution of Ecological Environment in the Yellow River Basin in 2000–2024 and the Driving Mechanisms
by Yinan Wang, Lu Yuan, Yanli Zhou and Xiangchao Qin
Land 2025, 14(10), 1958; https://doi.org/10.3390/land14101958 - 28 Sep 2025
Abstract
The Yellow River Basin (YRB), a pivotal ecoregion in China, has long been plagued by a range of ecological problems, including water loss, soil erosion, and ecological degradation. Despite previous reports on the ecological environment of YRB, systematic studies on the multi-factor driving [...] Read more.
The Yellow River Basin (YRB), a pivotal ecoregion in China, has long been plagued by a range of ecological problems, including water loss, soil erosion, and ecological degradation. Despite previous reports on the ecological environment of YRB, systematic studies on the multi-factor driving mechanism and the coupling between the ecological and hydrological systems remain scarce. In this study, with multi-source remote-sensing imagery and measured hydrological data, the random forest (RF) model and the geographical detector (GD) technique were employed to quantify the dynamic spatiotemporal changes in the ecological environment of YRB in 2000–2024 and identify the driving factors. The variables analyzed in this study included gross primary productivity (GPP), fractional vegetation cover (FVC), land use and cover change (LUCC), meteorological statistics, as well as runoff and sediment data measured at hydrological stations in YRB. The main findings are as follows: first, the GPP and FVC increased significantly by 37.9% and 18.0%, respectively, in YRB in 2000–2024; second, LUCC was the strongest driver of spatiotemporal changes in the ecological environment of YRB; third, precipitation and runoff contributed positively to vegetation growth, whereas the sediment played a contrary role, and the response of ecological variables to the hydrological processes exhibited a time lag of 1–2 years. This study is expected to provide scientific insights into ecological conservation and water resources management in YRB, and offer a decision-making basis for the design of sustainability policies and eco-restoration initiatives. Full article
Show Figures

Figure 1

17 pages, 3364 KB  
Article
Investigation of Pr3+ and Nd3+ Doping Effects on Sodium Gadolinium Silicate Ceramics as Fast Na+ Conductors
by Abinaya Sivakumaran, Shantel Butler, Samuel Reid and Venkataraman Thangadurai
Batteries 2025, 11(10), 354; https://doi.org/10.3390/batteries11100354 - 27 Sep 2025
Abstract
Sodium metal batteries (SMBs) with ceramic solid electrolytes offer a promising route to improve the energy density of conventional Na-ion batteries (SIBs). Silicate-based ceramics have recently gained attention for their favourable properties, including better ionic conduction and wider stability windows. In this study, [...] Read more.
Sodium metal batteries (SMBs) with ceramic solid electrolytes offer a promising route to improve the energy density of conventional Na-ion batteries (SIBs). Silicate-based ceramics have recently gained attention for their favourable properties, including better ionic conduction and wider stability windows. In this study, 10% Pr3+ and Nd3+ were doped into sodium gadolinium silicate ceramics to examine the effects on phase purity, ionic conductivity, and interfacial compatibility with sodium metal anodes. The materials were synthesized via solid-state methods and sintered at 950–1075 °C to study the impact of sintering temperature on densification and microstructure. Na5Gd0.9Pr0.1Si4O12 (NGPS) and Na5Gd0.9Nd0.1Si4O12 (NGNS) sintered at 1075 °C showed the highest room temperature total ionic conductivities of 1.64 and 1.74 mS cm−1, respectively. The highest critical current density of 0.5 mA cm−2 is achieved with a low interfacial area-specific resistance of 29.47 Ω cm2 for NGPS and 22.88 Ω cm2 for NGNS after Na plating/stripping experiments. These results highlight how doping enhances phase purity, ionic conductivity, and interfacial stability of silicates with Na metal anodes. Full article
Show Figures

Graphical abstract

13 pages, 1587 KB  
Article
Glioma Grading by Integrating Radiomic Features from Peritumoral Edema in Fused MRI Images and Automated Machine Learning
by Amir Khorasani
J. Imaging 2025, 11(10), 336; https://doi.org/10.3390/jimaging11100336 - 27 Sep 2025
Abstract
We aimed to investigate the utility of peritumoral edema-derived radiomic features from magnetic resonance imaging (MRI) image weights and fused MRI sequences for enhancing the performance of machine learning-based glioma grading. The present study utilized the Multimodal Brain Tumor Segmentation Challenge 2023 (BraTS [...] Read more.
We aimed to investigate the utility of peritumoral edema-derived radiomic features from magnetic resonance imaging (MRI) image weights and fused MRI sequences for enhancing the performance of machine learning-based glioma grading. The present study utilized the Multimodal Brain Tumor Segmentation Challenge 2023 (BraTS 2023) dataset. Laplacian Re-decomposition (LRD) was employed to fuse multimodal MRI sequences. The fused image quality was evaluated using the Entropy, standard deviation (STD), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) metrics. A comprehensive set of radiomic features was subsequently extracted from peritumoral edema regions using PyRadiomics. The Boruta algorithm was applied for feature selection, and an optimized classification pipeline was developed using the Tree-based Pipeline Optimization Tool (TPOT). Model performance for glioma grade classification was evaluated based on accuracy, precision, recall, F1-score, and area under the curve (AUC) parameters. Analysis of fused image quality metrics confirmed that the LRD method produces high-quality fused images. From 851 radiomic features extracted from peritumoral edema regions, the Boruta algorithm selected different sets of informative features in both standard MRI and fused images. Subsequent TPOT automated machine learning optimization analysis identified a fine-tuned Stochastic Gradient Descent (SGD) classifier, trained on features from T1Gd+FLAIR fused images, as the top-performing model. This model achieved superior performance in glioma grade classification (Accuracy = 0.96, Precision = 1.0, Recall = 0.94, F1-Score = 0.96, AUC = 1.0). Radiomic features derived from peritumoral edema in fused MRI images using the LRD method demonstrated distinct, grade-specific patterns and can be utilized as a non-invasive, accurate, and rapid glioma grade classification method. Full article
(This article belongs to the Topic Machine Learning and Deep Learning in Medical Imaging)
Show Figures

Figure 1

20 pages, 2709 KB  
Article
Spatiotemporal Evolution and Driving Mechanisms of Eco-Environmental Quality in a Typical Inland Lake Basin of the Northeastern Tibetan Plateau: A Case Study of the Qinghai Lake Basin
by Zhen Chen, Xiaohong Gao, Zhifeng Liu, Yaohang Sun and Kelong Chen
Land 2025, 14(10), 1955; https://doi.org/10.3390/land14101955 - 26 Sep 2025
Abstract
The Qinghai Lake Basin (QLB), as a key component of the ecological security barrier on the Tibetan Plateau, is crucial for regional sustainable development due to the stability of its alpine agro-pastoral ecosystems. This study aims to systematically analyze the spatiotemporal evolution patterns [...] Read more.
The Qinghai Lake Basin (QLB), as a key component of the ecological security barrier on the Tibetan Plateau, is crucial for regional sustainable development due to the stability of its alpine agro-pastoral ecosystems. This study aims to systematically analyze the spatiotemporal evolution patterns and underlying driving mechanisms of eco-environmental quality (EEQ) in the QLB from 2001 to 2022. Based on Google Earth Engine (GEE) and long-term MODIS data, we constructed a Remote Sensing Ecological Index (RSEI) model to evaluate the EEQ dynamics. Geodetector (GD) was applied to quantitatively identify key driving factors and their interactions. The findings reveal: (1) The mean RSEI value increased from 0.46 in 2001 to 0.51 in 2022, showing a fluctuating improvement trend with significant transitions toward higher ecological quality grades; (2) spatially, a distinct “high-north-south, low-center” pattern emerged, with excellent-grade areas (4.77%) concentrated in alpine meadows and poor-grade areas (5.10%) mainly in bare rock regions; (3) 47.81% of the region experienced ecological improvement, whereas 16.34% showed degradation, predominantly above 3827 m elevation; and (4) GD analysis indicated natural factors dominated EEQ differentiation, with temperature (q = 0.340) and elevation (q = 0.332) being primary drivers. The interaction between temperature and precipitation (q = 0.593) exerted decisive control on ecological pattern evolution. This study provides an efficient monitoring framework and a spatially explicit governance paradigm for maintaining differentiated management and ecosystem stability in alpine agro-pastoral regions. Full article
Show Figures

Figure 1

21 pages, 5011 KB  
Article
Synthesis and Characterization of Multifunctional Mesoporous Silica Nanoparticles Containing Gold and Gadolinium as a Theranostic System
by André Felipe Oliveira, Isabela Barreto da Costa Januário Meireles, Maria Angela Barros Correia Menezes, Klaus Krambrock and Edésia Martins Barros de Sousa
J. Nanotheranostics 2025, 6(4), 26; https://doi.org/10.3390/jnt6040026 - 26 Sep 2025
Abstract
Among the many nanomaterials studied for biomedical uses, silica and gold nanoparticles have gained significant attention because of their unique physical and chemical properties and their compatibility with living tissues. Mesoporous silica nanoparticles (MSNs) have great stability and a large surface area, while [...] Read more.
Among the many nanomaterials studied for biomedical uses, silica and gold nanoparticles have gained significant attention because of their unique physical and chemical properties and their compatibility with living tissues. Mesoporous silica nanoparticles (MSNs) have great stability and a large surface area, while gold nanoparticles (AuNPs) display remarkable optical features. Both types of nanoparticles have been widely researched for their individual roles in drug delivery, imaging, biosensing, and therapy. When combined with gadolinium (Gd), a common contrast agent, these nanostructures provide improved imaging due to gadolinium’s strong paramagnetic properties. This study focuses on incorporating gold nanoparticles and gadolinium into a silica matrix to develop a theranostic system. Various analytical techniques were used to characterize the nanocomposites, including infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), nitrogen adsorption, scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray fluorescence (XRF), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and neutron activation analysis (NAA). Techniques like XRF mapping, XANES, nitrogen adsorption, SEM, and VSM were crucial in confirming the presence of gadolinium and gold within the silica network. VSM and EPR analyses confirmed the attenuation of the saturation magnetization for all nanocomposites. This validates their potential for biomedical applications in diagnostics. Moreover, activating gold nanoparticles in a nuclear reactor generated a promising radioisotope for cancer treatment. These results indicate the potential of using a theranostic nanoplatform that employs mesoporous silica as a carrier, gold nanoparticles for radioisotopes, and gadolinium for imaging purposes. Full article
Show Figures

Figure 1

18 pages, 14537 KB  
Article
Enhanced Mechanical and Corrosion Properties of As-Extruded Mg-12Gd-2Zn-0.4Zr Alloy by Nd Additions
by Jiahuan He, Lixin Hong, Jianwei Dai and Xiaobo Zhang
Metals 2025, 15(10), 1077; https://doi.org/10.3390/met15101077 - 26 Sep 2025
Abstract
The microstructures and mechanical and corrosion properties of Mg-12Gd-2Zn-xNd-0.4Zr (x = 0, 0.5, and 1.0 wt.%) alloys after hot-extrusion have been studied by scanning electron microscope (SEM), transmission electron microscope (TEM), electron back scattered diffraction (EBSD), X-ray diffractometer (XRD), electronic [...] Read more.
The microstructures and mechanical and corrosion properties of Mg-12Gd-2Zn-xNd-0.4Zr (x = 0, 0.5, and 1.0 wt.%) alloys after hot-extrusion have been studied by scanning electron microscope (SEM), transmission electron microscope (TEM), electron back scattered diffraction (EBSD), X-ray diffractometer (XRD), electronic universal testing machine, atomic force microscope (AFM), immersion, and electrochemical tests. The results show that all the alloys consist of an α-Mg matrix, β phase, and stacking faults (SFs). Obvious texture (<1¯21¯0> parallel to the extrusion direction and the direction close to <0001>) can be found due to the introduction of the Nd element. The yield strength (YS) of the alloys with Nd additions in different testing conditions is higher than that without Nd addition. The addition of 0.5 wt.% Nd achieves the highest tensile YS at room temperature (262 MPa) and 180 °C (251 MPa), along with compression YS (246 MPa), attributable to grain refinement, stacking faults, texture, and solute atom strengthening. Moreover, the compression YS to tensile YS ratio of the as-extruded alloy increases from 0.87 to 0.98, indicating a significant improvement of tension–compression YS asymmetry. The Nd addition also plays a great role in the enhanced corrosion resistance of the alloys. Specifically, the corrosion potential of the different phases in the alloys shows the following order: β phase > SFs > α-Mg matrix. The alloy with 0.5 wt.% Nd addition exhibits the best corrosion resistance owing to its lower corrosion potential difference between the β phase and α-Mg matrix. Full article
Show Figures

Figure 1

Back to TopTop