Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = GRAIL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1703 KB  
Article
An End-to-End Framework for Spatiotemporal Data Recovery and Unsupervised Cluster Partitioning in Distributed PV Systems
by Bingxu Zhai, Yuanzhuo Li, Wei Qiu, Rui Zhang, Zhilin Jiang, Yinuo Zeng, Tao Qian and Qinran Hu
Processes 2025, 13(10), 3186; https://doi.org/10.3390/pr13103186 - 7 Oct 2025
Abstract
The growing penetration of distributed photovoltaic (PV) systems presents significant operational challenges for power grids, driven by the scarcity of historical data and the high spatiotemporal variability of PV generation. To address these challenges, we propose Generative Reconstruction and Adaptive Identification via Latents [...] Read more.
The growing penetration of distributed photovoltaic (PV) systems presents significant operational challenges for power grids, driven by the scarcity of historical data and the high spatiotemporal variability of PV generation. To address these challenges, we propose Generative Reconstruction and Adaptive Identification via Latents (GRAIL), a unified, end-to-end framework that integrates generative modeling with adaptive clustering to discover latent structures and representative scenarios in PV datasets. GRAIL operates through a closed-loop mechanism where clustering feedback guides a cluster-aware data generation process, and the resulting generative augmentation strengthens partitioning in the latent space. Evaluated on a real-world, multi-site PV dataset with a high missing data rate of 45.4%, GRAIL consistently outperforms both classical clustering algorithms and deep embedding-based methods. Specifically, GRAIL achieves a Silhouette Score of 0.969, a Calinski–Harabasz index exceeding 4.132×106, and a Davies–Bouldin index of 0.042, demonstrating superior intra-cluster compactness and inter-cluster separation. The framework also yields a normalized entropy of 0.994, which indicates highly balanced partitioning. These results underscore that coupling data generation with clustering is a powerful strategy for expressive and robust structure learning in data-sparse environments. Notably, GRAIL achieves significant performance gains over the strongest deep learning baseline that lacks a generative component, securing the highest composite score among all evaluated methods. The framework is also computationally efficient. Its alternating optimization converges rapidly, and clustering and reconstruction metrics stabilize within approximately six iterations. Beyond quantitative performance, GRAIL produces physically interpretable clusters that correspond to distinct weather-driven regimes and capture cross-site dependencies. These clusters serve as compact and robust state descriptors, valuable for downstream applications such as PV forecasting, dispatch optimization, and intelligent energy management in modern power systems. Full article
(This article belongs to the Section Energy Systems)
17 pages, 1194 KB  
Article
Impact of Induced Forward Leg Movements on Kinematics and Kinetics During Quiet Standing in Healthy Young Right-Leg-Dominant Women: A Quasi-Experimental Study
by Michalina Gulatowska, Michalina Błażkiewicz, Anatolii Tsos and Jacek Wąsik
Appl. Sci. 2025, 15(19), 10764; https://doi.org/10.3390/app151910764 - 6 Oct 2025
Abstract
Background: Postural control in healthy young adults involves complex neuromuscular processes; however, the kinematic and kinetic consequences of small, forward leg perturbations in a defined population are not fully described. This study aimed to characterize the kinematic and kinetic consequences of forward leg [...] Read more.
Background: Postural control in healthy young adults involves complex neuromuscular processes; however, the kinematic and kinetic consequences of small, forward leg perturbations in a defined population are not fully described. This study aimed to characterize the kinematic and kinetic consequences of forward leg perturbations during quiet standing. Methods: This investigation used a quasi-experimental repeated-measures design. Sixteen healthy young women (20.1 ± 0.7 years), all right-leg dominant, were tested using the Gait Real-Time Analysis Interactive Laboratory (GRAIL) system. Forward treadmill perturbations were applied to each limb during quiet standing, and joint angles, ground reaction forces, and torques were measured across baseline, perturbation, and response phases. As the data were non-normally distributed, paired comparisons were conducted using the Wilcoxon test, with significance set at p < 0.05 (Bonferroni corrected) and effect sizes (r) reported. Results: Joint angles remained symmetrical between limbs (no significant differences after correction). In contrast, kinetic measures showed clear asymmetries: at baseline, the dominant limb produced greater knee torque (p = 0.0003, r = 0.73), ankle torque (p = 0.0003, r = 0.76), and medio-lateral GRF (p = 0.0003, r = 0.87). During perturbation, it again generated higher knee (p = 0.0036, r = 0.43) and ankle torques (p = 0.0003, r = 0.53), with larger medio-lateral GRF (p = 0.0003, r = 0.87). In the response phase, the dominant limb showed greater hip torque (p = 0.0033, r = 0.43) and a small dorsiflexion shift at the ankle (p = 0.0066, r = 0.41). Anterior–posterior GRF changes were minor and non-significant after correction. Conclusions: Induced forward leg movements caused limb-specific kinetic adjustments while maintaining overall kinematic symmetry. The dominant leg contributed more actively to balance recovery, highlighting its role in stabilizing posture under small perturbations. These findings are specific to the studied demographic and should not be generalized to males, older adults, left-dominant individuals, or clinical populations without further research. Full article
(This article belongs to the Special Issue Applied Biomechanics: Sports Performance and Rehabilitation)
Show Figures

Figure 1

16 pages, 2323 KB  
Article
Discovery of Landscape Phage Probes Against Cellular Communication Network Factor 1 (CCN1/Cyr61)
by James W. Gillespie and Valery A. Petrenko
Viruses 2025, 17(9), 1273; https://doi.org/10.3390/v17091273 - 19 Sep 2025
Viewed by 367
Abstract
Detection of cancer biomarkers at the earliest stages of disease progression is commonly assumed to extend the overall quality of life for cancer patients as the result of earlier clinical management of the disease. Therefore, there is an urgent need for the development [...] Read more.
Detection of cancer biomarkers at the earliest stages of disease progression is commonly assumed to extend the overall quality of life for cancer patients as the result of earlier clinical management of the disease. Therefore, there is an urgent need for the development of standardized, sensitive, robust, and commonly available screening and diagnostic tools for detecting the earliest signals of neoplastic pathology progression. Recently, a new paradigm of cancer control, known as multi-cancer detection (MCD), evolved, which measures the composition of cancer-related molecular analytes in the patient’s fluids using minimally invasive techniques. In this respect, the “Holy Grail” of cancer researchers and bioengineers for decades has been composing a repertoire or molecular sensing probes that would allow for the diagnosis, prognosis, and monitoring of cancer diseases via their interaction with cell-secreted and cell-associated cancer antigens and biomarkers. Therefore, the current trend in screening and detection of cancer-related pathologies is the development of portable biosensors for mobile laboratories and individual use. Phage display, since its conception by George Smith 40 years ago, has emerged as a premier tool for molecular evolution in molecular biology with widespread applications including identification and screening of cancer biomarkers, such as Circulating Cellular Communication Network Factor 1 (CCN1), an extracellular matrix-associated signaling protein responsible for a variety of cellular functions and has been shown to be overexpressed as part of the response to various pathologies including cancer. We hypothesize that CCN1 protein can be used as a soluble marker for the early detection of breast cancer in a multi-cancer detection (MCD) platform. However, validated probes have not been identified to date. Here, we screened the multi-billion clone landscape phage display library for phages interacting specifically with immobilized CCN1 protein. Through our study, we discovered a panel of 26 different phage-fused peptides interacting selectively with CCN1 protein that can serve for development of a novel phage-based diagnostic platform to monitor changes in CCN1 serum concentration by liquid biopsy. Full article
(This article belongs to the Special Issue Phage Display in Cancer Diagnosis and Screening)
Show Figures

Figure 1

19 pages, 1953 KB  
Article
Virtual Reality-Based Postural Balance Training in Autistic Children: A Pilot Randomized Controlled Trial
by Anna Falivene, Gaia Scaccabarozzi, Silvia Busti Ceccarelli, Massimo Molteni, Katrijn Klingels, Evi Verbecque, Fabio Alexander Storm, Emilia Biffi and Alessandro Crippa
J. Clin. Med. 2025, 14(16), 5616; https://doi.org/10.3390/jcm14165616 - 8 Aug 2025
Viewed by 1002
Abstract
Background/Objectives: Beyond the core characteristics of the condition, autistic individuals often significantly struggle with postural balance. This pilot study aimed to investigate the effects of an immersive virtual reality-based training administered with Gait Real-time Analysis Interactive Lab (GRAIL) on postural balance of [...] Read more.
Background/Objectives: Beyond the core characteristics of the condition, autistic individuals often significantly struggle with postural balance. This pilot study aimed to investigate the effects of an immersive virtual reality-based training administered with Gait Real-time Analysis Interactive Lab (GRAIL) on postural balance of autistic children. Methods: A total of 20 autistic participants aged 6 to 13 were enrolled in a 5-week randomized, parallel-group, open-label, controlled trial, and received either balance training with the GRAIL system or no training. The trial was registered at ClinicalTrials.gov (identifier: NCT04276571). The primary outcome measures were the change in center of pressure (CoP) metrics during GRAIL balance assessments and the change in motor skills as assessed with Movement Assessment Battery for Children-2. Secondary outcome measures included parent-report Developmental Coordination Disorder Questionnaire, center of mass metrics, and gait parameters evaluated with GRAIL. ANCOVA tests were performed for all outcomes, with time (T0 and T1) as within-subjects factor, the group (training and control groups) as between-subjects factor, and considering age as covariate. Results: Slight but significant time by group interactions were found in some CoP metrics (i.e., sway path length, velocity in the antero-posterior direction, and the jerk). Conclusions: These findings preliminarily suggest that a virtual reality-based training may induce slight modifications in postural balance strategies, which can be enhanced with longer or more intensive training. Full article
Show Figures

Figure 1

38 pages, 5974 KB  
Article
Metamodeling Approach to Sociotechnical Systems’ External Context Digital Twins Building: A Higher Education Case Study
by Ana Perisic, Ines Perisic, Marko Lazic and Branko Perisic
Appl. Sci. 2025, 15(15), 8708; https://doi.org/10.3390/app15158708 - 6 Aug 2025
Viewed by 470
Abstract
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of [...] Read more.
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of the underlying technical system. The fact that the relevant social concepts are more mature than the supporting technologies qualifies the digital transformation of sociotechnical systems as a reengineering rather than an engineering endeavor. Preserving the social mission throughout the digital transformation process in varying social contexts is mandatory, making the digital twins (DT) methodology application a contemporary research hotspot. In this research, we combined continuous transformation STS theory principles, an observer-based system-of-sociotechnical-systems (SoSTS) architecture model, and digital twinning methods to address common STS context representation challenges. Additionally, based on model-driven systems engineering methodology and meta-object-facility principles, the research specifies the universal meta-concepts and meta-modeling templates, supporting the creation of arbitrary sociotechnical systems’ external context digital twins. Due to the inherent diversity, significantly influenced by geopolitical, economic, and cultural influencers, a higher education external context specialization illustrates the reusability potentials of the proposed universal meta-concepts. Substituting higher-education-related meta-concepts and meta-models with arbitrary domain-dependent specializations further fosters the proposed universal meta-concepts’ reusability. Full article
Show Figures

Figure 1

15 pages, 1125 KB  
Article
Gait Kinematics of Individuals with SYNGAP1-Related Disorder Compared with Age-Matched Neurotypical Individuals
by Charles S. Layne, Dacia Martinez Diaz, Christopher A. Malaya, Bernhard Suter and Jimmy Lloyd Holder
Appl. Sci. 2025, 15(15), 8267; https://doi.org/10.3390/app15158267 - 25 Jul 2025
Viewed by 420
Abstract
SYNGAP1-related disorder is a rare neurodevelopmental disorder characterized by intellectual and motor disabilities, including disordered gait control. Currently, there have been few studies that have assessed the gait of individuals with SYNGAP1-related disorder using technology-based collection techniques. The purpose of this [...] Read more.
SYNGAP1-related disorder is a rare neurodevelopmental disorder characterized by intellectual and motor disabilities, including disordered gait control. Currently, there have been few studies that have assessed the gait of individuals with SYNGAP1-related disorder using technology-based collection techniques. The purpose of this investigation was to characterize the kinematic gait pattern of these individuals using camera-based motion capture technology during treadmill walking. Both linear and non-linear analysis techniques were used to analyze bilateral lower-limb joint motion and compare the results to age-matched neurotypical individuals. Results indicate that joint range of motion and velocity were decreased in the patient population relative to the neurotypical participants with the non-linear measures of angle–angle and phase portrait areas reflecting similar outcomes. The combination of linear and non-linear measures provide complementary information that, when used in combination, can provide deeper insights into the coordination and control of gait than if either of the measurement techniques are used in isolation. Such information can be useful to clinicians and therapists to develop targeted interventions designed to improve the gait of individuals with SYNGAP1-related disorder. Full article
(This article belongs to the Special Issue Motor Control and Movement Biomechanics)
Show Figures

Figure 1

26 pages, 4473 KB  
Review
Red Supergiant Mass Loss and Mass-Loss Rates
by Jacco Th. van Loon
Galaxies 2025, 13(4), 72; https://doi.org/10.3390/galaxies13040072 - 20 Jun 2025
Cited by 1 | Viewed by 1834
Abstract
This review discusses the causes, nature, importance and observational evidence of mass loss by red supergiants. It arrives at the perception that mass loss finds its origin in the gravity which makes the star a star in the first place, and is a [...] Read more.
This review discusses the causes, nature, importance and observational evidence of mass loss by red supergiants. It arrives at the perception that mass loss finds its origin in the gravity which makes the star a star in the first place, and is a mechanism for the star to equilibrate. This is corroborated by a careful examination of various popular historical and recent empirical mass-loss rate prescriptions and theoretical works, and which provides no evidence for an explicit dependence of red supergiant mass loss on metallicity though dust-associated mass loss becomes less prevalent at lower metallicity. It also identifies a common problem in methods that use tracers of mass loss, which do not correct for varying scaling factors (often because there is no information available on which to base such correction) and as a result tend to underestimate mass-loss rates at the lower end. Conversely, dense, extended chromospheres in themselves do not translate into high mass-loss rates, and the significance of stochastic mass loss can be overstated. On a population scale, on the other hand, binary interaction acts as a stochastic agent of mass loss of great import. In all, evidence is overwhelming that points at red supergiants at the lower mass end losing mass at insufficient rates to shed their mantles before core collapse, but massive (at birth) red supergiants to be prone to intense, dusty mass loss which sees them become hotter stars before meeting their fate. This is consistent with the identified progenitors of hydrogen-rich supernovae. Supernova evolution holds great promise to probe the mass loss but we caution against confusing atmospheres with winds. Finally, promising avenues are looked into, which could forge step-change progress in what has been a long and arduous search for the holy grail of red supergiant mass loss. We may yet find it! Full article
(This article belongs to the Special Issue The Red Supergiants: Crucial Signposts for the Fate of Massive Stars)
Show Figures

Figure 1

24 pages, 5752 KB  
Article
Age-Related Compensatory Gait Strategies During Induced Perturbations in the Pre-Swing Gait Phase: A Kinematic and Kinetic Analysis
by Katarzyna Chodkowska, Michalina Błażkiewicz, Andrzej Mroczkowski and Jacek Wąsik
Appl. Sci. 2025, 15(12), 6885; https://doi.org/10.3390/app15126885 - 18 Jun 2025
Viewed by 406
Abstract
The response to perturbations in the gait of elderly and young individuals can differ due to various factors, such as age-related changes in sensorimotor function, muscle strength, and balance control. This study aimed to identify and compare compensatory kinematic and kinetic gait strategies [...] Read more.
The response to perturbations in the gait of elderly and young individuals can differ due to various factors, such as age-related changes in sensorimotor function, muscle strength, and balance control. This study aimed to identify and compare compensatory kinematic and kinetic gait strategies in response to sudden treadmill perturbations applied during the Pre-Swing phase in young and older adults. The analysis focused on determining age-related differences in joint behavior and force production under perturbation stress, with implications for fall prevention. Twenty-one young and an equal number of elderly healthy females walked on a treadmill in a virtual environment (GRAIL, Motek). Unexpected perturbations were applied five times. Principal Component Analysis (PCA) and k-means clustering identified three distinct compensatory strategies per limb. Young adults primarily employed Strategies I (42.2%) and II (40%), while older adults most often selected Strategy II (45.5%). Statistical analysis (SPM and Mann-Whitney U test, p = 0.05) showed significant between-group differences in joint angles and torques across the gait cycle. For instance, in Strategy I, young participants had significantly lower ankle plantarflexion angles (p < 0.01) and hip extension torques (p < 0.05) compared to the elderly. Strategy II in older adults showed significantly higher vGRF minimums (p < 0.01) and anterior-posterior GRF peaks (p < 0.001). The elderly adopted strategies compatible with their neuromuscular capacity rather than those minimizing joint load, as observed in the young group. These findings offer novel insights into age-related compensatory mechanisms and highlight the importance of tailored fall-prevention strategies based on biomechanical response patterns. Full article
Show Figures

Figure 1

14 pages, 705 KB  
Technical Note
Sensing Lunar Dust Density Using Radio Science Signals of Opportunity
by Kamal Oudrhiri, Yu-Ming Yang and Daniel Erwin
Remote Sens. 2025, 17(11), 1940; https://doi.org/10.3390/rs17111940 - 4 Jun 2025
Viewed by 1150
Abstract
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions [...] Read more.
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions have laid a strong foundation for our current knowledge. However, due to insufficient near-surface observations, the scientific community has faced challenges in interpreting the phenomena of lunar dust lofting and levitation. This paper introduces the concept of signals of opportunity (SoOP), which utilizes radio occultation (RO) to retrieve the near-surface dust density profile on the Moon. Gravity Recovery and Interior Laboratory (GRAIL) radio science beacon (RSB) signals are used to demonstrate this method. By mapping the concentration of lunar near-surface dust using RO, we aim to enhance our understanding of how charged lunar dust interacts with surrounding plasma, thereby contributing to future research in this field and supporting human exploration of the Moon. Additionally, the introduced SoOP will be able to provide observational constraints to physical model development related to lunar surface particle sputtering and the reactions of near-surface dust in the presence of solar wind and electrostatically charged dust grains. Full article
Show Figures

Figure 1

13 pages, 3337 KB  
Perspective
Structural Biology in the AlphaFold Era: How Far Is Artificial Intelligence from Deciphering the Protein Folding Code?
by Nicole Balasco, Luciana Esposito and Luigi Vitagliano
Biomolecules 2025, 15(5), 674; https://doi.org/10.3390/biom15050674 - 6 May 2025
Viewed by 2121
Abstract
Proteins are biomolecules characterized by uncommon chemical and physicochemical complexities coupled with extreme responsiveness to even minor chemical modifications or environmental variations. Since the shape that proteins assume is fundamental for their function, understanding the chemical and structural bases that drive their three-dimensional [...] Read more.
Proteins are biomolecules characterized by uncommon chemical and physicochemical complexities coupled with extreme responsiveness to even minor chemical modifications or environmental variations. Since the shape that proteins assume is fundamental for their function, understanding the chemical and structural bases that drive their three-dimensional structures represents the central problem for an atomic-level interpretation of biology. Not surprisingly, this question has progressively become the Holy Grail of structural biology (the folding problem). From this perspective, we initially describe and discuss the different formulations of the folding problem. In the present manuscript, the folding problem is framed from a historical perspective, effectively highlighting the progress made in the last lustrum. We chronologically summarize the major contributions that traditional methodologies provide in approaching this multifaceted problem. We then describe the recent advent and evolution of predictive approaches based on machine learning techniques that are revolutionizing the field by pointing out the potentialities and limitations of this approach. In the final part of the perspective, we illustrate the contribution that computational approaches will make in current structural biology to overcome the limitations of the reductionist approach of studying individual molecules to afford the atomic-level characterization of entire cellular compartments. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

14 pages, 3010 KB  
Article
Effects of Simulated Hyper-Gravity on Lower Limb Kinematics and Electromyography During Walking
by Christopher A. Malaya, Pranav J. Parikh, Dean L. Smith and Charles S. Layne
Biomechanics 2025, 5(2), 31; https://doi.org/10.3390/biomechanics5020031 - 4 May 2025
Viewed by 1300
Abstract
Background: Gravity profoundly influences human locomotion. Studies examining the effects of hyper-gravity on gait have largely relied on added external mass, potentially confounding results with changes in inertia and center of mass. This study attempted to isolate the effects of increased gravitational load [...] Read more.
Background: Gravity profoundly influences human locomotion. Studies examining the effects of hyper-gravity on gait have largely relied on added external mass, potentially confounding results with changes in inertia and center of mass. This study attempted to isolate the effects of increased gravitational load on kinematics and electromyography during walking at several different levels of load. Methods: Fifteen healthy adults were exposed to simulated gravitational loads ranging from 100% to 130% of body weight using a novel harness and spring-based system that increased weight without the addition of external mass and without altering limb inertia. Participants walked on a treadmill at a self-selected speed through incremental loading and unloading. Lower limb kinematics and electromyography data were recorded. Traditional measures of gait, as well as more dynamical measures, including angle–angle analysis and phase portraits, were examined. Results: Data demonstrated that a 130% load is sufficient to induce kinematic changes at the hip and knee; however, these changes become significant only during the transition from 130% to lower load levels. Ankle kinematics and electromyography appeared to be unaffected. Conclusions: These findings suggest that the presence of external mass and alterations in limb inertias should be considered seriously as independent variables in future loading studies, and that weight and mass may need to be considered as separate effectors during locomotion. This study also found that the act of loading and unloading elicit distinct responses in the joints of the lower extremities, as well as that it may induce an adaptative after-effect. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

13 pages, 2138 KB  
Review
Using Optical Coherence Tomography in Plant Biology Research: Review and Prospects
by Ghada Salem Sasi and Adrien Alexis Paul Chauvet
Sensors 2025, 25(8), 2467; https://doi.org/10.3390/s25082467 - 14 Apr 2025
Cited by 2 | Viewed by 1119
Abstract
Visualizing the microscopic structure of plants in vivo, non-invasively, and in real-time is the Holy Grail of botany. Optical coherence tomography (OCT) has all the characteristics necessary to achieve this feat. Indeed, OCT provides volumetric images of the internal structure of plants without [...] Read more.
Visualizing the microscopic structure of plants in vivo, non-invasively, and in real-time is the Holy Grail of botany. Optical coherence tomography (OCT) has all the characteristics necessary to achieve this feat. Indeed, OCT provides volumetric images of the internal structure of plants without the need for histological preparation. With its micrometric resolution, OCT is commonly used in medicine, primarily in ophthalmology. But it is seldom used in the field of botany. The aim of the present work is thus to review the latest technical development in the field of OCT and to highlight its current use in botany, in order to promote the technique and further advance research in the field of botany. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

24 pages, 12563 KB  
Article
Analyzing Gaze During Driving: Should Eye Tracking Be Used to Design Automotive Lighting Functions?
by Korbinian Kunst, David Hoffmann, Anıl Erkan, Karina Lazarova and Tran Quoc Khanh
J. Eye Mov. Res. 2025, 18(2), 13; https://doi.org/10.3390/jemr18020013 - 10 Apr 2025
Viewed by 970
Abstract
In this work, an experiment was designed in which a defined route consisting of country roads, highways, and urban roads was driven by 20 subjects during the day and at night. The test vehicle was equipped with GPS and a camera, and the [...] Read more.
In this work, an experiment was designed in which a defined route consisting of country roads, highways, and urban roads was driven by 20 subjects during the day and at night. The test vehicle was equipped with GPS and a camera, and the subject wore head-mounted eye-tracking glasses to record gaze. Gaze distributions for country roads, highways, urban roads, and specific urban roads were then calculated and compared. The day/night comparisons showed that the horizontal fixation distribution of the subjects was wider during the day than at night over the whole test distance. When the distributions were divided into urban roads, country roads, and motorways, the difference was also seen in each road environment. For the vertical distribution, no clear differences between day and night can be seen for country roads or urban roads. In the case of the highway, the vertical dispersion is significantly lower, so the gaze is more focused. On highways and urban roads there is a tendency for the gaze to be lowered. The differentiation between a residential road and a main road in the city made it clear that gaze behavior differs significantly depending on the urban area. For example, the residential road led to a broader gaze behavior, as the sides of the street were scanned much more often in order to detect potential hazards lurking between parked cars at an early stage. This paper highlights the contradictory results of eye-tracking research and shows that it is not advisable to define a holy grail of gaze distribution for all environments. Gaze is highly situational and context-dependent, and generalized gaze distributions should not be used to design lighting functions. The research highlights the importance of an adaptive light distribution that adapts to the traffic situation and the environment, always providing good visibility for the driver and allowing a natural gaze behavior. Full article
Show Figures

Figure 1

50 pages, 5449 KB  
Review
Artificial Intelligence and Internet of Things Integration in Pharmaceutical Manufacturing: A Smart Synergy
by Reshma Kodumuru, Soumavo Sarkar, Varun Parepally and Jignesh Chandarana
Pharmaceutics 2025, 17(3), 290; https://doi.org/10.3390/pharmaceutics17030290 - 22 Feb 2025
Cited by 5 | Viewed by 22078
Abstract
Background: The integration of artificial intelligence (AI) with the internet of things (IoTs) represents a significant advancement in pharmaceutical manufacturing and effectively bridges the gap between digital and physical worlds. With AI algorithms integrated into IoTs sensors, there is an improvement in the [...] Read more.
Background: The integration of artificial intelligence (AI) with the internet of things (IoTs) represents a significant advancement in pharmaceutical manufacturing and effectively bridges the gap between digital and physical worlds. With AI algorithms integrated into IoTs sensors, there is an improvement in the production process and quality control for better overall efficiency. This integration facilitates enabling machine learning and deep learning for real-time analysis, predictive maintenance, and automation—continuously monitoring key manufacturing parameters. Objective: This paper reviews the current applications and potential impacts of integrating AI and the IoTs in concert with key enabling technologies like cloud computing and data analytics, within the pharmaceutical sector. Results: Applications discussed herein focus on industrial predictive analytics and quality, underpinned by case studies showing improvements in product quality and reductions in downtime. Yet, many challenges remain, including data integration and the ethical implications of AI-driven decisions, and most of all, regulatory compliance. This review also discusses recent trends, such as AI in drug discovery and blockchain for data traceability, with the intent to outline the future of autonomous pharmaceutical manufacturing. Conclusions: In the end, this review points to basic frameworks and applications that illustrate ways to overcome existing barriers to production with increased efficiency, personalization, and sustainability. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

14 pages, 3859 KB  
Article
The Effect of Repetitive Mechanical Perturbations on Lower Limb Symmetry in Postural Control
by Michalina Gulatowska and Michalina Błażkiewicz
Symmetry 2025, 17(2), 245; https://doi.org/10.3390/sym17020245 - 6 Feb 2025
Cited by 1 | Viewed by 955
Abstract
Background: Postural symmetry ensures balanced alignment and equal weight distribution, promoting optimal function and minimizing stress on muscles and joints. This study aimed to evaluate lower limb movement symmetry in response to mechanical perturbations. Methods: Twelve healthy young women were subjected to mechanical [...] Read more.
Background: Postural symmetry ensures balanced alignment and equal weight distribution, promoting optimal function and minimizing stress on muscles and joints. This study aimed to evaluate lower limb movement symmetry in response to mechanical perturbations. Methods: Twelve healthy young women were subjected to mechanical perturbation tests while standing on the Motek GRAIL system treadmill. Maximum values of kinematic and kinetic parameters and symmetry indices were counted to compare the responses of dominant and non-dominant limbs. Results: The study identified symmetrical and asymmetrical features in lower limb dynamics. Symmetry nearness was observed in the ankle joint angle (SI = 0.03), the hip torque (SI = 0.03), and the vertical component of the ground reaction force (SI = 0.04). However, significant asymmetries were found in the medio-lateral component of the ground reaction force (SI = 1.84), ankle torque (SI = 0.23), knee torque (SI = 0.19), hip angle (SI = 0.15), and knee angle (SI = 0.08). The anterior–posterior component of the ground reaction force (SI = 0.14) showed asymmetry but was not statistically significant. Conclusions: Perturbations impact lower limb dynamics, revealing dominance- and joint-specific asymmetries. Bilateral assessment is crucial for understanding postural control, guiding rehabilitation to restore symmetry, and reducing the risk of injuries, falls, and musculoskeletal strain, particularly in athletes and older adults. These findings emphasize the value of symmetry indices in optimizing therapy and prevention strategies. Full article
(This article belongs to the Special Issue Application of Symmetry in Biomechanics)
Show Figures

Figure 1

Back to TopTop