Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = GGCM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3581 KB  
Article
Non-Destructive Detection of Pomegranate Blackheart Disease via Near-Infrared Spectroscopy and Soft X-ray Imaging Systems
by Rongke Nie, Xingyi Huang, Xiaoyu Tian, Shanshan Yu, Chunxia Dai, Xiaorui Zhang and Qin Fang
Foods 2025, 14(14), 2454; https://doi.org/10.3390/foods14142454 - 12 Jul 2025
Viewed by 402
Abstract
Pomegranate blackheart disease, as an internal disease affecting the global pomegranate industry, is difficult to identify externally and urgently requires non-destructive detection methods for rapid diagnosis. This study established discriminative models for blackheart disease severity in pomegranates by using near-infrared (NIR) spectroscopy and [...] Read more.
Pomegranate blackheart disease, as an internal disease affecting the global pomegranate industry, is difficult to identify externally and urgently requires non-destructive detection methods for rapid diagnosis. This study established discriminative models for blackheart disease severity in pomegranates by using near-infrared (NIR) spectroscopy and soft X-ray imaging techniques. The results showed that the optimal NIR-based discriminative model, constructed with a Random Forest (RF) algorithm based on spectra preprocessed by the second-derivative (D2) denoising and a Competitive Adaptive Reweighted Sampling (CARS) algorithm, achieved a prediction set accuracy of 86.00%; the optimal soft X-ray imaging-based discriminative model, built with an RF algorithm using textural features extracted from images preprocessed by median filtering and a Contrast-Limited Adaptive Histogram Equalization (CLAHE) algorithm combined with gray-level co-occurrence matrix (GLCM) and gray-gradient co-occurrence matrix (GGCM) algorithms, reached a prediction set accuracy of 93.10%. In terms of model performance, the model based on soft X-ray imaging exhibited superior performance. Both techniques possess distinct advantages and limitations yet enable non-destructive detection of pomegranate blackheart disease. Further technical optimizations in the future could provide enhanced support for the healthy development of the pomegranate industry. Full article
Show Figures

Figure 1

18 pages, 2990 KB  
Article
A GGCM-E Based Semantic Filter and Its Application in VSLAM Systems
by Yuanjie Li, Chunyan Shao and Jiaming Wang
Electronics 2024, 13(22), 4487; https://doi.org/10.3390/electronics13224487 - 15 Nov 2024
Viewed by 887
Abstract
Image matching-based visual simultaneous localization and mapping (vSLAM) extracts low-level pixel features to reconstruct camera trajectories and maps through the epipolar geometry method. However, it fails to achieve correct trajectories and mapping when there are low-quality feature correspondences in several challenging environments. Although [...] Read more.
Image matching-based visual simultaneous localization and mapping (vSLAM) extracts low-level pixel features to reconstruct camera trajectories and maps through the epipolar geometry method. However, it fails to achieve correct trajectories and mapping when there are low-quality feature correspondences in several challenging environments. Although the RANSAC-based framework can enable better results, it is computationally inefficient and unstable in the presence of a large number of outliers. A Faster R-CNN learning-based semantic filter is proposed to explore the semantic information of inliers to remove low-quality correspondences, helping vSLAM localize accurately in our previous work. However, the semantic filter learning method generalizes low precision for low-level and dense texture-rich scenes, leading the semantic filter-based vSLAM to be unstable and have poor geometry estimation. In this paper, a GGCM-E-based semantic filter using YOLOv8 is proposed to address these problems. Firstly, the semantic patches of images are collected from the KITTI dataset, the TUM dataset provided by the Technical University of Munich, and real outdoor scenes. Secondly, the semantic patches are classified by our proposed GGCM-E descriptors to obtain the YOLOv8 neural network training dataset. Finally, several semantic filters for filtering low-level and dense texture-rich scenes are generated and combined into the ORB-SLAM3 system. Extensive experiments show that the semantic filter can detect and classify semantic levels of different scenes effectively, filtering low-level semantic scenes to improve the quality of correspondences, thus achieving accurate and robust trajectory reconstruction and mapping. For the challenging autonomous driving benchmark and real environments, the vSLAM system with respect to the GGCM-E-based semantic filter demonstrates its superiority regarding reducing the 3D position error, such that the absolute trajectory error is reduced by up to approximately 17.44%, showing its promise and good generalization. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Robotics)
Show Figures

Figure 1

23 pages, 3765 KB  
Article
Settlement Forecast of Marine Soft Soil Ground Improved with Prefabricated Vertical Drain-Assisted Staged Riprap Filling
by Xue-Ting Wu, Jun-Ning Liu, Adel Alowaisy, Noriyuki Yasufuku, Ryohei Ishikura and Meilani Adriyati
Buildings 2024, 14(5), 1316; https://doi.org/10.3390/buildings14051316 - 7 May 2024
Cited by 2 | Viewed by 1529
Abstract
By comparing different settlement forecast methods, eight methods were selected considering the creep of marine soft soils in this case study, including the Hyperbolic Method (HM), Exponential Curve Method (ECM), Pearl Growth Curve Modeling (PGCM), Gompertz Growth Curve Modeling (GGCM), Grey (1, 1) [...] Read more.
By comparing different settlement forecast methods, eight methods were selected considering the creep of marine soft soils in this case study, including the Hyperbolic Method (HM), Exponential Curve Method (ECM), Pearl Growth Curve Modeling (PGCM), Gompertz Growth Curve Modeling (GGCM), Grey (1, 1) Model (GM), Grey Verhulst Model (GVM), Back Propagation of Artificial Neural Network (BPANN) with Levenberg–Marquardt Algorithm (BPLM), and BPANN with Gradient Descent of Momentum and Adaptive Learning Rate (BPGD). Taking Lingni Seawall soil ground improved with prefabricated vertical drain-assisted staged riprap filling as an example, forecasts of the short-term, medium-term, long-term, and final settlements at different locations of the soft ground were performed with the eight selected methods. The forecasting values were compared with each other and with the monitored data. When relative errors were between 0 and −1%, both the forecasting accuracy and engineering safety were appropriate and reliable. It was concluded that the appropriate forecast methods were different not only due to the time periods during the settlement process, but also the locations of soft ground. Among these methods, only BPGD was appropriate for all the time periods and locations, such as at the edge of the berm, and at the center of the berm and embankment. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 12932 KB  
Article
Enhancing Maize Yield Simulations in Regional China Using Machine Learning and Multi-Data Resources
by Yangfeng Zou, Giri Raj Kattel and Lijuan Miao
Remote Sens. 2024, 16(4), 701; https://doi.org/10.3390/rs16040701 - 16 Feb 2024
Cited by 4 | Viewed by 2316
Abstract
Improved agricultural production systems, together with increased grain yield, are essential to feed the growing global population in the 21st century. Global gridded crop models (GGCMs) have been extensively used to assess crop production and yield simulation on a large geographical scale. However, [...] Read more.
Improved agricultural production systems, together with increased grain yield, are essential to feed the growing global population in the 21st century. Global gridded crop models (GGCMs) have been extensively used to assess crop production and yield simulation on a large geographical scale. However, GGCMs are less effective when they are used on a finer scale, significantly limiting the precision in capturing the yearly maize yield. To address this issue, we propose a relatively more advanced approach that downsizes GGCMs by combining machine learning and crop modeling to enhance the accuracy of maize yield simulations on a regional scale. In this study, we combined the random forest algorithm with multiple data sources, trained the algorithm on low-resolution maize yield simulations from GGCMs, and applied it to a finer spatial resolution on a regional scale in China. We evaluated the performance of the eight GGCMs by utilizing a total of 1046 county-level maize yield data available over a 30-year period (1980–2010). Our findings reveal that the downscaled models created for maize yield simulations exhibited a remarkable level of accuracy (R2 ≥ 0.9, MAE < 0.5 t/ha, RMSE < 0.75 t/ha). The original GGCMs performed poorly in simulating county-level maize yields in China, and the improved GGCMs in our study captured an additional 17% variability in the county-level maize yields in China. Additionally, by optimizing nitrogen management strategies, we identified an average maize yield gap at the county level in China ranging from 0.47 to 1.82 t/ha, with the south maize region exhibiting the highest yield gap. Our study demonstrates the high effectiveness of machine learning methods for the spatial downscaling of crop models, significantly improving GGCMs’ performance in county-level maize yield simulations. Full article
Show Figures

Figure 1

22 pages, 4973 KB  
Article
Escalator Foundation Bolt Loosening Fault Recognition Based on Empirical Wavelet Transform and Multi-Scale Gray-Gradient Co-Occurrence Matrix
by Xuezhuang E and Wenbo Wang
Sensors 2023, 23(15), 6801; https://doi.org/10.3390/s23156801 - 30 Jul 2023
Cited by 5 | Viewed by 1537
Abstract
An escalator is an essential large-scale public transport equipment; once it fails, this inevitably affects the operation of the escalator and even leads to safety concerns, or perhaps accidents. As an important structural part of the escalator, the foundation of the main engine [...] Read more.
An escalator is an essential large-scale public transport equipment; once it fails, this inevitably affects the operation of the escalator and even leads to safety concerns, or perhaps accidents. As an important structural part of the escalator, the foundation of the main engine can cause the operation of the escalator to become abnormal when its fixing bolts become loose. Aiming to reduce the difficulty of extracting the fault features of the footing bolt when it loosens, a fault feature extraction method is proposed in this paper based on empirical wavelet transform (EWT) and the gray-gradient co-occurrence matrix (GGCM). Firstly, the Teager energy operator and multi-scale peak determination are used to improve the spectral partitioning ability of EWT, and the improved EWT is used to decompose the original foundation vibration signal into a series of empirical mode functions (EMFs). Then, the gray-gradient co-occurrence matrix of each EMF is constructed, and six texture features of the gray-gradient co-occurrence matrix are calculated as the fault feature vectors of this EMF. Finally, the fault features of all EMFs are fused, and the degree of the loosening of the escalator foundation bolt is identified using the fused multi-scale feature vector and BiLSTM. The experimental results show that the proposed method based on EWT and GGCM feature extraction can diagnose the loosening degree of foundation bolts more effectively and has a certain engineering application value. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Back to TopTop